JPH08153614A - Magnetic core - Google Patents

Magnetic core

Info

Publication number
JPH08153614A
JPH08153614A JP7080812A JP8081295A JPH08153614A JP H08153614 A JPH08153614 A JP H08153614A JP 7080812 A JP7080812 A JP 7080812A JP 8081295 A JP8081295 A JP 8081295A JP H08153614 A JPH08153614 A JP H08153614A
Authority
JP
Japan
Prior art keywords
magnetic
core
magnetic core
alloy
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7080812A
Other languages
Japanese (ja)
Other versions
JP2713373B2 (en
Inventor
Katsuto Yoshizawa
克仁 吉沢
Kiyotaka Yamauchi
清隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13728883&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08153614(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7080812A priority Critical patent/JP2713373B2/en
Publication of JPH08153614A publication Critical patent/JPH08153614A/en
Application granted granted Critical
Publication of JP2713373B2 publication Critical patent/JP2713373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE: To provide a magnetic core having low loss, high permeability and low characteristic deterioration due to magnetostriction. CONSTITUTION: The title magnet core is formed by winding a thin band formed by an Fe-radical soft magnetic alloy, in which crystal grains, having a body- centered cubic structure and the average grain diameter of 200 Angstroms or smaller, as measured in maximum dimensions occupy at least 80% of the structure, laminating or bonding to a substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種トランス、チョー
クコイル、可飽和リアクトル、ノイズフィルター等に用
いられる軟磁気特性に優れた磁心に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic core having excellent soft magnetic characteristics used for various transformers, choke coils, saturable reactors, noise filters and the like.

【0002】[0002]

【従来の技術】従来、各種トランス、チョークコイル、
可飽和リアクトル、ノイズフィルター等の磁心としては
高電気抵抗で渦電流損が少ない等の利点を有するフェラ
イト磁心、高飽和磁束密度で比較的鉄損が少ないケイ素
鋼磁心、中程度の飽和磁束密度で比較的高周波特性に優
れたパーマロイ磁心等が用いられていた。
2. Description of the Related Art Conventionally, various transformers, choke coils,
Ferrite core, which has the advantages of high electrical resistance and low eddy current loss, as a magnetic core for saturable reactors, noise filters, etc., silicon steel core with high saturation magnetic flux density and relatively low iron loss, and medium saturation magnetic flux density Permalloy cores and the like, which have relatively high frequency characteristics, have been used.

【0003】しかし、フェライト磁心は飽和磁束密度が
低く、温度特性も悪いため、磁心を小形化することが困
難である欠点がある。ケイ素鋼磁心は飽和磁束密度は高
いが軟磁気特性、特に高周波における透磁率やコア損失
が劣っている。パーマロイ磁心は、高周波磁気特性はケ
イ素鋼より優れたものを得られるが、耐衝撃性に劣って
おり、衝撃により高周波磁気特性が容易に劣化する欠点
があった。
However, since the ferrite magnetic core has a low saturation magnetic flux density and poor temperature characteristics, it has a drawback that it is difficult to miniaturize the magnetic core. The silicon steel core has a high saturation magnetic flux density, but is inferior in soft magnetic characteristics, particularly magnetic permeability and core loss at high frequencies. Permalloy cores can obtain high-frequency magnetic properties superior to silicon steel, but have poor impact resistance, and have the disadvantage that high-frequency magnetic properties are easily degraded by impact.

【0004】近年これらの欠点をある程度改善できるも
のとして、非晶質合金で形成する磁心が注目を集め一部
実用化されている。
In recent years, magnetic cores made of amorphous alloys have attracted attention and have been partially put into practical use in order to improve these drawbacks to some extent.

【0005】非晶質合金は主としてFe系とCo系に大別さ
れ、Fe系の非晶質合金は飽和磁束密度が高く、材料コス
トがCo系に比べて安くつくという利点がある反面、一般
的に高周波においてCo系非晶質合金よりコア損失が大き
く、透磁率も低いという問題がある。またFe系非晶質合
金は磁歪が著しく大きく、磁心がうなりを生じたり含浸
やコーティング等を行うと著しく特性が劣化する欠点が
ある。
Amorphous alloys are mainly classified into Fe-based alloys and Co-based alloys. Fe-based amorphous alloys have the advantages that the saturation magnetic flux density is high and the material cost is lower than that of Co-based alloys. There is a problem that the core loss is higher and the magnetic permeability is lower than that of the Co-based amorphous alloy at high frequencies. Further, the Fe-based amorphous alloy has a remarkably large magnetostriction, and there is a drawback that the characteristics are remarkably deteriorated when the magnetic core is beaten or impregnated or coated.

【0006】これに対してCo系非晶質合金は高周波のコ
ア損失が小さく、透磁率も高いが、コア損失や透磁率の
経時変化が大きく、飽和磁束密度も十分ではない欠点が
ある。さらには高価なCoを主原料とするため価格的な不
利は免れない。
On the other hand, the Co-based amorphous alloy has a small high frequency core loss and a high magnetic permeability, but has the disadvantages that the core loss and the magnetic permeability change over time and the saturation magnetic flux density is insufficient. Furthermore, since expensive Co is used as a main raw material, disadvantages in price are inevitable.

【0007】このような状況下でFe基非晶質合金につい
て種々の提案がなされた。特公昭60-17019号には、74〜
84原子%のFeと、8〜24原子%のBと、16原子%以下のSi
及び3原子%以下のCの内の少なくとも1つとからなる組
成を有し、その構造の少なくとも85%が非晶質金属素地
の形を有し、かつ非晶質金属素地の全体にわたって不連
続に分布された結晶質粒子群の析出物を有しており、結
晶質粒子群は0.05〜1μmの平均粒度及び1〜10μmの平均
粒子間距離を有しており、粒子群は全体の0.01〜0.3の
平均容積分率を占めていることを特徴とする鉄基含硼素
磁性非晶質合金が開示されている。この合金の結晶質粒
子群は磁壁のピンニング点と作用する不連続な分布のα
-(Fe,Si)粒子群であるとされている。
Under such circumstances, various proposals have been made for Fe-based amorphous alloys. In Japanese Examined Patent Publication No. 60-17019, 74-
84 atomic% Fe, 8-24 atomic% B, and 16 atomic% or less Si
And at least one of 3 atomic% or less of C, at least 85% of its structure has the form of an amorphous metal matrix, and discontinuously throughout the amorphous metal matrix. It has a precipitate of distributed crystalline particle groups, the crystalline particle group has an average particle size of 0.05 to 1 μm and an average interparticle distance of 1 to 10 μm, the particle group is 0.01 to 0.3 of the whole. An iron-based boron-containing magnetic amorphous alloy is disclosed which is characterized by occupying an average volume fraction of. The crystalline particles of this alloy have a discontinuous distribution of α that interacts with the pinning point of the domain wall.
-It is said to be a group of (Fe, Si) particles.

【0008】また特開昭60-52557号にはFeaCubBcSid(た
だし75≦a≦85,0<b≦1.5,10≦c≦20,d≦10かつc+d≦3
0)からなる低損失非晶質磁性合金が開示されている。こ
の非晶質合金は結晶化温度以下でかつキュリー温度以上
で熱処理される。
Further, JP-A-60-52557 discloses that Fe a Cu b B c Si d (provided that 75 ≦ a ≦ 85, 0 <b ≦ 1.5, 10 ≦ c ≦ 20, d ≦ 10 and c + d ≦ 3.
A low-loss amorphous magnetic alloy consisting of 0) is disclosed. This amorphous alloy is heat treated below the crystallization temperature and above the Curie temperature.

【0009】[0009]

【発明が解決しようとする課題】前記特公昭60-17019号
のFe基軟磁性合金からなる磁心は不連続な結晶質粒子群
の存在によりコア損失は減少するが、それでもコア損失
は依然大きく、特に磁歪が大きいためうなりを生じた
り、含浸コーティングを行うことによりコア損失、透磁
率の著しい劣化を招く問題があり、カットコア等では高
特性のものが得られていない。
In the magnetic core made of the Fe-based soft magnetic alloy of Japanese Patent Publication No. 60-17019, the core loss is reduced due to the presence of discontinuous crystalline particles, but the core loss is still large. In particular, since the magnetostriction is large, there is a problem that a beat is generated and the impregnating coating causes a core loss and a remarkable deterioration of magnetic permeability, and a cut core or the like having high characteristics has not been obtained.

【0010】一方、前記特開昭60-52557号のFe基非晶質
合金はCu含有の効果により磁心のコア損失は低下してい
るが、上記結晶粒子含有Fe基非晶質合金を用いた磁心と
同様に満足ではない。さらにはコア損失の経時変化、透
磁率に関しても十分でないという問題がある。
On the other hand, in the Fe-based amorphous alloy disclosed in JP-A-60-52557, the core loss of the magnetic core is reduced due to the effect of containing Cu. Not as satisfying as a magnetic core. Further, there is a problem that the core loss with time and the magnetic permeability are not sufficient.

【0011】従って本発明の目的はコア損失が低く、透
磁率が高く、磁歪による特性劣化の小さい磁心を提供す
ることを目的とする。
Therefore, an object of the present invention is to provide a magnetic core having a low core loss, a high magnetic permeability and a small characteristic deterioration due to magnetostriction.

【0012】[0012]

【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、本発明者は以下のことを知見した。
As a result of earnest research in view of the above object, the present inventor has found the following.

【0013】Fe73.4Cu1Nb3.1Si13.4B9.1の組成を有する
溶湯から、単ロール法を用い非晶質化したリボンを作製
し、種々の熱処理条件下で微細結晶粒の割合の異なる試
料(No.1〜5)を作製した。この試料の結晶粒の割合と
実効透磁率(μe1KHz)、コア損失(W2/100K:100KHz,Bm 2K
Gにおける)との関係を求めた。結果を図13,図14に
示す。また試料1〜5の透過電子顕微鏡写真(30万倍)を
図15〜図19に示す。なお、後述する線分法により求
めた微細結晶粒の割合および最大寸法で測定した粒径の
平均(オングストローム)は以下の通りである。
Samples having different ratios of fine crystal grains under various heat treatment conditions were prepared from a molten metal having a composition of Fe 73.4 Cu 1 Nb 3.1 Si 13.4 B 9.1 by using a single roll method to produce amorphized ribbons. No. 1 to 5) were produced. Percentage of crystal grains, effective permeability (μ e1KHz ), core loss (W 2 / 100K : 100KHz, Bm 2K)
(In G). The results are shown in FIGS. 13 and 14. Further, transmission electron microscope photographs (300,000 times) of Samples 1 to 5 are shown in FIGS. The proportion of fine crystal grains obtained by the line segment method described later and the average (angstrom) of the grain size measured by the maximum dimension are as follows.

【0014】 以上の図13および図14から明かなように、微細結晶
粒の割合が80%以上になると、実効透磁率が著しく向上
し、またコア損失が低減される。
[0014] As is clear from FIGS. 13 and 14, when the ratio of fine crystal grains is 80% or more, the effective magnetic permeability is significantly improved and the core loss is reduced.

【0015】以上の試料についてX線回折および透過電
子顕微鏡による分析を行った結果、微細な結晶粒はSi等
が固溶した体心立方格子構造のFeと判断された。本発明
は以上の知見に基づくものであり、体心立方格子構造を
有する最大寸法で測定した粒径の平均が200オングスト
ローム以下の結晶粒が組織の少なくとも80%を占めるFe
基軟磁性合金の薄板を巻回し、積層し、又は基板へ付着
させて形成したことを特徴とする磁心である。
As a result of X-ray diffraction and transmission electron microscope analysis of the above samples, it was determined that the fine crystal grains were Fe having a body-centered cubic lattice structure in which Si or the like was dissolved. The present invention is based on the above findings, and the average grain size measured in the maximum dimension having a body-centered cubic lattice structure is 200 angstroms or less crystal grains occupy at least 80% of the structure Fe
A magnetic core is formed by winding a thin plate of a base soft magnetic alloy, laminating it, or adhering it to a substrate.

【0016】本発明に係る磁心に用いられる合金として
好ましい組成は、 一般式: (Fe1-aMa)100-x-y-z-α-β-γCuxSiyBzM'αM"βXγ(原
子%) (ただし、MはCo及び/又はNiであり、M'はNb,W,Ta,Zr,
Hf,Ti及びMoからなる群から選ばれた少なくとも1種の元
素、M"はV,Cr,Mn,Al,白金属元素,Sc,Y,希土類元素,Au,Z
n,Sn,Reからなる群から選ばれた少なくとも1種の元素、
XはC,Ge,P,Ga,Sb,In,As,Beからなる群から選ばれた少な
くとも1種の元素であり、a,x,y,z,α,β及びγはそれぞ
れ0≦a<0.5,0.1≦x≦3,0≦y≦30,0≦z≦25,0≦y+z≦3
5,0.1≦α≦30,0≦β≦10及び0≦γ≦10を満たす。)に
より表される組成を有する。
A preferred composition for the alloy used in the magnetic core according to the present invention is represented by the general formula: (Fe 1-a M a ) 100-xyz- α - β - γCu x Si y B z M'αM "βXγ (atomic% (However, M is Co and / or Ni, and M'is Nb, W, Ta, Zr,
At least one element selected from the group consisting of Hf, Ti and Mo, M "is V, Cr, Mn, Al, a white metal element, Sc, Y, a rare earth element, Au, Z
n, Sn, at least one element selected from the group consisting of Re,
X is at least one element selected from the group consisting of C, Ge, P, Ga, Sb, In, As, Be, and a, x, y, z, α, β and γ are each 0 ≦ a. <0.5, 0.1 ≤ x ≤ 3, 0 ≤ y ≤ 30, 0 ≤ z ≤ 25, 0 ≤ y + z ≤ 3
5, 0.1 ≦ α ≦ 30, 0 ≦ β ≦ 10 and 0 ≦ γ ≦ 10 are satisfied. ).

