JP5445924B2 - Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon - Google Patents

Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon Download PDF

Info

Publication number
JP5445924B2
JP5445924B2 JP2009209241A JP2009209241A JP5445924B2 JP 5445924 B2 JP5445924 B2 JP 5445924B2 JP 2009209241 A JP2009209241 A JP 2009209241A JP 2009209241 A JP2009209241 A JP 2009209241A JP 5445924 B2 JP5445924 B2 JP 5445924B2
Authority
JP
Japan
Prior art keywords
ribbon
soft magnetic
magnetic
crystal
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009209241A
Other languages
Japanese (ja)
Other versions
JP2009293132A (en
Inventor
元基 太田
克仁 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009209241A priority Critical patent/JP5445924B2/en
Publication of JP2009293132A publication Critical patent/JP2009293132A/en
Application granted granted Critical
Publication of JP5445924B2 publication Critical patent/JP5445924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

各種トランス、レーザ電源、加速器用パルスパワー磁性部品、各種リアクトル、ノイズ対策、各種モータ、各種発電機等に用いられる高飽和磁束密度で角形性の良好な軟磁性薄帯、およびそれを用いた磁心、磁性部品に関する。   Soft magnetic ribbon with high saturation magnetic flux density and good squareness used in various transformers, laser power supplies, pulse power magnetic components for accelerators, various reactors, noise countermeasures, various motors, various generators, etc., and a magnetic core using the same And magnetic parts.

各種トランス、リアクトル・チョークコイル、ノイズ対策部品、レーザ電源、加速器用パルスパワー磁性部品、各種モータ、各種発電機等に用いられる、高飽和磁束密度でかつ優れた交流磁気特性の磁性材料には、ケイ素鋼、フェライト、アモルファス合金やFe基ナノ結晶合金材料等が知られている。
ケイ素鋼板は、材料が安価で磁束密度が高いが、高周波の用途に対しては磁心損失が大きいという問題がある。作製方法上、アモルファス薄帯並に薄く加工することは極めて難しく、渦電流損失が大きいため、これに伴う損失が大きく不利であった。また、フェライト材料は飽和磁束密度が低く、温度特性が悪い問題があり、動作磁束密度が大きいハイパワーの用途には磁気的に飽和しやすいフェライトは不向きであった。
Magnetic materials with high saturation magnetic flux density and excellent AC magnetic properties used in various transformers, reactor / choke coils, noise countermeasure components, laser power supplies, pulse power magnetic components for accelerators, various motors, various generators, etc. Silicon steel, ferrite, amorphous alloy, Fe-based nanocrystalline alloy material, and the like are known.
A silicon steel sheet is inexpensive and has a high magnetic flux density, but has a problem of high magnetic core loss for high frequency applications. Due to the manufacturing method, it is extremely difficult to process as thin as an amorphous ribbon, and since the eddy current loss is large, the loss accompanying this is large and disadvantageous. Ferrite materials have a problem of low saturation magnetic flux density and poor temperature characteristics. Ferrites that are easily magnetically saturated are not suitable for high-power applications with high operating magnetic flux density.

また、Co基アモルファス合金は、飽和磁束密度が実用的な材料では1T以下と低く、熱的に不安定である問題がある。このため、ハイパワーの用途に使用した場合、部品が大きくなる問題や経時変化のために磁心損失が増加する問題があり、さらに、Coが高価なことから価格的な問題もある。   In addition, the Co-based amorphous alloy has a problem that the saturation magnetic flux density is as low as 1 T or less in a practical material and is thermally unstable. For this reason, when used for high power applications, there is a problem that the parts become large and a magnetic core loss increases due to a change with time. Further, since Co is expensive, there is also a problem of price.