【0017】本発明に係る磁心に用いられるFe基軟磁性
合金は、所定組成の非晶質合金を溶湯から急冷すること
により得る工程と、これを加熱し微細な結晶粒を形成す
る熱処理工程とによって得られる。
The Fe-based soft magnetic alloy used in the magnetic core according to the present invention includes a step of rapidly cooling an amorphous alloy having a predetermined composition from a molten metal, and a heat treatment step of heating the amorphous alloy to form fine crystal grains. Obtained by

【0018】前記本発明に用いられる合金において、Cu
は0.1〜3原子%の範囲で含有される。0.1原子%より少
ないとCuの添加によるコア損失低下、透磁率上昇の効果
がほとんどなく、一方、3原子%より多いとコア損失が
未添加のものよりかえって大きくなることがあり、透磁
率も劣化する。本発明において特に好ましいCuの含有量
xは0.5〜2原子%であり、この範囲ではコア損失が特に
小さい。
In the alloy used in the present invention, Cu
Is contained in the range of 0.1 to 3 atomic%. If it is less than 0.1 atom%, there is almost no effect of lowering core loss and increase of magnetic permeability due to addition of Cu, while if it is more than 3 atom%, core loss may be larger than that without addition, and permeability is also deteriorated. To do. Particularly preferred Cu content in the present invention
x is 0.5 to 2 atomic%, and the core loss is particularly small in this range.

【0019】Cuのコア損失低下、透磁率上昇作用の原因
は明かではないが次のように考えられる。
The cause of the decrease of the core loss and the increase of the magnetic permeability of Cu is not clear, but it is considered as follows.

【0020】CuとFeの相互作用パラメータは正であり、
固溶度が低く、分離する傾向があるため非晶質状態の合
金を加熱するとFe原子同志またはCu原子同志が寄り集ま
りクラスターを形成するため組成ゆらぎが生じる。この
ため部分的に結晶化しやすい領域が多数でき、そこを核
とした微細な結晶粒が生成される。この結晶はFeを主成
分とするものであり、FeとCuの固溶度はほとんどないた
め結晶化によりCuは微細結晶粒の周囲にはき出され、結
晶粒周辺のCu濃度が高くなる。このため結晶粒は成長し
にくいと考えられる。
The interaction parameter between Cu and Fe is positive,
Since the solid solubility is low and there is a tendency for separation, when an alloy in an amorphous state is heated, Fe atoms or Cu atoms gather to form clusters, resulting in composition fluctuations. For this reason, a large number of regions are likely to be partially crystallized, and fine crystal grains are generated with these regions as nuclei. Since this crystal has Fe as a main component and there is almost no solid solubility between Fe and Cu, Cu is extruded around fine crystal grains due to crystallization, and the Cu concentration around the crystal grains becomes high. Therefore, it is considered that crystal grains are hard to grow.

【0021】以上のようにCu添加により結晶核が多数で
きることと結晶粒が成長しにくいため結晶粒微細化が起
こると考えられるが、この作用はNb,Ta,W,Mo,Zr,Hf,Ti
等の存在により特に著しくなると考えられる。
As described above, it is considered that the addition of Cu produces a large number of crystal nuclei and makes it difficult for the crystal grains to grow, so that the grain refinement occurs, but this action is caused by Nb, Ta, W, Mo, Zr, Hf, Ti.
It is believed that the presence of the above will make it particularly remarkable.

【0022】Nb,Ta,W,Mo,Zr,Hf,Ti等が存在しない場合
は結晶粒はあまり微細化されない。Nb,Ta,Zr,Hf,Moは特
に効果が大きいが、これらの元素の中でNbを添加した場
合特に結晶粒が細くなりやすく、軟磁気特性も優れたも
のが得られる。
When Nb, Ta, W, Mo, Zr, Hf, Ti, etc. are not present, the crystal grains are not so finely divided. Nb, Ta, Zr, Hf, and Mo have a particularly large effect, but when Nb is added among these elements, the crystal grains tend to be particularly thin and excellent soft magnetic properties can be obtained.

【0023】またFeを主成分とする微細結晶相が生ずる
ためFe基非晶質合金に比べ磁歪が小さくなり、内部応力
−歪による磁気異方性が小さくなることも軟磁気特性が
改善される理由と考えられる。
Further, since a fine crystalline phase containing Fe as a main component is generated, the magnetostriction becomes smaller than that of the Fe-based amorphous alloy, and the magnetic anisotropy due to internal stress-strain becomes small, and the soft magnetic characteristics are improved. It is considered to be the reason.

【0024】本発明の磁心に係るFe基軟磁性合金の内に
は、例えば、組成式:FebalCu1Nb3B5Si17.5で表される
合金の様に、磁歪が負のもの、或いは磁歪が0又はほと
んど0のものも含まれている。
Among the Fe-based soft magnetic alloys relating to the magnetic core of the present invention, for example, those having a negative magnetostriction, such as an alloy represented by the composition formula: Fe bal Cu 1 Nb 3 B 5 Si 17.5 , or Magnetostriction of 0 or almost 0 is also included.

【0025】Cuを添加しない場合は結晶粒は微細化され
にくく、化合物相が形成しやすいため結晶化により磁気
特性は劣化しやすい。
When Cu is not added, the crystal grains are hard to be made fine and the compound phase is easily formed, so that the magnetic characteristics are easily deteriorated by the crystallization.

【0026】V,Cr,Mn,Al,白金属元素,Sc,Y,希土類元素,
Au,Zn,Sn,Re等の元素は耐食性改善、磁気特性改善、磁
歪調整の効果を有するものである。その含有量はせいぜ
い10原子%以下である。含有量が10原子%を超えると著
しい飽和磁束密度の低下を招くためであり、特に好まし
い含有量は8原子%以下である。
V, Cr, Mn, Al, white metal element, Sc, Y, rare earth element,
Elements such as Au, Zn, Sn, and Re have effects of improving corrosion resistance, improving magnetic properties, and adjusting magnetostriction. Its content is at most 10 atomic% or less. This is because if the content exceeds 10 atomic%, the saturation magnetic flux density will be significantly reduced, and the particularly preferable content is 8 atomic% or less.

【0027】これらの中でRu,Rh,Pd,Os,Ir,Pt,Au,Cr,V
から選ばれる少なくとも1種の元素を添加した合金から
なる場合は特に耐食性、耐摩耗性に優れた磁心となる。
Among these, Ru, Rh, Pd, Os, Ir, Pt, Au, Cr, V
When it is made of an alloy to which at least one element selected from the above is added, the magnetic core has excellent corrosion resistance and wear resistance.

【0028】本発明において、C,Ge,P,Ga,Sb,In,Be,As
からなる群から選ばれた少なくとも1種の元素を10原子
%以下含むこともできる。これら元素は非晶質化に有効
な元素であり、Si,Bと共に添加することにより合金の非
晶質化を助けるとともに、磁歪やキュリー温度調整に効
果がある。
In the present invention, C, Ge, P, Ga, Sb, In, Be, As
It is also possible to contain at least one element selected from the group consisting of 10 atomic% or less. These elements are effective for amorphization, and when added together with Si and B, they help amorphization of the alloy and are effective for adjusting magnetostriction and Curie temperature.

【0029】Si及びBは、本発明に係る合金の結晶粒微
細化に特に有用な元素である。本発明に係るFe基軟磁性
合金は、好ましくは、一旦Si,Bの添加効果により非晶質
合金とした後で熱処理により微細結晶粒を形成させるこ
とにより得られる。Si及びBの含有量y及びzの限定理由
は、yが30原子%以下、zが25原子%以下、y+zが35原子
%以下でないと、合金の飽和磁束密度の著しい減少があ
るからである。
Si and B are elements particularly useful for refining the crystal grains of the alloy according to the present invention. The Fe-based soft magnetic alloy according to the present invention is preferably obtained by once forming an amorphous alloy by the effect of adding Si and B and then forming fine crystal grains by heat treatment. The reason for limiting the contents y and z of Si and B is that y is 30 atomic% or less, z is 25 atomic% or less, and y + z is 35 atomic% or less, the saturation magnetic flux density of the alloy is significantly reduced. Is.

【0030】他の非晶質形成元素の添加量が少ない時
は、y+zが10〜35原子%の範囲であれば、前記合金の中
間段階での非晶質化が容易である。しかしながら、後述
のM'は非晶質形成元素としても作用するため、B,Siの含
有は必須ではない。
When the amount of addition of the other amorphous forming element is small, if the y + z is in the range of 10 to 35 atomic%, the amorphization of the alloy at the intermediate stage is easy. However, since M ′ described later also acts as an amorphous forming element, the inclusion of B and Si is not essential.

【0031】本発明において、M'はCuとの複合添加によ
り析出する結晶粒を微細化する作用を有するものであ
り、Nb,W,Ta,Zr,Hf,Ti及びMoからなる群から選ばれた少
なくとも1種の元素である。Nb等は合金の結晶化温度を
上昇させる作用を有するが、クラスターを形成し結晶化
温度を低下させる作用を有するCuとの相互作用により析
出する結晶粒が微細化するものと考えられる。M'の含有
量αは0.1〜30原子%であり、0.1原子%未満だと結晶粒
微細化の効果が不十分であり、一方30原子%を超えると
飽和磁束密度の著しい低下を招く。好ましいM'の含有量
αは2〜8原子%である。なおM'としてNbが磁気特性の面
で最も好ましい。またM'の添加によりCo基高透磁率材料
と同等の高い透磁率を有するようになる。
In the present invention, M'has a function of refining the crystal grains precipitated by complex addition with Cu, and is selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo. It is at least one element. Nb and the like have the effect of increasing the crystallization temperature of the alloy, but it is considered that the precipitated crystal grains become finer due to the interaction with Cu which has the function of forming clusters and lowering the crystallization temperature. The content α of M ′ is 0.1 to 30 atom%, and if it is less than 0.1 atom%, the effect of grain refinement is insufficient, while if it exceeds 30 atom%, the saturation magnetic flux density is significantly reduced. The preferable content α of M ′ is 2 to 8 atom%. Note that Nb is most preferable as M ′ in terms of magnetic characteristics. Further, by adding M ′, it has a high magnetic permeability equivalent to that of the Co-based high magnetic permeability material.

【0032】残部は不純物を除いて実質的にFeが主体で
あるが、Feの一部は成分M(Co及び/又はNi)により置換
することもできる。Mの含容量aは0≦a<0.5であるが、
好ましくは、0≦a≦0.3である。aが0.3を超えると、コ
ア損失が増加する場合があるためである。
The balance consists essentially of Fe except for impurities, but part of Fe can be replaced by the component M (Co and / or Ni). The content a of M is 0 ≦ a <0.5,
Preferably, 0 ≦ a ≦ 0.3. This is because if a exceeds 0.3, the core loss may increase.

【0033】M"の添加により、耐食性の改善、磁気特性
の改善、又は磁歪調整効果が得られる。M"が10原子%を
超えると飽和磁束密度低下が著しい。
Addition of M "can improve the corrosion resistance, improve the magnetic properties, or adjust the magnetostriction. When M" exceeds 10 atomic%, the saturation magnetic flux density is significantly reduced.

【0034】本発明に係る合金のうち特に0≦a≦0.3,0.
5≦x≦2,10≦y≦25,3≦z≦12,18≦y+z≦28,2≦α≦8の
関係を有する場合特に高透磁率、低コア損失が得られや
すい。
Among the alloys according to the present invention, in particular 0 ≦ a ≦ 0.3,0.
When 5 ≦ x ≦ 2, 10 ≦ y ≦ 25, 3 ≦ z ≦ 12, 18 ≦ y + z ≦ 28, 2 ≦ α ≦ 8, particularly high magnetic permeability and low core loss are easily obtained.

【0035】本発明に係わるFe基軟磁性合金は組織の少
なくとも80%以上が体心立方格子構造を有する微細な結
晶粒からなる。
In the Fe-based soft magnetic alloy according to the present invention, at least 80% or more of the structure is composed of fine crystal grains having a body-centered cubic lattice structure.

【0036】この結晶粒はα-Feを主体とするものでSi
やB等が固溶していると考えられる。この結晶粒は200オ
ングストローム以下と著しく小さな平均粒径を有するこ
とを特徴とし、合金組織中に均一に分布している。合金
組織のうち微細結晶粒以外の部分は主に非晶質である。
なお微細結晶粒の割合が実質的に100%になっても本発
明の磁心は十分に優れた磁気特性を示す。
This crystal grain is mainly composed of α-Fe and is composed of Si.
It is considered that B, etc. are in solid solution. The crystal grains are characterized by having a remarkably small average grain size of 200 angstroms or less, and are uniformly distributed in the alloy structure. The part of the alloy structure other than the fine crystal grains is mainly amorphous.
Note that the magnetic core of the present invention exhibits sufficiently excellent magnetic characteristics even when the proportion of fine crystal grains is substantially 100%.

【0037】なお、本発明における微細結晶粒の割合は
線分法により求めた値である。この線分法は一般的な方
法であり、組織写真中に引かれた任意の線分(長さL)が
横切る各結晶粒の長さ(L1,L2,L3,…Ln)の合計(L1+L2+L3
+…Ln)を求め、これをLで割ることにより、結晶粒の割
合を求めるものである。なお、結晶粒の割合が約80%以
上と多くなると、結晶粒がほぼ組織全体を占めるように
見えるが、この場合でも幾分非晶質相が存在するものと
考えられる。というのは、図19に示すように結晶粒の
外周部が顕微鏡写真ではぼやけて見えるが、これは非晶
質相の存在によるためのものであると考えられるからで
ある。この前提に立つと、ぼやけて見える外周部の割合
から、大体の非晶質相の割合がわかる。このように結晶
粒の割合が多い場合、割合を正確な数値で表すことはき
わめて困難である。
The proportion of fine crystal grains in the present invention is a value obtained by the line segment method. This line segment method is a general method, and the total length (L1, L2, L3, ... Ln) of each crystal grain (L1) crossed by an arbitrary line segment (length L) drawn in the micrograph + L2 + L3
+ ... Ln) is obtained and divided by L to obtain the proportion of crystal grains. When the proportion of crystal grains increases to about 80% or more, the crystal grains appear to occupy almost the entire structure, but it is considered that some amorphous phase is present in this case as well. This is because the outer peripheral portion of the crystal grain looks blurred in the micrograph as shown in FIG. 19, which is considered to be due to the presence of the amorphous phase. Under this premise, the proportion of the amorphous phase can be known from the proportion of the peripheral portion that appears to be blurred. When the proportion of crystal grains is large as described above, it is extremely difficult to express the proportion by an accurate numerical value.

【0038】本発明において、N,O,S等の不可避的不純
物については所望の特性が劣化しない程度に含有してい
ても本発明の磁心に用いられる合金組成と同一とみなす
ことができるのはもちろんである。
In the present invention, unavoidable impurities such as N, O and S can be regarded as the same as the alloy composition used in the magnetic core of the present invention even if they are contained to the extent that the desired characteristics are not deteriorated. Of course.

【0039】次に本発明の磁心の製造方法について説明
する。まず上記所定の組成の溶湯から、片ロール法、双
ロール法等の公知の液体急冷法によりリボン状の非晶質
合金を形成する。通常、片ロール法等により製造される
非晶質合金リボンの板厚は3〜100μm程度であるが、板
厚が25μm以下のものが高周波において使用される磁心
用薄帯として特に適している。
Next, a method of manufacturing the magnetic core of the present invention will be described. First, a ribbon-shaped amorphous alloy is formed from a molten metal having the above-mentioned predetermined composition by a known liquid quenching method such as a single roll method or a twin roll method. Usually, the sheet thickness of the amorphous alloy ribbon produced by the single roll method or the like is about 3 to 100 μm, but the sheet thickness of 25 μm or less is particularly suitable as a ribbon for magnetic cores used at high frequencies.

【0040】この非晶質合金は結晶相を含んでいてもよ
いが、後の熱処理により微細な結晶粒を均一に生成する
ためには非晶質であるのが望ましい。
This amorphous alloy may contain a crystal phase, but it is desirable that it be amorphous in order to uniformly generate fine crystal grains by the subsequent heat treatment.

【0041】非晶質リボンは熱処理の前に巻回、打ち抜
き、エッチング等をして所定の形状に加工し磁心とする
方が望ましい。
The amorphous ribbon is preferably wound, punched, etched or the like to be processed into a predetermined shape to form a magnetic core before heat treatment.

【0042】この理由は非晶質の段階ではリボンは加工
性が良いが、一旦結晶化すると加工性が著しく低下する
場合が多いからである。しかしながら、熱処理後巻回す
る、エッチングする等の加工を行い磁心を製造すること
も可能である。
The reason for this is that the ribbon has good workability in the amorphous state, but in many cases, once crystallized, the workability deteriorates remarkably. However, it is also possible to manufacture the magnetic core by performing processing such as winding after the heat treatment or etching.

【0043】熱処理は所定の形状に加工した非晶質合金
リボンを真空中または水素、窒素、Ar等の不活性ガス雰
囲気中、又は大気中において一定時間保持し行う。熱処
理温度及び時間は非晶質合金リボンからなる磁心の形
状、サイズ、組成等により異なるが、一般的に450℃〜7
00℃で5分〜24時間程度が望ましい。熱処理温度が450℃
未満であると結晶化が起こりにくく、熱処理に時間がか
かりすぎる。また700℃より高いと粗大な結晶粒が生成
したり、不均一な形態の結晶粒が生成するおそれがあ
り、微細な結晶粒を均一に得ることができなくなる。ま
た熱処理時間については、5分未満では加工した合金全
体を均一な温度とすることが困難であり磁気特性がばら
つきやすく、24時間より長いと生産性が悪くなるだけで
なく結晶粒の過剰な成長や不均一な形態の結晶粒の生成
により磁気特性の低下が起こりやすい。好ましい熱処理
条件は、実用性及び均一な温度コントロール等を考慮し
て、500℃〜650℃で5分〜6時間である。
The heat treatment is carried out by holding the amorphous alloy ribbon processed into a predetermined shape in a vacuum, in an atmosphere of an inert gas such as hydrogen, nitrogen, Ar or the like, or in the air for a certain period of time. The heat treatment temperature and time vary depending on the shape, size, composition, etc. of the magnetic core made of the amorphous alloy ribbon, but generally 450 ° C to 7 ° C.
5 minutes to 24 hours at 00 ° C is desirable. Heat treatment temperature is 450 ℃
If it is less than crystallization, crystallization is less likely to occur and the heat treatment takes too long. On the other hand, if the temperature is higher than 700 ° C., coarse crystal grains may be generated or crystal grains having an inhomogeneous form may be generated, and it becomes impossible to obtain fine crystal grains uniformly. Regarding the heat treatment time, if it is less than 5 minutes, it is difficult to keep the temperature of the processed alloy uniform, and the magnetic properties are likely to vary.If it is longer than 24 hours, not only the productivity deteriorates, but also excessive growth of crystal grains occurs. Magnetic properties are likely to be deteriorated due to the generation of nonuniform crystal grains. A preferable heat treatment condition is 500 ° C. to 650 ° C. for 5 minutes to 6 hours in consideration of practicality and uniform temperature control.

【0044】熱処理雰囲気はAr,窒素,水素等の不活性ガ
ス雰囲気又は還元性雰囲気が望ましいが、大気中等の酸
化性雰囲気でも良い。冷却は空冷や炉冷等により、適宜
行うことができる。また場合によっては多段の熱処理を
行うこともできる。また熱処理の際磁心材に電流を流し
たり高周波磁界を印加し磁心を発熱させることにより磁
心を熱処理することもできる。
The heat treatment atmosphere is preferably an inert gas atmosphere such as Ar, nitrogen, hydrogen or a reducing atmosphere, but may be an oxidizing atmosphere such as the air. Cooling can be appropriately performed by air cooling, furnace cooling, or the like. Further, in some cases, a multi-step heat treatment can be performed. In the heat treatment, the magnetic core can be heat-treated by causing a current to flow through the core material or applying a high-frequency magnetic field to generate heat.

【0045】熱処理を直流あるいは交流等の磁場中で行
うこともできる。更には磁場中熱処理により本磁心に用
いられている合金に磁気異方性を生じさせ特性向上をは
かることができる。磁場は熱処理の間中印加してもよい
が全期間印加する必要はなく、合金のキュリー温度Tcよ
り低い温度のときで十分な効果が得られる。
The heat treatment can be performed in a magnetic field such as direct current or alternating current. Further, by heat treatment in a magnetic field, magnetic anisotropy is caused in the alloy used for the main magnetic core to improve the characteristics. The magnetic field may be applied during the heat treatment, but it is not necessary to apply it for the entire period, and a sufficient effect can be obtained at a temperature lower than the Curie temperature Tc of the alloy.

【0046】[0046]

【実施例】本発明を以下の実施例によりさらに詳細に説
明するが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the invention thereto.

【0047】(実施例1)原子%でCu1%,Si16.5%,B6
%,Nb3%及び残部実質的にFeからなる組成の溶湯から、
単ロール法により幅20mm,厚さ18μmのリボンを作製し
た。このリボンのX線回折を行ったところ図1に示すよ
うな非晶質合金に典型的なハローパターンが得られた。
またこのリボンの透過電子顕微鏡写真(30万倍)を図2
に示す。図1,図2より明かなように得られたリボンは
ほぼ完全な非晶質であった。次にこの非晶質リボンから
外径13mm、内径10mmのリングを打ち抜き、アルゴンガス
雰囲気中、530℃で1時間熱処理を行った。熱処理後のリ
ボンのX線回折パターンは図3に示すように結晶ピーク
が認められた。図4はこの熱処理後のリボンの透過電子
顕微鏡(30万倍)であり、熱処理後の組織の大部分(ほ
ぼ100%)が微細な結晶粒からなることがわかった。結
晶粒の平均粒径は約100オングストロームであった。
(Example 1) Cu1%, Si16.5%, B6 in atomic%
%, Nb3%, and the balance substantially consisting of Fe,
A ribbon with a width of 20 mm and a thickness of 18 μm was prepared by the single roll method. When X-ray diffraction of this ribbon was performed, a halo pattern typical of an amorphous alloy as shown in FIG. 1 was obtained.
A transmission electron micrograph (300,000 times) of this ribbon is shown in Fig. 2.
Shown in As is clear from FIGS. 1 and 2, the ribbon obtained was almost completely amorphous. Next, a ring having an outer diameter of 13 mm and an inner diameter of 10 mm was punched out from this amorphous ribbon and heat-treated at 530 ° C. for 1 hour in an argon gas atmosphere. The X-ray diffraction pattern of the ribbon after the heat treatment showed a crystal peak as shown in FIG. FIG. 4 is a transmission electron microscope (300,000 times) of the ribbon after this heat treatment, and it was found that most of the structure after heat treatment (almost 100%) consisted of fine crystal grains. The average grain size of the crystal grains was about 100 Å.

【0048】X線回折パターン及び透過電子顕微鏡によ
る分析から、この結晶粒はSi等が固溶した体心立方構造
のFeであると推定された。
From the X-ray diffraction pattern and the analysis by the transmission electron microscope, it was presumed that the crystal grains were Fe having a body-centered cubic structure in which Si or the like was formed as a solid solution.

【0049】また、組織中のCuの濃度分布を観察したと
ころ、Cuは主に結晶粒周辺に存在していることが確認さ
れた。
Observation of the concentration distribution of Cu in the structure confirmed that Cu was mainly present around the crystal grains.

【0050】次に熱処理を行ったリング状の薄帯10枚を
積層しフェノール樹脂製のコアケースに入れ、磁気特性
を測定した。
Next, ten heat-treated ring-shaped thin strips were laminated and placed in a phenol resin core case, and the magnetic characteristics were measured.

【0051】その結果Bs=12kG,Br/Bs=62%,Hc=0.012Oe,
1kHzにおける実効透磁率μe1K=76000,100kHz,Bm 2kGに
おけるコア損失W2/100K=250mW/ccの特性が得られた。Bs
はCo基アモルファス磁心より高く、実効透磁率μe1K,コ
ア損失W2/100KはCo基アモルファス磁心に匹敵する優れ
た特性を示した。
As a result, Bs = 12 kG, Br / Bs = 62%, Hc = 0.012 Oe,
The characteristics of effective magnetic permeability μ e1K = 76000,100kHz at 1kHz and core loss W 2 / 100K = 250mW / cc at Bm 2kG were obtained. Bs
Are higher than Co-based amorphous magnetic cores, and effective permeability μ e1K and core loss W 2 / 100K show excellent characteristics comparable to Co-based amorphous magnetic cores.

【0052】次にこの磁心をエポキシ樹脂で含浸し磁気
特性を測定した。Bs=12kG,Br/Bs=50%,Hc=0.014 Oe,μ
e1K=42000,W2/100K=380mW/ccの特性が得られ、従来のFe
基アモルファス磁心に比べ著しく特性劣化が小さいこと
が確認された。
Next, the magnetic core was impregnated with an epoxy resin and the magnetic characteristics were measured. Bs = 12kG, Br / Bs = 50%, Hc = 0.014 Oe, μ
e1K = 42000, W 2 / 100K = 380mW / cc
It was confirmed that the characteristic deterioration was significantly smaller than that of the base amorphous magnetic core.