また、特許文献1に記載されているようなFe基アモルファス軟磁性合金は、良い角形特性や低い保磁力を有し、非常に優れた軟磁気特性を示す。しかし、Fe基アモルファス合金系においては、飽和磁束密度は、1.68Tがほぼ物理的上限値となっている。また、Fe基アモルファス合金は、磁歪が大きく応力により特性が劣化する問題や、可聴周波数帯の電流が重畳するような用途では騒音が大きいという問題がある。さらに、従来のFe基アモルファス軟磁性合金において、Feを他の磁性元素Co、Ni等で大幅に置換した場合は若干の飽和磁束密度の増加も認められるが、価格の面からこれらの元素の含有量(重量%)をなるべく少量にすることが望まれる。これらの問題から、特許文献2に記載されるような、ナノ結晶を持つ軟磁性材料が開発され、様々な用途に使用されている。
また、高透磁率かつ高飽和磁束密度の軟磁性成形体として、特許文献3に記載されるような超微細結晶を持つアモルファス合金を得た後に熱処理してナノ結晶化する技術も開示された。
Moreover, the Fe-based amorphous soft magnetic alloy as described in Patent Document 1 has a good squareness characteristic and a low coercive force, and exhibits a very excellent soft magnetic characteristic. However, in the Fe-based amorphous alloy system, the saturation magnetic flux density of 1.68 T is almost the physical upper limit value. In addition, the Fe-based amorphous alloy has a problem that its magnetostriction is large and its characteristics are deteriorated due to stress, and there is a problem that noise is large in applications where currents in an audible frequency band are superimposed. In addition, in conventional Fe-based amorphous soft magnetic alloys, when Fe is significantly replaced with other magnetic elements such as Co and Ni, a slight increase in saturation magnetic flux density is also observed, but the inclusion of these elements from the viewpoint of price. It is desirable to make the amount (% by weight) as small as possible. Because of these problems, a soft magnetic material having nanocrystals as described in Patent Document 2 has been developed and used in various applications.
Also disclosed is a technique of obtaining a amorphous alloy having ultrafine crystals as described in Patent Document 3 as a soft magnetic molded body having a high magnetic permeability and a high saturation magnetic flux density and then heat-treating it to nanocrystallize it.

特開平5−140703号公報((0006)〜(0010))Japanese Patent Laid-Open No. 5-140703 ((0006) to (0010)) 特許平1−156451号公報(第2頁右上欄19行目〜右下欄6行目)Japanese Patent Laid-Open No. 1-156451 (page 2, upper right column, line 19 to lower right column, line 6) 特開2006−40906号公報((0040)〜(0041))JP 2006-40906 A ((0040) to (0041))

トランスや可飽和リアクトル等の磁心材料は、角形性が良好で磁化しやすい軟磁性材料が求められる。すなわち、最大印加磁場Hmで得られる磁束密度Bmと見かけ上の残留磁束密度Brの比、Br/Bmが高い値を有する軟磁気特性が必要となる。Fe基アモルファス薄帯はこの点に関しても非常に有用な性質を示すが、上述したようにFe基アモルファス薄帯の飽和磁束密度の上限が1.68T程度であり、より高い磁束密度を有し、損失の少ない軟磁性材料が求められている。また、ケイ素鋼板は、磁束密度は高いが、飽和性が悪い。最大印加磁場によっては磁束密度BmがFe基アモルファスよりも低くなることもあり、加えて、Br/Bmも低くなる。そこで、本発明では、特に500A/m以下の比較的低い磁場領域において磁化しやすく角形性が高い軟磁性薄帯を提供することを課題とする。   Magnetic core materials such as transformers and saturable reactors are required to be soft magnetic materials having good squareness and being easily magnetized. That is, a soft magnetic characteristic having a high value of Br / Bm, which is the ratio of the apparent magnetic flux density Br to the magnetic flux density Bm obtained with the maximum applied magnetic field Hm, is required. Although the Fe-based amorphous ribbon exhibits very useful properties in this respect as well, as described above, the upper limit of the saturation flux density of the Fe-based amorphous ribbon is about 1.68 T, and has a higher magnetic flux density. There is a need for soft magnetic materials with low loss. Silicon steel sheets have high magnetic flux density but poor saturation. Depending on the maximum applied magnetic field, the magnetic flux density Bm may be lower than that of the Fe-based amorphous, and in addition, Br / Bm is also low. Therefore, an object of the present invention is to provide a soft magnetic ribbon that is easily magnetized in a relatively low magnetic field region of 500 A / m or less and has high squareness.

本発明の軟磁性薄帯は、組成式:Fe100-x-yAX(但し、AはCuあるいはCu及びAuであり、XはB、Si、C、P、Al、Ge、Gaから選ばれた少なくとも一種の元素でBとSiを必須に含み、原子%で、1<x≦3、10≦y≦24)により表され、薄帯の内部に結晶粒径が60nm以下(0を含まず)の結晶粒が非晶質相中に体積分率で30%以上分散した母相組織と、前記薄帯の最表面に結晶組織からなる結晶層と、この結晶層の内部側にはアモルファス層が形成されてなり、さらに前記アモルファス層と母相組織との間に、母相組織の平均粒径に対して1.5倍以上の結晶粒を有する粗大結晶粒層を有し、磁場80A/mにおける磁束密度B80と、磁場印加後の残留磁束密度Brの比、Br/B80が、90%以上であることを特徴とする。 The soft magnetic ribbon of the present invention has a composition formula: Fe 100-xy A x X y (where A is Cu or Cu and Au , and X is B, Si, C, P, Al, Ge, Ga) At least one element selected from the group consisting essentially of B and Si, expressed in terms of atomic%, 1 <x ≦ 3 , 10 ≦ y ≦ 24), and a crystal grain size of 60 nm or less (0 Crystal grains of which crystal grains are dispersed in the amorphous phase at a volume fraction of 30% or more, a crystal layer composed of a crystal structure on the outermost surface of the ribbon, and an inner side of the crystal layer. Is formed of an amorphous layer, and further, between the amorphous layer and the matrix structure , has a coarse grain layer having a crystal grain of 1.5 times or more the average grain size of the matrix structure, The ratio of the magnetic flux density B 80 at a magnetic field of 80 A / m to the residual magnetic flux density Br after application of the magnetic field, Br / B 80 is 90% or more.