【0053】この理由を明かにするため非晶質状態およ
び同じ熱処理条件の薄帯の飽和磁歪定数λsを測定し
た。その結果、非晶質状態でλs=+20.8×10-6、熱処理
後においてλs=+1.3×10-6であり、本発明磁心の磁歪が
著しく小さいことが確認された。
In order to clarify the reason for this, the saturation magnetostriction constant λs of the ribbon in the amorphous state and the same heat treatment condition was measured. As a result, it was confirmed that λs = + 20.8 × 10 -6 in the amorphous state and λs = + 1.3 × 10 -6 after the heat treatment, and that the magnetostriction of the magnetic core of the present invention is extremely small.

【0054】(実施例2)表1に示す組成を有する幅5m
m,厚さ18μmの非晶質合金薄帯を単ロール法により作製
し、外径19mm、内径15mmにトロイダル状に巻き、巻磁心
とした。巻き方はロールと接触し凝固した面を内側とし
た。巻初めは接着剤、巻終わりはポリイミドテープで固
定した。また薄帯表面にはMgOの粉末を電気泳動法によ
り付着させ層間絶縁を行った。次にこの巻磁心をN2ガス
雰囲気中において約10℃/minの昇温速度で結晶化温度よ
り約50℃高い温度まで昇温し、1時間保持後約5℃/minの
冷却速度で室温まで冷却する熱処理を行い超微細結晶粒
組織を有する合金からなる本発明磁心を得た。
(Example 2) Width 5 m having the composition shown in Table 1
An amorphous alloy ribbon having a thickness of m and a thickness of 18 μm was produced by a single roll method and wound in a toroidal shape with an outer diameter of 19 mm and an inner diameter of 15 mm to form a wound magnetic core. The winding method was such that the surface that was in contact with the roll and solidified was the inside. An adhesive was used at the beginning of winding and a polyimide tape was used at the end of winding. MgO powder was attached to the surface of the ribbon by electrophoresis to perform interlayer insulation. Next, the winding core is heated in the N 2 gas atmosphere to a temperature about 50 ° C higher than the crystallization temperature at a heating rate of about 10 ° C / min, and after holding for 1 hour at room temperature at a cooling rate of about 5 ° C / min. Then, a heat treatment for cooling down was performed to obtain a magnetic core of the present invention made of an alloy having an ultrafine grain structure.

【0055】実施例1と同様に組織観察を行ったとこ
ろ、表1のいずれの合金も平均粒径100〜150オングスト
ロームの体心立方構造からなる微細結晶粒が組織の大部
分(ほぼ100%)を占めていること、およびCuが主に結
晶粒周辺に存在していることが確認された。
When the structure was observed in the same manner as in Example 1, most of the alloys shown in Table 1 had fine crystal grains having a body-centered cubic structure with an average grain size of 100 to 150 angstroms (almost 100%). It was confirmed that Cu occupied mainly in the crystal grains and that Cu was mainly present around the crystal grains.

【0056】次のこの磁心をシリコンオイルにつけた
後、シリコングリースをつめたフェノール樹脂製のケー
スに入れ、蓋を接着剤で固定した。次にこの巻磁心の直
流B−Hカーブ、1kHzにおける実効透磁率μe1K、周波
数100kHz、Bm 2kGにおけるコア損失W2/100Kを測定し
た。また飽和磁歪λsも測定した。得られた結果を表1
に示す。本発明合金の飽和磁束密度Bsは10kGを越えるも
のがあり、Co基アモルファス合金より高く軟磁気特性も
Co基アモルファスと同等以上の特性が得られることがわ
かる。また磁歪が小さくほぼ磁歪が0のものも得られ
る。
After the magnetic core was immersed in silicone oil, it was placed in a phenol resin case filled with silicone grease, and the lid was fixed with an adhesive. Next, the DC BH curve of this winding core, the effective magnetic permeability μ e1K at 1 kHz, the core loss W 2 / 100K at a frequency of 100 kHz and Bm 2 kG were measured. The saturation magnetostriction λs was also measured. Table 1 shows the obtained results.
Shown in Some of the alloys of the present invention have a saturation magnetic flux density Bs of more than 10 kG, which is higher than that of a Co-based amorphous alloy and has a soft magnetic property.
It can be seen that characteristics equal to or higher than those of Co-based amorphous can be obtained. Also, a magnetostriction of small magnetostriction can be obtained.

【0057】[0057]

【表1】 Bs Hc W2/100K λs 組 成(at%) μe1K (kG) (Oe) (mW/cc) (×10-6) Fe74Cu0.5Si13.5B9Nb3 12.4 0.013 68000 300 +1.8 本 Fe74Cu1.5Si13.5B9Nb2 12.6 0.015 76000 230 +2.0 Fe79Cu1.0Si8B9Nb3 14.6 0.056 21000 470 +1.8 Fe74.5Cu1.0Si13.5B6Nb5 11.6 0.020 42000 350 +1.5 発 Fe77Cu1.0Si10B9Nb3 14.3 0.025 48000 430 +1.6 Fe73.5Cu1.0Si17.5B5Ta3 10.5 0.015 42000 380 -0.3 Fe71Cu1.5Si13.5B9Mo5 11.2 0.012 68000 280 +1.9 明 Fe74Cu1.0Si14B8W3 12.1 0.022 74000 250 +1.7 Fe73Cu2.0Si13.5B8.5Hf3 11.6 0.028 29000 350 +2.0 Fe74.5Cu1.0Si13.5B9Ta2 12.8 0.018 33000 480 +1.8 例 Fe72Cu1.0Si14B8Zr5 11.7 0.030 28000 380 +2.0 Fe71.5Cu1.0Si13.5B9Ti5 11.3 0.038 28000 480 +1.8 Fe73Cu1.5Si13.5B9Mo3 12.1 0.014 69000 250 +2.8 Fe73.5Cu1.0Si13.5B9Ta3 11.4 0.017 43000 330 +1.9 Fe71Cu1.0Si13B10W5 10.0 0.023 68000 320 +2.5 従 Fe78Si9B13 アモルファス 15.6 0.03 5000 3300 +27 来 Co70.3Fe4.7Si15B10アモルファス 8.0 0.006 8500 350 〜0 例 Fe84.2Si9.6Al6.2 (wt%) 11.0 0.02 10000 − 〜0[Table 1] Bs Hc W 2 / 100K λs Composition (at%) μ e1K (kG) (Oe) (mW / cc) (× 10 -6 ) Fe 74 Cu 0.5 Si 13.5 B 9 Nb 3 12.4 0.013 68000 300 +1.8 Fe 74 Cu 1.5 Si 13.5 B 9 Nb 2 12.6 0.015 76000 230 +2.0 Fe 79 Cu 1.0 Si 8 B 9 Nb 3 14.6 0.056 21000 470 +1.8 Fe 74.5 Cu 1.0 Si 13.5 B 6 Nb 5 11.6 0.020 42000 350 + 1.5 Fe 77 Cu 1.0 Si 10 B 9 Nb 3 14.3 0.025 48000 430 +1.6 Fe 73.5 Cu 1.0 Si 17.5 B 5 Ta 3 10.5 0.015 42000 380 -0.3 Fe 71 Cu 1.5 Si 13.5 B 9 Mo 5 11.2 0.012 68000 280 +1.9 Bright Fe 74 Cu 1.0 Si 14 B 8 W 3 12.1 0.022 74000 250 +1.7 Fe 73 Cu 2.0 Si 13.5 B 8.5 Hf 3 11.6 0.028 29000 350 +2.0 Fe 74.5 Cu 1.0 Si 13.5 B 9 Ta 2 12.8 0.018 33000 480 +1.8 Example Fe 72 Cu 1.0 Si 14 B 8 Zr 5 11.7 0.030 28000 380 +2.0 Fe 71.5 Cu 1.0 Si 13.5 B 9 Ti 5 11.3 0.038 28000 480 +1.8 Fe 73 Cu 1.5 Si 13.5 B 9 Mo 3 12.1 0.014 69000 250 +2.8 Fe 73.5 Cu 1.0 Si 13.5 B 9 Ta 3 11.4 0.017 43000 330 +1.9 Fe 71 Cu 1.0 Si 13 B 10 W 5 10.0 0.023 68000 320 +2.5 Secondary Fe 78 Si 9 B 13 Amorphous 15.6 0.03 5000 3300 +27 Conventional Co 70.3 Fe 4.7 Si 15 B 10 Amorphous 8.0 0.006 8500 350 〜 0 Example Fe 84.2 Si 9.6 Al 6.2 (wt%) 11.0 0.02 10000 − 〜 0

【0058】(実施例3)表2に示す組成の幅5mm,厚さ
18μmの非晶質合金薄帯を単ロール法により作製し、ロ
ールと接触させ凝固した面を外側とし、セラミックス製
のボビンに外径19mm、内径15mmのトロイダル状に巻回
し、巻磁心を作製した。巻初めはレーザー光を照射し一
部溶解させ固定し、巻終わりは金属製のテープにより固
定した。次にこの巻磁心をArガス雰囲気中において約20
℃/minの昇温速度で結晶化温度より約50℃高い温度まで
昇温し、1時間保持後約10℃/minの冷却速度で室温まで
冷却する熱処理を行い超微細結晶粒組織を有する合金か
らなる本発明磁心を得た。実施例1と同様に組織観察を
行ったところ、表2のいずれの合金も平均粒径100〜150
オングストロームの体心立方構造からなる微細結晶粒が
組織の大部分(ほぼ100%)を占めていることおよびCu
が主に結晶粒周辺に存在していることが確認された。
(Example 3) Composition 2 shown in Table 2 width 5 mm, thickness
An amorphous alloy ribbon of 18 μm was produced by the single roll method, and the surface solidified by contact with the roll was placed outside, and was wound around a ceramic bobbin in a toroidal shape with an outer diameter of 19 mm and an inner diameter of 15 mm to produce a wound magnetic core. . At the beginning of the winding, laser light was irradiated to partly melt and fix, and at the end of winding, it was fixed with a metal tape. Next, this winding core is placed in an Ar gas atmosphere for about 20
An alloy having an ultrafine grain structure that is heated to a temperature about 50 ° C higher than the crystallization temperature at a heating rate of ℃ / min, held for 1 hour, and then cooled to room temperature at a cooling rate of about 10 ° C / min. The magnetic core of the present invention consisting of When the structure was observed in the same manner as in Example 1, all the alloys in Table 2 had an average grain size of 100 to 150.
Fine crystal grains with an angstrom body-centered cubic structure occupy most of the structure (almost 100%) and Cu
It was confirmed that was mainly present around the crystal grains.

【0059】次にこの巻磁心の直流B−Hカーブ、1kHz
における実効透磁率μe1K、周波数100kHz、Bm 2kGにお
けるコア損失W2/100Kおよび合金の飽和磁歪λsを測定し
た。得られた結果を表2に示す。本発明の磁心の飽和磁
束密度Bsは通常のCo基アモルファス合金や80wt%Niパー
マロイより高く、μe1K,Hc,W2/100K等はCo基アモルファ
スと同等以上の特性を示す上に磁歪が小さく軟磁性材料
として最適な特性を有しており、本発明磁心の特性が優
れていることがわかる。
Next, the DC BH curve of this winding core, 1 kHz
The effective permeability μ e1K , the frequency 100kHz, the core loss W 2 / 100K at Bm 2kG , and the saturation magnetostriction λs of the alloy were measured. The obtained results are shown in Table 2. The saturation magnetic flux density Bs of the magnetic core of the present invention is higher than that of a normal Co-based amorphous alloy or 80 wt% Ni permalloy, and μ e1K , Hc, W 2 / 100K and the like show characteristics equal to or higher than those of the Co-based amorphous and have a small magnetostriction. It can be seen that the magnetic core of the present invention has excellent characteristics as a soft magnetic material and has excellent characteristics.

【0060】[0060]

【表2】 Bs Hc W2/100K λs 組 成(at%) μe1K (kG) (Oe) (mW/cc) (x10-6) (Fe0.959Ni0.041)73.5Cu1Si13.5B9Nb3 12.3 0.018 32000 280 +4.6 (Fe0.93Ni0.07)73.5Cu1Si13.5B9Nb3 12.1 0.023 18000 480 +4.8 (Fe0.905Ni0.095)73.5Cu1Si13.5B9Nb3 11.8 0.020 16000 540 +5.0 (Fe0.986Co0.014)73.5Cu1Si13.5B9Nb3 12.6 0.011 82000 280 +4.0 (Fe0.959Co0.041)73.5Cu1Si13.5B9Nb3 13.0 0.015 54000 400 +4.2 (Fe0.93Co0.07)73.5Cu1Si13.5B9Nb3 13.2 0.020 27000 500 +4.8 Fe71.5Cu1Si15.5B7Nb5 10.7 0.012 85000 230 +2.8 Fe71.5Cu1Si17.5B5Nb5 10.2 0.010 80000 280 +2.0 Fe71.5Cu1Si19.5B3Nb5 9.2 0.065 8000 820 +1.6 Fe70.5Cu1Si20.5B5Nb3 10.8 0.027 23000 530 〜0 Fe75.5Cu1Si13.5B7Nb3 13.3 0.011 84000 250 +1.5 Fe87Cu1B5Zr7 15.5 0.044 20000 570 +0.9 Fe90Cu1B2Hf7 16.0 0.037 18000 540 〜0 Fe88Cu1Si2B3Zr7 15.0 0.025 28000 540 〜0 Fe90Cu1B2Zr7 16.5 0.03 17000 580 〜0 Fe86Cu1B6Zr7 15.2 0.04 48000 520 〜0[Table 2] Bs Hc W 2 / 100K λs Composition (at%) μ e1K (kG) (Oe) (mW / cc) (x10 -6 ) (Fe 0.959 Ni 0.041 ) 73.5 Cu 1 Si 13.5 B 9 Nb 3 12.3 0.018 32000 280 +4.6 (Fe 0.93 Ni 0.07 ) 73.5 Cu 1 Si 13.5 B 9 Nb 3 12.1 0.023 18000 480 +4.8 (Fe 0.905 Ni 0.095 ) 73.5 Cu 1 Si 13.5 B 9 Nb 3 11.8 0.020 16000 540 +5.0 (Fe 0.986 Co 0.014 ) 73.5 Cu 1 Si 13.5 B 9 Nb 3 12.6 0.011 82000 280 +4.0 (Fe 0.959 Co 0.041 ) 73.5 Cu 1 Si 13.5 B 9 Nb 3 13.0 0.015 54000 400 +4.2 (Fe 0.93 Co 0.07 ) 73.5 Cu 1 Si 13.5 B 9 Nb 3 13.2 0.020 27000 500 +4.8 Fe 71.5 Cu 1 Si 15.5 B 7 Nb 5 10.7 0.012 85000 230 +2.8 Fe 71.5 Cu 1 Si 17.5 B 5 Nb 5 10.2 0.010 80000 280 +2.0 Fe 71.5 Cu 1 Si 19.5 B 3 Nb 5 9.2 0.065 8000 820 +1.6 Fe 70.5 Cu 1 Si 20.5 B 5 Nb 3 10.8 0.027 23000 530 ~ 0 Fe 75.5 Cu 1 Si 13.5 B 7 Nb 3 13.3 0.011 84000 250 +1.5 Fe 87 Cu 1 B 5 Zr 7 15.5 0.044 20000 570 +0.9 Fe 90 Cu 1 B 2 Hf 7 16.0 0.037 18000 540 〜 0 Fe 88 Cu 1 Si 2 B 3 Zr 7 15.0 0.025 28000 540 〜 0 Fe 90 Cu 1 B 2 Zr 7 16.5 0.03 17000 580 〜 0 Fe 86 Cu 1 B 6 Zr 7 15.2 0.04 48000 520 ~ 0

【0061】(実施例4)Fe79Cu1Nb3Si8B9(原子%)の
組成を有する幅50mm、厚さ18μmの非晶質合金薄帯を作
製し、図5に示す形状のE型の形状にホトエッチングを
行った。次にこの薄帯の表面にSiO2膜を形成した後結晶
化温度より高い550℃で1時間保持し室温まで空冷する熱
処理を行った。
Example 4 An amorphous alloy ribbon having a composition of Fe 79 Cu 1 Nb 3 Si 8 B 9 (atomic%) and a width of 50 mm and a thickness of 18 μm was prepared, and E having the shape shown in FIG. Photo-etching was performed on the shape of the mold. Next, after forming a SiO 2 film on the surface of this ribbon, heat treatment was carried out at 550 ° C. higher than the crystallization temperature for 1 hour and air cooling to room temperature.

【0062】次にこれを層間にエポキシ樹脂を介し積層
し図6に示す形状の積層磁心を得た。次にこの磁心を2
つ組み合せEEコアとし100kHz、Bm 2kGにおける損失を
測定した。コア損失は400mW/ccであり、Co基アモルファ
ス磁心に匹敵する値を示した。
Next, this was laminated between layers with an epoxy resin interposed therebetween to obtain a laminated magnetic core having the shape shown in FIG. Next, this magnetic core is 2
The loss was measured at 100 kHz and Bm 2 kG with one combined EE core. The core loss was 400 mW / cc, which was comparable to that of a Co-based amorphous magnetic core.

【0063】(実施例5)表3に示す組成の幅5mm、厚
さ18μmの非晶質合金薄帯を単ロール法により作製し内
径12mm、外径18mmの巻磁心を作製した。次にこの巻磁心
を大気中で結晶化温度より50℃高い温度で熱処理し微細
結晶粒組織を有する合金からなる本発明磁心を得た。こ
の磁心の薄帯表面を分析したところSiの酸化物層が形成
されていることが確認された。
Example 5 An amorphous alloy ribbon having a composition shown in Table 3 and having a width of 5 mm and a thickness of 18 μm was prepared by a single roll method to prepare a wound magnetic core having an inner diameter of 12 mm and an outer diameter of 18 mm. Next, this wound core was heat-treated in the atmosphere at a temperature 50 ° C. higher than the crystallization temperature to obtain a core of the present invention made of an alloy having a fine grain structure. Analysis of the thin ribbon surface of the magnetic core confirmed that a silicon oxide layer had been formed.

【0064】次にこの磁心をフェノール樹脂製のケース
に入れ、1kHzにおける実効透磁率μe1K,100kHz,2kGにお
けるコア損失W2/100Kを測定した。
Next, this magnetic core was put in a case made of phenol resin, and the effective magnetic permeability μ e1K at 1 kHz, 100 kHz, and core loss W 2 / 100K at 2 kG were measured.

【0065】測定後ケース中にエポキシ樹脂を入れ真空
含浸を行い120℃で硬化させた後同様にμe1K,W2/100Kを
測定した。得られた結果を表3に示す。また比較のため
従来のアモルファス巻磁心について検討した結果につい
ても示す。
After the measurement, an epoxy resin was placed in the case, vacuum impregnated and cured at 120 ° C., and then μe1K and W2 / 100K were measured in the same manner. Table 3 shows the obtained results. For comparison, the results of a study on a conventional amorphous wound core are also shown.

【0066】Co基のアモルファス磁心はμe1Kが高くコ
ア損失W2/100Kも低く、その特性は含浸後もあまり劣化
しないが本発明磁心より飽和磁束密度Bsが低い。Fe基ア
モルファス磁心は含浸によりμe1K、コア損失ともに著
しく劣化する。
The Co-based amorphous magnetic core has a high μe1K and a low core loss W2 / 100K, and its characteristics do not deteriorate much after impregnation, but the saturation magnetic flux density Bs is lower than that of the magnetic core of the present invention. The Fe-based amorphous magnetic core is significantly impaired in both μe1K and core loss due to impregnation.

【0067】これに対して本発明磁心はBsが10kG以上の
ものがあり含浸後の磁気特性の劣化も小さく優れた特性
を示すことがわかる。
On the other hand, it can be seen that some of the magnetic cores of the present invention have Bs of 10 kG or more, and the magnetic properties after impregnation are not significantly deteriorated and exhibit excellent properties.

【0068】[0068]

【表3】 含 浸 前 含 浸 後 組 成 (at%) Bs W2/100K W2/100K (kG) μe1K (mW/cc) μe1K (mW/cc) Fe70.5Cu1Nb3Si20.5B5 10.8 23000 530 20000 550 本 Fe73.5Cu1Nb3Si17.5B5 11.8 50000 350 45000 370 Fe71.5Cu1Nb5Si17.5B5 10.2 80000 280 56000 340 発 Fe73Cu1.5Mo3Si13.5B9 12.1 69000 250 48000 320 Fe73.5Cu1Ta3Si17.5B5 10.5 42000 380 38000 410 明 Fe73Cu2Hf3Si13.5B8.5 11.6 29000 350 20000 390 Fe72Cu1Zr5Si14B8 11.7 28000 480 19000 550 例 Fe74Cu1W3Si14B8 12.1 74000 250 59000 330 Fe77Cu1Nb3Si10B9 14.3 48000 430 32000 550 Fe74.5Cu1Nb3Si13.5B8 11.6 42000 350 38000 380 従 Fe74.5Nb3Si13.5B9 アモルファス 12.7 14400 1470 2000 3300 来 Fe77.5Si13.5B9 アモルファス 15.0 3800 2800 1500 3800 例 Co67Fe4Mo1.5Si16.5B11 5.5 88000 350 65000 380 アモルファス[Table 3] Composition before and after immersion (at%) Bs W 2 / 100K W 2 / 100K (kG) μ e1K (mW / cc) μ e1K (mW / cc) Fe 70.5 Cu 1 Nb 3 Si 20.5 B 5 10.8 23000 530 20000 550 Fe 73.5 Cu 1 Nb 3 Si 17.5 B 5 11.8 50000 350 45000 370 Fe 71.5 Cu 1 Nb 5 Si 17.5 B 5 10.2 80000 280 56000 340 Fe 73 Cu 1.5 Mo 3 Si 13.5 B 9 12.1 69000 250 48000 320 Fe 73.5 Cu 1 Ta 3 Si 17.5 B 5 10.5 42000 380 38000 410 Bright Fe 73 Cu 2 Hf 3 Si 13.5 B 8.5 11.6 29000 350 20000 390 Fe 72 Cu 1 Zr 5 Si 14 B 8 11.7 28000 480 19000 550 Example Fe 74 Cu 1 W 3 Si 14 B 8 12.1 74000 250 59000 330 Fe 77 Cu 1 Nb 3 Si 10 B 9 14.3 48000 430 32000 550 Fe 74.5 Cu 1 Nb 3 Si 13.5 B 8 11.6 42000 350 38000 380 Slave Fe 74.5 Nb 3 Si 13.5 B 9 Amorphous 12.7 14400 1470 2000 3300 Fe 77.5 Si 13.5 B 9 Amorphous 15.0 3800 2800 1500 3800 Example Co 67 Fe 4 Mo 1.5 Si 16.5 B 11 5.5 88000 350 65000 380 Amorphous

【0069】(実施例6)幅25mm、厚さ20μmのFe73.5C
u1Nb3Si13.5B9非晶質合金薄帯を単ロール法により作製
した。
Example 6 Fe 73.5 C having a width of 25 mm and a thickness of 20 μm
u 1 Nb 3 Si 13.5 B 9 amorphous alloy ribbon was prepared by the single roll method.

【0070】次にこの薄帯とガラステープを重ね、巻回
し図7に示す形状の外径150mm、内径100mmの巻磁心を作
製した。
Next, the thin ribbon and the glass tape were overlapped and wound to form a wound magnetic core having an outer diameter of 150 mm and an inner diameter of 100 mm, which has a shape shown in FIG.

【0071】次にこの巻磁心にガラス被覆銅線を巻きこ
の銅線に電流を流し約10 Oeの磁界を磁路方向に印加し
ながらN2ガス雰囲気中550℃で1時間保持し熱処理を行っ
た。
Next, a glass-coated copper wire is wound around this wound magnetic core, and a current is applied to the copper wire to apply a magnetic field of about 10 Oe in the magnetic path direction, and heat treatment is performed at 550 ° C. for 1 hour in an N 2 gas atmosphere. It was

【0072】昇温速度は10℃/min、冷却速度は2.5℃/mi
nとした。この磁心の直流B−Hカーブ、コア損失、最
大透磁率を測定した。
The heating rate is 10 ° C./min, the cooling rate is 2.5 ° C./mi
n. The DC BH curve, core loss, and maximum magnetic permeability of this magnetic core were measured.

【0073】その結果、飽和磁束密度Bsが12.4kG、角形
比Br/Bsが90%、保磁力Hcが0.005Oe、最大透磁率μmが1
800000,100kHz、2kGにおけるコア損失W2/100Kが800mW/c
cの特性が得られた。
As a result, the saturation magnetic flux density Bs was 12.4 kG, the squareness ratio Br / Bs was 90%, the coercive force Hc was 0.005 Oe, and the maximum magnetic permeability μm was 1.
800000,100kHz, core loss W 2 / 100K at 2kG is 800mW / c
The characteristic of c was obtained.

【0074】(実施例7)Fe71.5Cu1Nb5Si13.5B9の組成
を有する幅3mm、厚さ15μmの非晶質合金薄帯を作製し、
外径8mm、内径4mmの巻磁心を作製した。次にこの磁心を
窒素ガスを流しながら610℃に昇温した炉に入れ1時間保
持後炉から取り出し空冷する熱処理を行った。
Example 7 An amorphous alloy ribbon having a composition of Fe 71.5 Cu 1 Nb 5 Si 13.5 B 9 and a width of 3 mm and a thickness of 15 μm was prepared,
A wound magnetic core having an outer diameter of 8 mm and an inner diameter of 4 mm was produced. Next, this magnetic core was placed in a furnace whose temperature was raised to 610 ° C. while flowing nitrogen gas, held for 1 hour, taken out of the furnace, and air-cooled.

【0075】得られた微細結晶粒組織を有する合金から
なる磁心をエポキシ樹脂で約0.5mmの厚さに粉体コーテ
ィングしB−Hカーブおよび1kHzにおける実効透磁率μ
e1K,100kHz、2kGにおけるコア損失W2/100Kを測定した。
得られた結果を表4に示す。
A magnetic core made of the obtained alloy having a fine crystal grain structure was powder-coated with epoxy resin to a thickness of about 0.5 mm, and the effective magnetic permeability μ at the BH curve and 1 kHz was obtained.
The core loss W 2 / 100K at e1K , 100kHz and 2kG was measured.
The results obtained are shown in Table 4.

【0076】比較のためFe76.5Cr1Si13.5B9アモルファ
ス合金磁心をコーティングした場合の特性を示す。
For comparison, the characteristics of a Fe 76.5 Cr 1 Si 13.5 B 9 amorphous alloy magnetic core coated are shown.

【0077】本発明磁心は従来のFe基アモルファス磁心
より磁歪が小さいため歪の影響を受けにくく、コーティ
ングを行っても優れた特性を示すことがわかる。更にこ
のコーティングした本発明のコアを湿度90%温度30℃の
恒温槽に1ケ月入れた後再度磁気特性を測定したが変化
は認められなかった。また1mの高さからコンクリート上
に10回落下させた後も磁気特性に変化はないことが確認
された。
It can be seen that the magnetic core of the present invention has a smaller magnetostriction than the conventional Fe-based amorphous magnetic core, is less susceptible to the influence of strain, and exhibits excellent characteristics even when coated. Further, the coated core of the present invention was placed in a constant temperature bath having a humidity of 90% and a temperature of 30 ° C. for one month, and the magnetic characteristics were measured again, but no change was observed. In addition, it was confirmed that there was no change in the magnetic properties even after falling 10 times from concrete at a height of 1 m onto concrete.

【0078】[0078]

【表4】 組 成 Bs Hc μe1K W2/100K (at%) (kG) (Oe) (mW/cc) 本発明 Fe71.5Cu1Nb5Si13.5B9 11.3 0.012 72000 320 従来例 Fe76.5Cr1Si13.5B9 アモルファス 14.3 0.11 1400 2400[Table 4] Composition Bs Hc μ e1K W 2 / 100K (at%) (kG) (Oe) (mW / cc) Inventive Fe 71.5 Cu 1 Nb 5 Si 13.5 B 9 11.3 0.012 72000 320 Conventional example Fe 76.5 Cr 1 Si 13.5 B 9 amorphous 14.3 0.11 1400 2400

【0079】(実施例8)Fe73.5Cu1Ta3Si13.5B9の組成
を有する幅20mm、厚さ20μmの非晶質合金薄帯を単ロー
ル法により作製した。次にこの薄帯にチラノポリマーを
主体とする溶液を塗布し、200℃で乾燥した後、図8に
示す形状の巻磁心を作製し、N2雰囲気中において熱処理
した。熱処理は、10℃/minの速度で昇温し570℃に1時間
保持後5℃/minの冷却速度で室温まで冷却した。次にこ
の磁心の周囲に図9のようにカプトンテープを巻きつけ
100kHz,2kGにおけるコア損失を測定した。430mW/ccとい
うCo基アモルファス磁心に匹敵する値が得られた。測定
後透過電子顕微鏡により薄帯を観察したところ組織の大
部分(ほぼ100%)が約100オングストローム程度の平均
粒径の結晶粒からなることが確認された。
Example 8 An amorphous alloy ribbon having a composition of Fe 73.5 Cu 1 Ta 3 Si 13.5 B 9 and a width of 20 mm and a thickness of 20 μm was produced by a single roll method. Next, a solution containing a tyranopolymer as a main component was applied to this ribbon and dried at 200 ° C., and then a wound magnetic core having a shape shown in FIG. 8 was produced and heat-treated in an N 2 atmosphere. In the heat treatment, the temperature was raised at a rate of 10 ° C / min, the temperature was kept at 570 ° C for 1 hour, and then the temperature was cooled to room temperature at a cooling rate of 5 ° C / min. Next, wrap Kapton tape around this magnetic core as shown in Fig. 9.
The core loss at 100kHz, 2kG was measured. A value of 430 mW / cc, which is comparable to that of a Co-based amorphous magnetic core, was obtained. After the measurement, the ribbon was observed by a transmission electron microscope, and it was confirmed that the majority of the texture (almost 100%) consisted of crystal grains with an average grain size of about 100 Å.

【0080】(実施例9)Fe74.5Cu1Nb2Si13.5B9の組成
を有する幅20mm、厚さ20μmの非晶質合金薄帯を作製
し、外径13mm、内径10mmにプレスで打ち抜き530℃に保
たれたN2ガス雰囲気の炉に1時間入れ炉から取り出し空
冷する熱処理を行った。次にこのリング状の薄帯を外径
13mm、内径10mm、厚さ40μmのセラミックスリングと交
互に20層積層し本発明磁心を作製した。
(Example 9) An amorphous alloy ribbon having a composition of Fe 74.5 Cu 1 Nb 2 Si 13.5 B 9 and a width of 20 mm and a thickness of 20 μm was prepared and punched with a press to have an outer diameter of 13 mm and an inner diameter of 10 mm. A heat treatment was carried out in which the furnace was placed in a N 2 gas atmosphere maintained at ℃ for 1 hour, taken out of the furnace and air-cooled. Next, use this ring-shaped ribbon
20 layers were alternately laminated with a ceramic ring having a diameter of 13 mm, an inner diameter of 10 mm and a thickness of 40 μm to fabricate a magnetic core of the present invention.

【0081】1kHzにおける実効透磁率μe1Kが76000,100
kHz、2kGにおけるコア損失250mW/ccが得られた。測定後
透過電子顕微鏡により組織観察を行ったところ、組織の
大部分(ほぼ100%)が約100オングストローム程度の平
均粒径の結晶粒からなることが確認された。
Effective permeability μ e1K at 1 kHz is 76000,100
A core loss of 250 mW / cc at 2 kHz was obtained. When the structure was observed with a transmission electron microscope after the measurement, it was confirmed that most of the structure (almost 100%) was composed of crystal grains having an average particle size of about 100 angstroms.

【0082】(実施例10)Fe71.5Cu1Nb5Si15.5B7の組
成を有する幅25mm、厚さ25μmの非晶質合金薄帯を作製
し、SiO2-TiO2系金属アルコキシド部分加水分解ゾルに
セラミックス粉末を混合した溶液を片面に塗布し乾燥し
た後外径80mm、内径78mmのステンレス製リングに巻きつ
け内径80mm、外径120mmの巻磁心を作製した。次にこの
磁心にガラス被覆銅線を巻き、これに交流の電流を流
し、磁路方向に最大10 Oeの磁界がかかった状態で10℃/
minの昇温速度で昇温し590℃に1時間保持した後室温ま
で5℃/minの降温速度で降温した。
Example 10 An amorphous alloy ribbon having a width of 25 mm and a thickness of 25 μm and having a composition of Fe 71.5 Cu 1 Nb 5 Si 15.5 B 7 was prepared, and SiO 2 —TiO 2 -based metal alkoxide was partially hydrolyzed. A solution prepared by mixing ceramic powder with sol was applied on one surface, dried, and then wound around a stainless steel ring having an outer diameter of 80 mm and an inner diameter of 78 mm to produce a wound magnetic core having an inner diameter of 80 mm and an outer diameter of 120 mm. Next, wind a glass-coated copper wire around this magnetic core, apply an alternating current to it, and apply a maximum magnetic field of 10 Oe in the magnetic path direction at 10 ° C /
The temperature was raised at a heating rate of min and kept at 590 ° C for 1 hour, and then the temperature was lowered to room temperature at a cooling rate of 5 ° C / min.

【0083】次にこの磁心の外周部に厚さ1mmのステン
レス製のバンドをし固定した。この磁心の磁気特性を測
定したところ飽和磁束密度Bsが10.6kG、角形比Br/Bsが8
0%、保磁力Hcが0.015Oe,100kHz、2kGにおけるコア損失
が500mW/ccの特性が得られた。飽和磁束密度が高く、角
形比が高く、コア損失が低いためパルス圧縮用の磁気ス
イッチ等に最適である。なお、測定後透過電子顕微鏡に
より、組織観察を行ったところ、組織の大部分(ほぼ10
0%)が約120オングストロームの平均粒径の結晶粒から
なることが確認された。
Next, a 1 mm-thick stainless steel band was fixed to the outer periphery of the magnetic core. When the magnetic characteristics of this magnetic core were measured, the saturation magnetic flux density Bs was 10.6 kG and the squareness ratio Br / Bs was 8
The characteristics were 0%, coercive force Hc was 0.015 Oe, 100kHz, and core loss was 500mW / cc at 2kG. Since the saturation magnetic flux density is high, the squareness ratio is high, and the core loss is low, it is optimal for a magnetic switch for pulse compression and the like. When the structure was observed with a transmission electron microscope after measurement, most of the structure (approximately 10
It was confirmed that 0%) consisted of crystal grains with an average grain size of about 120 angstroms.

【0084】(実施例11)Fe73.5Cu1Nb3Si13.5B9の組
成を有する幅15mm、厚さ15μmの非晶質合金薄帯を作製
し、アルミナ粉末を表面に塗布した後外径30mm、内径18
mmに巻き回し巻磁心とし磁路と直角方向に5000 Oeの磁
界を印加しながら550℃まで20℃/minの昇温速度で昇温
し1時間保持した後2℃/minの冷却速度で250℃まで冷却
後磁場印加をやめ炉外に取り出しチッ素ガスをふきつけ
室温まで冷却した。熱処理後のコアをベーク製のコアケ
ースに入れ直流B−Hカーブおよびパルス透過率のμp
の動作磁束密度ΔB依存性を測定した。得られた結果を
図10,図11に示す。なお透過電子顕微鏡およびX線
回折の結果熱処理後の磁心は80%以上が微細な結晶粒か
らなることが確認された。
Example 11 An amorphous alloy ribbon having a composition of Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 and a width of 15 mm and a thickness of 15 μm was prepared, and alumina powder was applied on the surface thereof, and then the outer diameter was 30 mm. , Inner diameter 18
With a magnetic core of 5,000 mm in the direction perpendicular to the magnetic path, the temperature was raised to 550 ° C at a heating rate of 20 ° C / min and held for 1 hour, then at a cooling rate of 2 ° C / min to 250 mm. After cooling to ℃, the magnetic field application was stopped and the product was taken out of the furnace and sprinkled with nitrogen gas to cool it to room temperature. Put the heat-treated core in a bake-made core case and set the DC BH curve and pulse transmittance in μp.
The operating magnetic flux density ΔB dependence of was measured. The obtained results are shown in FIGS. As a result of transmission electron microscopy and X-ray diffraction, it was confirmed that 80% or more of the magnetic core after heat treatment was composed of fine crystal grains.

【0085】本発明磁心は飽和磁束密度が高く低角形比
でかつ透磁率が高く、実効パルス透磁率μpの動作磁束
密度変化量ΔB依存性がMn-ZnフェライトやCo基アモルフ
ァス磁心よりはるかに優れている。このためインバータ
用トランスやコモンモードチョーク用磁心に最適であ
る。
The magnetic core of the present invention has a high saturation magnetic flux density, a low squareness ratio and a high magnetic permeability, and the effective magnetic flux permeability μp dependency of the operating magnetic flux density variation ΔB is far superior to that of the Mn-Zn ferrite or Co-based amorphous magnetic core. ing. Therefore, it is most suitable for transformers for inverters and magnetic cores for common mode chokes.

【0086】(実施例12)単ロール法により幅5mm、
板厚18μmのFe73.5Cu1Nb3Si13.5B9非晶質合金薄帯を作
製し外径19mm、内径15mmに巻回し巻磁心を作製した。
(Example 12) A width of 5 mm was obtained by the single roll method.
A Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 amorphous alloy ribbon having a plate thickness of 18 μm was produced and wound around an outer diameter of 19 mm and an inner diameter of 15 mm to produce a wound magnetic core.

【0087】作製した巻磁心のうち1つは550℃に昇温し
た炉に、そのまま入れ1時間保持後炉から取り出す熱処
理を行い、もう1つはガラス被覆銅線を巻きこの銅線に
電流を流し、磁心の磁路方向に10 Oeの磁界を印加し550
℃に昇温した炉に1時間保持後280℃まで5℃/minの冷却
速度で冷却し更に炉から取り出し室温まで空冷した。
One of the prepared wound magnetic cores was placed in a furnace heated to 550 ° C. as it was, held for 1 hour and then heat-treated to be taken out of the furnace. The other was wound with a glass-coated copper wire and an electric current was applied to the copper wire. And apply a magnetic field of 10 Oe in the direction of the magnetic path of the magnetic core.
The furnace was heated to ℃ for 1 hour, then cooled to 280 ℃ at a cooling rate of 5 ℃ / min, taken out of the furnace and air-cooled to room temperature.

【0088】熱処理後の磁心の温度特性を図12に示
す。なお熱処理後の合金薄帯の透過電子顕微鏡観察の結
果大部分(ほぼ100%)が微細な結晶粒からなることが
確認された。
FIG. 12 shows the temperature characteristic of the magnetic core after the heat treatment. As a result of transmission electron microscope observation of the alloy ribbon after the heat treatment, it was confirmed that most (almost 100%) consisted of fine crystal grains.

【0089】図からわかるように本発明磁心の磁気特性
の温度変化は150℃まで小さく、実用材として十分な特
性を有していることがわかる。
As can be seen from the figure, the temperature change of the magnetic characteristics of the magnetic core of the present invention is small up to 150 ° C., and it can be seen that it has sufficient characteristics as a practical material.

【0090】(実施例13)単ロール法により、表5〜
表8に示す組成の幅5mm、厚さ18μmの非晶質合金薄帯を
作製し、外径19mm、内径15mmの巻磁心を作製し、実施例
1と同様な条件で熱処理を行い100kHz,2kGにおけるコア
損失、1kHzにおける実効透磁率μe1Kを測定した。得ら
れた結果を表5〜表8に示す。
Example 13 Tables 5 to 5 were obtained by the single roll method.
Amorphous alloy ribbons having a width of 5 mm and a thickness of 18 μm having the composition shown in Table 8 were produced, a wound magnetic core having an outer diameter of 19 mm and an inner diameter of 15 mm was produced, and heat treated under the same conditions as in Example 1 at 100 kHz, 2 kG. The core loss and the effective permeability μ e1K at 1 kHz were measured. The obtained results are shown in Tables 5 to 8.

【0091】[0091]

【表5】 本発明の熱処理 合 金 組 成 コア損失 実効透磁率 (原子%) W2/100K (mW/cc) μe1K Fe71Cu1Si15B9Nb3Ti1 230 98000 Fe69Cu1Si15B9W5V1 280 62000 Fe69Cu1Si16B8Mo5Mn1 280 58000 Fe69Cu1Si17B7Nb5Ru1 250 102000 Fe71Cu1Si14B10Ta3Rh1 290 78000 Fe72Cu1Si14B9Zr3Pd1 300 52000 Fe72.5Cu0.5Si14B9Hf3Ir1 310 53000 Fe70Cu2Si16B8Nb3Pt1 270 95000 Fe70.5Cu1.5Si15B9Nb5Au1 250 111000 Fe71.5Cu0.5Si15B9Nb3Zn1 300 88000 Fe69.5Cu1.5Si15B9Nb3Mo1Sn1 270 97000 Fe68.5Cu2.5Si15B9Nb3Ta1Re1 330 99000 Fe70Cu1Si15B9Nb3Zr1Al1 300 88000 Fe70Cu1Si15B9Nb3Hf1Sc1 280 86000 Fe70Cu1Si15B9Hf3Zr1Y1 340 48000 Fe71Cu1Si15B9Nb3La1 380 29000 Fe67Cu1Si17B9Mo5Ce1 370 27000[Table 5] Heat treatment alloy composition core loss of the present invention Effective magnetic permeability (atomic%) W 2 / 100K (mW / cc) μ e1K Fe 71 Cu 1 Si 15 B 9 Nb 3 Ti 1 230 98000 Fe 69 Cu 1 Si 15 B 9 W 5 V 1 280 62000 Fe 69 Cu 1 Si 16 B 8 Mo 5 Mn 1 280 58000 Fe 69 Cu 1 Si 17 B 7 Nb 5 Ru 1 250 102000 Fe 71 Cu 1 Si 14 B 10 Ta 3 Rh 1 290 78000 Fe 72 Cu 1 Si 14 B 9 Zr 3 Pd 1 300 52000 Fe 72.5 Cu 0.5 Si 14 B 9 Hf 3 Ir 1 310 53000 Fe 70 Cu 2 Si 16 B 8 Nb 3 Pt 1 270 95000 Fe 70.5 Cu 1.5 Si 15 B 9 Nb 5 Au 1 250 111000 Fe 71.5 Cu 0.5 Si 15 B 9 Nb 3 Zn 1 300 88000 Fe 69.5 Cu 1.5 Si 15 B 9 Nb 3 Mo 1 Sn 1 270 97000 Fe 68.5 Cu 2.5 Si 15 B 9 Nb 3 Ta 1 Re 1 330 99000 Fe 70 Cu 1 Si 15 B 9 Nb 3 Zr 1 Al 1 300 88000 Fe 70 Cu 1 Si 15 B 9 Nb 3 Hf 1 Sc 1 280 86000 Fe 70 Cu 1 Si 15 B 9 Hf 3 Zr 1 Y 1 340 48000 Fe 71 Cu 1 Si 15 B 9 Nb 3 La 1 380 29000 Fe 67 Cu 1 Si 17 B 9 Mo 5 Ce 1 370 27000

【0092】[0092]

【表6】 本発明の熱処理 合 金 組 成 コア損失 実効透磁率 (原子%) W2/100K (mW/cc) μe1K Fe67Cu1Si17B9W5Pr1 390 23000 Fe67Cu1Si17B9Ta5Nb1 400 21000 Fe67Cu1Si17B9Zr5Sm1 360 23000 Fe67Cu1Si16B10Hf5Eu1 370 20000 Fe68Cu1Si18B9Nb3Gd1 380 21000 Fe68Cu1Si19B8Nb3Tb1 350 20000 Fe72Cu1Si14B9Nb3Dy1 370 21000 Fe72Cu1Si14B9Nb3Ho1 360 20000 Fe71Cu1Si14B9Nb3Cr1Ti1 250 88000 (Fe0.95Co0.01)72Cu1Si14B9Nb3Cr1 240 85000 (Fe0.95Co0.05)72Cu1Si14B9Ta3Ru1 260 80000 (Fe0.9Co0.1)72Cu1Si14B9Ta3Mn1 270 75000 (Fe0.99Ni0.01)72Cu1Si14B9Ta3Ru1 260 89000 (Fe0.95Ni0.05)71Cu1Si14B9Ta3Cr1Ru1 270 85000 (Fe0.90Ni0.1)68Cu1Si15B9W5Ti1Ru1 290 78000 (Fe0.95Co0.03Ni0.02)69.5Cu1Si13.5B9W5Cr1Rh1 270 75000 (Fe0.98Co0.01Ni0.01)67Cu1Si15B9W5Ru3 250 72000[Table 6] Heat treatment alloy composition core loss of the present invention Effective magnetic permeability (atomic%) W 2 / 100K (mW / cc) μ e1K Fe 67 Cu 1 Si 17 B 9 W 5 Pr 1 390 23000 Fe 67 Cu 1 Si 17 B 9 Ta 5 Nb 1 400 21000 Fe 67 Cu 1 Si 17 B 9 Zr 5 Sm 1 360 23000 Fe 67 Cu 1 Si 16 B 10 Hf 5 Eu 1 370 20000 Fe 68 Cu 1 Si 18 B 9 Nb 3 Gd 1 380 21000 Fe 68 Cu 1 Si 19 B 8 Nb 3 Tb 1 350 20000 Fe 72 Cu 1 Si 14 B 9 Nb 3 Dy 1 370 21000 Fe 72 Cu 1 Si 14 B 9 Nb 3 Ho 1 360 20000 Fe 71 Cu 1 Si 14 B 9 Nb 3 Cr 1 Ti 1 250 88000 (Fe 0.95 Co 0.01 ) 72 Cu 1 Si 14 B 9 Nb 3 Cr 1 240 85000 (Fe 0.95 Co 0.05 ) 72 Cu 1 Si 14 B 9 Ta 3 Ru 1 260 80000 (Fe 0.9 Co 0.1 ) 72 Cu 1 Si 14 B 9 Ta 3 Mn 1 270 75000 (Fe 0.99 Ni 0.01 ) 72 Cu 1 Si 14 B 9 Ta 3 Ru 1 260 89000 (Fe 0.95 Ni 0.05 ) 71 Cu 1 Si 14 B 9 Ta 3 Cr 1 Ru 1 270 85000 (Fe 0.90 Ni 0.1 ) 68 Cu 1 Si 15 B 9 W 5 Ti 1 Ru 1 290 78000 (Fe 0.95 Co 0.03 Ni 0.02 ) 69.5 Cu 1 Si 13.5 B 9 W 5 Cr 1 Rh 1 270 75000 (Fe 0.98 Co 0.01 Ni 0.01 ) 67 Cu 1 Si 15 B 9 W 5 Ru 3 250 72000

【0093】[0093]

【表7】 本発明の熱処理 合 金 組 成 コア損失 実効透磁率 (原子%) W2/100K (mW/cc) μe1K Fe73Cu1Si13B9Ni3C1 240 70000 Fe73Cu1Si13B9Nb3Ge1 230 68000 Fe73Cu1Si13B9Nb3P1 250 65000 Fe73Cu1Si13B9Nb3Ga1 250 66000 Fe73Cu1Si13B9Nb3Sb1 300 59000 Fe73Cu1Si13B9Nb3As1 310 63000 Fe71Cu1Si13B8Mo5C2 320 52000 Fe70Cu1Si14B6Mo3Cr1C5 330 48000 (Fe0.95Co0.05)70Cu1Si13B9Nb5Al1C1 350 38000 (Fe0.98Ni0.02)70Cu1Si13B9W5V1Ge1 340 39000 Fe68.5Cu1.5Si13B9Nb5Ru1C2 250 88000 Fe70Cu1Si14B8Ta3Cr1Ru2C1 290 66000 Fe70Cu1Si14B9Nb5Be1 250 66000 Fe68Cu1Si15B9Nb5Mn1Be1 250 91000 Fe69Cu2Si14B8Zr5Rh1In1 280 68000 Fe71Cu2Si13B7Hf5Au1C1 290 59000 Fe66Cu1Si16B10Mo5Sc1Ge1 280 65000 Fe67.5Cu0.5Si14B11Nb5Y1P1 250 77000 Fe67Cu1Si13B12Nb5La1Ga1 400 61000[Table 7] Heat treatment alloy composition core loss of the present invention Effective permeability (atomic%) W 2 / 100K (mW / cc) μ e1K Fe 73 Cu 1 Si 13 B 9 Ni 3 C 1 240 70000 Fe 73 Cu 1 Si 13 B 9 Nb 3 Ge 1 230 68000 Fe 73 Cu 1 Si 13 B 9 Nb 3 P 1 250 65000 Fe 73 Cu 1 Si 13 B 9 Nb 3 Ga 1 250 66000 Fe 73 Cu 1 Si 13 B 9 Nb 3 Sb 1 300 59000 Fe 73 Cu 1 Si 13 B 9 Nb 3 As1 310 63000 Fe 71 Cu 1 Si 13 B 8 Mo 5 C 2 320 52000 Fe 70 Cu 1 Si 14 B 6 Mo 3 Cr 1 C 5 330 48000 (Fe 0.95 Co 0.05 ) 70 Cu 1 Si 13 B 9 Nb 5 Al 1 C 1 350 38000 (Fe 0.98 Ni 0.02 ) 70 Cu 1 Si 13 B 9 W 5 V 1 Ge 1 340 39000 Fe 68.5 Cu 1.5 Si 13 B 9 Nb 5 Ru 1 C 2 250 88000 Fe 70 Cu 1 Si 14 B 8 Ta 3 Cr 1 Ru 2 C 1 290 66000 Fe 70 Cu 1 Si 14 B 9 Nb 5 Be 1 250 66000 Fe 68 Cu 1 Si 15 B 9 Nb 5 Mn 1 Be 1 250 91000 Fe 69 Cu 2 Si 14 B 8 Zr 5 Rh 1 In 1 280 68000 Fe 71 Cu 2 Si 13 B 7 Hf 5 Au 1 C 1 290 59000 Fe 66 Cu 1 Si 16 B 10 Mo 5 Sc 1 Ge 1 280 65000 Fe 67.5 Cu 0.5 Si 14 B 11 Nb 5 Y 1 P 1 250 77000 Fe 67 Cu 1 Si 13 B 12 Nb 5 La 1 Ga 1 400 61000

【0094】[0094]

【表8】 本発明の熱処理 合 金 組 成 コア損失 実効透磁率 (原子%) W2/100K (mW/cc) μe1K (Fe0.95Ni0.05)67Cu1Si13B9Nb5Sm1Sb1 410 58000 (Fe0.92Co0.08)70Cu1Si13B9Nb5Zn1As1 380 57000 (Fe0.96Ni0.02Co0.02)70Cu1Si13B9Nb5Sn1In1 390 58000 Fe69Cu1Si13B9Mo5Re1C2 330 55000 Fe69Cu1Si13B9Mo5Ce1C2 400 56000 Fe69Cu1Si13B9W5Pr1C2 410 52000 Fe69Cu1Si13B9W5Nd1C2 390 50000 Fe68Cu1Si14B9Ta5Gd1C2 410 48000 Fe69Cu1Si13B9Nb5Tb1C2 420 50000 Fe70Cu1Si14B8Nb5Dy1Ge1 410 47000 Fe72Cu1Si13B7Nb5Pd1Ge1 400 46000 Fe70Cu1Si13B9Nb5Ir1P1 410 57000 Fe70Cu1Si13B9Nb5Os1Ga1 250 71000 Fe71Cu1Si14B9Ta3Cr1C1 280 61000 Fe67Cu1Si15B6Zr5V1C5 290 58000 Fe63Cu1Si16B5Hf5Cr2C8 280 57000 Fe68Cu1Si14B9Mo4Ru3C1 260 51000 Fe70Cu1Si14B9Mo3Ti1Ru1C1 270 48000 Fe67Cu1Si14B9Nb6Rh2C1 240 72000[Table 8] Heat treatment alloy composition core loss of the present invention Effective magnetic permeability (atomic%) W 2 / 100K (mW / cc) μ e1K (Fe 0.95 Ni 0.05 ) 67 Cu 1 Si 13 B 9 Nb 5 Sm 1 Sb 1 410 58000 (Fe 0.92 Co 0.08 ) 70 Cu 1 Si 13 B 9 Nb 5 Zn 1 As 1 380 57000 (Fe 0.96 Ni 0.02 Co 0.02 ) 70 Cu 1 Si 13 B 9 Nb 5 Sn 1 In 1 390 58000 Fe 69 Cu 1 Si 13 B 9 Mo 5 Re 1 C 2 330 55000 Fe 69 Cu 1 Si 13 B 9 Mo 5 Ce 1 C 2 400 56000 Fe 69 Cu 1 Si 13 B 9 W 5 Pr 1 C 2 410 52000 Fe 69 Cu 1 Si 13 B 9 W 5 Nd 1 C 2 390 50000 Fe 68 Cu 1 Si 14 B 9 Ta 5 Gd 1 C 2 410 48000 Fe 69 Cu 1 Si 13 B 9 Nb 5 Tb 1 C 2 420 50000 Fe 70 Cu 1 Si 14 B 8 Nb 5 Dy 1 Ge 1 410 47000 Fe 72 Cu 1 Si 13 B 7 Nb 5 Pd 1 Ge 1 400 46000 Fe 70 Cu 1 Si 13 B 9 Nb 5 Ir 1 P 1 410 57000 Fe 70 Cu 1 Si 13 B 9 Nb 5 Os 1 Ga 1 250 71000 Fe 71 Cu 1 Si 14 B 9 Ta 3 Cr 1 C 1 280 61000 Fe 67 Cu 1 Si 15 B 6 Zr 5 V 1 C 5 290 58000 Fe 63 Cu 1 Si 16 B 5 Hf 5 Cr 2 C 8 280 57000 Fe 68 Cu 1 Si 14 B 9 Mo 4 Ru 3 C 1 260 51000 Fe 70 Cu 1 Si 14 B 9 Mo 3 Ti 1 Ru 1 C 1 270 48000 Fe 67 Cu 1 Si 14 B 9 Nb 6 Rh 2 C 1 240 72000

【0095】[0095]

【発明の効果】本発明によれば各種トランス、チョーク
コイル、可飽和リアクトル、ノイズフィルター等に好適
なコア損失が低く透磁率が高くかつ特性劣化の小さい磁
心や高角形比の磁心、低角形比の磁心等を提供すること
ができるためその効果は著しいものがある。
According to the present invention, a magnetic core suitable for various transformers, choke coils, saturable reactors, noise filters, etc., having a low core loss, a high magnetic permeability and a small characteristic deterioration, a magnetic core having a high squareness ratio, and a low squareness ratio. Since the magnetic core and the like can be provided, the effect is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明磁心を製造する中間段階で作製される合
金のX線回折パターンである。
FIG. 1 is an X-ray diffraction pattern of an alloy produced in an intermediate step of producing the magnetic core of the present invention.

【図2】本発明磁心を製造する中間段階で作製される合
金の透過電子顕微鏡金属組織写真である。
FIG. 2 is a transmission electron microscope metallographic photograph of an alloy produced in an intermediate step of producing the magnetic core of the present invention.

【図3】本発明磁心に用いられる合金のX線回折パター
ンである。
FIG. 3 is an X-ray diffraction pattern of an alloy used in the magnetic core of the present invention.

【図4】本発明磁心に用いられる合金の透過電子顕微鏡
金属組織写真である。
FIG. 4 is a transmission electron microscope metallographic photograph of an alloy used in the magnetic core of the present invention.

【図5】本発明に係る磁心の形状の例を示した図であ
る。
FIG. 5 is a diagram showing an example of the shape of a magnetic core according to the present invention.

【図6】本発明に係る磁心の形状の例を示した図であ
る。
FIG. 6 is a diagram showing an example of the shape of a magnetic core according to the present invention.

【図7】本発明に係る磁心の形状の例を示した図であ
る。
FIG. 7 is a diagram showing an example of the shape of a magnetic core according to the present invention.

【図8】本発明に係る磁心の形状の例を示した図であ
る。
FIG. 8 is a diagram showing an example of the shape of a magnetic core according to the present invention.

【図9】本発明に係る磁心の形状の例を示した図であ
る。
FIG. 9 is a diagram showing an example of the shape of a magnetic core according to the present invention.

【図10】本発明磁心の直流B−Hカーブの1例を示し
た図である。
FIG. 10 is a diagram showing an example of a DC BH curve of the magnetic core of the present invention.

【図11】本発明磁心の実効パルス透磁率μpのΔB依存
性を示した図である。
FIG. 11 is a graph showing the ΔB dependence of the effective pulse permeability μp of the magnetic core of the present invention.

【図12】本発明磁心の磁気特性の温度依存性の1例を
示した図である。
FIG. 12 is a diagram showing an example of temperature dependence of magnetic characteristics of the magnetic core of the present invention.

【図13】結晶粒割合とコア損失の関係を示す図であ
る。
FIG. 13 is a diagram showing a relationship between a crystal grain ratio and a core loss.

【図14】結晶粒割合と実効透磁率との関係を示す図で
ある。
FIG. 14 is a diagram showing a relationship between a crystal grain ratio and an effective magnetic permeability.

【図15】結晶粒割合が0%の合金の透過電子顕微鏡金
属組織写真である。
FIG. 15 is a transmission electron microscope metallographic photograph of an alloy having a crystal grain ratio of 0%.

【図16】結晶粒割合が12%の合金の透過電子顕微鏡金
属組織写真である。
FIG. 16 is a transmission electron microscope metallographic photograph of an alloy having a crystal grain ratio of 12%.

【図17】結晶粒割合が47%の合金の透過電子顕微鏡金
属組織写真である。
FIG. 17 is a transmission electron microscope metallographic photograph of an alloy having a crystal grain ratio of 47%.

【図18】結晶粒割合が約80%の合金の透過電子顕微鏡
金属組織写真である。
FIG. 18 is a transmission electron microscope metallographic photograph of an alloy having a crystal grain ratio of about 80%.

【図19】結晶粒割合が約100%の合金の透過電子顕微
鏡金属組織写真である。
FIG. 19 is a transmission electron microscope metallographic photograph of an alloy having a crystal grain ratio of about 100%.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 体心立方格子構造を有する最大寸法で測
定した粒径の平均が200オングストローム以下の結晶粒
が組織の少なくとも80%を占めるFe基軟磁性合金の薄帯
を巻回し、積層し、又は基板へ付着させて形成したこと
を特徴とする磁心。
1. A ribbon of a Fe-based soft magnetic alloy, in which crystal grains having a body-centered cubic lattice structure and having an average grain size of 200 angstroms or less measured at least 80% of the structure are wound and laminated. Or a magnetic core formed by adhering to a substrate.
【請求項2】 前記Fe基軟磁性合金はCuを含み、このCu
は主に前記結晶粒周辺部に存在する請求項1記載の磁
心。
2. The Fe-based soft magnetic alloy contains Cu.
The magnetic core according to claim 1, wherein is mainly present in the peripheral portion of the crystal grains.
JP7080812A 1995-03-13 1995-03-13 Magnetic core Expired - Lifetime JP2713373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7080812A JP2713373B2 (en) 1995-03-13 1995-03-13 Magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7080812A JP2713373B2 (en) 1995-03-13 1995-03-13 Magnetic core

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62138624A Division JP2573606B2 (en) 1987-06-02 1987-06-02 Magnetic core and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08153614A true JPH08153614A (en) 1996-06-11
JP2713373B2 JP2713373B2 (en) 1998-02-16

Family

ID=13728883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7080812A Expired - Lifetime JP2713373B2 (en) 1995-03-13 1995-03-13 Magnetic core

Country Status (1)

Country Link
JP (1) JP2713373B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509459A (en) * 2000-09-15 2004-03-25 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト Transducer coil and method of manufacturing and using the same
WO2008099803A1 (en) * 2007-02-13 2008-08-21 Hitachi Metals, Ltd. Fe-base nanocrystal soft magnetic alloy, amorphous alloy ribbon, process for producing fe-base nanocrystal soft magnetic alloy, and magnetic part
US8282745B2 (en) 2009-01-23 2012-10-09 Alps Green Devices Co., Ltd. Fe-based soft magnetic alloy and dust core using fe-based soft magnetic alloy
US8685179B2 (en) 2009-08-07 2014-04-01 Alps Green Devices Co., Ltd. Fe-based amorphous alloy, powder core using the same, and coil encapsulated powder core
WO2014126220A1 (en) * 2013-02-15 2014-08-21 日立金属株式会社 Annular magnetic core using iron-based nanocrystalline soft-magnetic alloy and magnetic component using said annular magnetic core
JPWO2018062310A1 (en) * 2016-09-29 2019-06-24 日立金属株式会社 Nanocrystal alloy core, magnetic core unit and method of manufacturing nanocrystal alloy core
JP2021005645A (en) * 2019-06-26 2021-01-14 学校法人トヨタ学園 Laminated iron core and manufacturing method thereof, and electrical device using laminated iron core

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004509459A (en) * 2000-09-15 2004-03-25 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト Transducer coil and method of manufacturing and using the same
WO2008099803A1 (en) * 2007-02-13 2008-08-21 Hitachi Metals, Ltd. Fe-base nanocrystal soft magnetic alloy, amorphous alloy ribbon, process for producing fe-base nanocrystal soft magnetic alloy, and magnetic part
US8282745B2 (en) 2009-01-23 2012-10-09 Alps Green Devices Co., Ltd. Fe-based soft magnetic alloy and dust core using fe-based soft magnetic alloy
US8685179B2 (en) 2009-08-07 2014-04-01 Alps Green Devices Co., Ltd. Fe-based amorphous alloy, powder core using the same, and coil encapsulated powder core
US9422614B2 (en) 2009-08-07 2016-08-23 Alps Green Devices Co., Ltd. Fe-based amorphous alloy, powder core using the same, and coil encapsulated powder core
WO2014126220A1 (en) * 2013-02-15 2014-08-21 日立金属株式会社 Annular magnetic core using iron-based nanocrystalline soft-magnetic alloy and magnetic component using said annular magnetic core
JPWO2014126220A1 (en) * 2013-02-15 2017-02-02 日立金属株式会社 Annular magnetic core using Fe-based nanocrystalline soft magnetic alloy, and magnetic component using the same
JPWO2018062310A1 (en) * 2016-09-29 2019-06-24 日立金属株式会社 Nanocrystal alloy core, magnetic core unit and method of manufacturing nanocrystal alloy core
JP2019201215A (en) * 2016-09-29 2019-11-21 日立金属株式会社 Method for manufacturing nanocrystal alloy magnetic core
JP2021002663A (en) * 2016-09-29 2021-01-07 日立金属株式会社 Method for manufacturing nanocrystal alloy magnetic core
JP2021005645A (en) * 2019-06-26 2021-01-14 学校法人トヨタ学園 Laminated iron core and manufacturing method thereof, and electrical device using laminated iron core

Also Published As

Publication number Publication date
JP2713373B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
JP2573606B2 (en) Magnetic core and manufacturing method thereof
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JPH044393B2 (en)
JPH03219009A (en) Production of fe-base soft-magnetic alloy
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
JP3357386B2 (en) Soft magnetic alloy, method for producing the same, and magnetic core
JP2008231534A (en) Soft magnetic thin band, magnetic core, and magnetic component
JP3059187B2 (en) Soft magnetic alloy, manufacturing method thereof and magnetic core
JP3856245B2 (en) Method for producing high permeability nanocrystalline alloy
JPH0711396A (en) Fe base soft magnetic alloy
JP2713373B2 (en) Magnetic core
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JPH0867911A (en) Method for heat-treating nano-crystalline magnetic alloy
JP2713714B2 (en) Fe-based magnetic alloy
JPH0610105A (en) Fe base soft magnetic alloy
JP3374981B2 (en) Nanocrystalline soft magnetic alloy and magnetic core with excellent short pulse characteristics
JP2000252111A (en) High-frequency saturable magnetic core and device using the same
JPH0645128A (en) Magnetic core comprising ultra-fine crystalline alloy excellent in dc-superimposed characteristic and manufacturing method thereof, and choke coil and transformer using the core
JP2945122B2 (en) Fe-based soft magnetic alloy and method for producing the same