本発明の軟磁性薄帯は、組成式:Fe100-x-y(但し、AはCuあるいはCu及びAuであり、XはB、Si、C、P、Al、Ge、Gaから選ばれた少なくとも一種の元素でBとSiは必須で含み、原子%で、1<x≦3、10≦y≦24により表されるものが好ましい。 The soft magnetic ribbon of the present invention has a composition formula: Fe 100-xy A x X y (where A is Cu or Cu and Au , and X is B, Si, C, P, Al, Ge, Ga) Among these, at least one element selected from the group consisting of B and Si is essential and is preferably expressed in terms of atomic percent by 1 <x ≦ 3 and 10 ≦ y ≦ 24.

また、本発明の軟磁性薄帯における粗大結晶粒層の平均結晶粒径は、母相組織の平均結晶粒径の2倍以下であることが好ましい。 The average crystal grain size of the coarse crystal grain layer in the soft magnetic ribbon of the present invention is preferably not more than twice the average crystal grain size of the matrix structure.

本発明の軟磁性薄帯を用いた磁心は低損失で小型化に適しており、1.5T、50Hzにおける鉄損が0.5W/Kg以下の磁心を得ることができる。そして、上述の軟磁性薄帯または磁心を用いた磁性部品とすることができる。   The magnetic core using the soft magnetic ribbon of the present invention is low loss and suitable for miniaturization, and a magnetic core having an iron loss of 1.5 W / Kg or less at 1.5 T and 50 Hz can be obtained. And it can be set as the magnetic component using the above-mentioned soft-magnetic thin strip or a magnetic core.

本発明の軟磁性薄帯の製造方法は、組成式:Fe100-x-yAX(但し、AはCuあるいはCu及びAuであり、XはB、Si、C、P、Al、Ge、Gaから選ばれた少なくとも一種の元素でBとSiを必須に含み、原子%で、1<x≦3、10≦y≦24)により表される合金溶湯を急冷することにより、平均粒径30nm以下(0を含まず)の結晶粒が非晶質相中に体積分率で0%超30%未満で分散した母相組織からなるFe基合金の軟磁性薄帯を作製する工程と、前記軟磁性薄帯に熱処理を行い平均粒径60nm以下の体心立方構造の結晶粒が非晶質相中に体積分率で30%以上分散した母相組織と、薄帯の最表面に結晶組織からなる結晶層と、この結晶層の内部側にはアモルファス層が形成されてなり、前記アモルファス層と母相組織との間に、母相組織の平均粒径に対して1.5倍以上の結晶粒を有する粗大結晶粒層を有する組織となす熱処理工程を有し、前記熱処理は300℃以上からの平均昇温速度が100℃/min未満で450℃以下の保持温度まで昇温する工程を有することを特徴とする。 The method for producing a soft magnetic ribbon of the present invention has a composition formula: Fe 100-xy A x X y (where A is Cu or Cu and Au , and X is B, Si, C, P, Al, The average grain size is obtained by quenching a molten alloy that is essentially at least one element selected from Ge and Ga and contains B and Si, and is expressed in atomic% by 1 <x ≦ 3 , 10 ≦ y ≦ 24). Producing a soft magnetic ribbon of an Fe-based alloy having a matrix structure in which crystal grains having a diameter of 30 nm or less (not including 0) are dispersed in an amorphous phase with a volume fraction of more than 0% and less than 30%; The soft magnetic ribbon is subjected to a heat treatment, and a body phase structure in which body-centered cubic crystal grains having an average grain size of 60 nm or less are dispersed in an amorphous phase by 30% or more by volume fraction, and on the outermost surface of the ribbon. a crystal layer comprising a crystal structure, the interior side of the crystal layer becomes to amorphous layer is formed, between the amorphous layer and the matrix structure, versus an average particle diameter of the matrix structure Te have a tissue and forming heat treatment step with a coarse crystal grain layer having a crystal grain of 1.5 times or more, the heat treatment is maintained for 450 ° C. or less at an average heating rate of less than 100 ° C. / min from 300 ° C. or higher It has the process of heating up to temperature.

また、前記Fe基合金は、組成式:Fe100-x-y(但し、AはCu,Auから選ばれた少なくとも一種以上の元素、XはB,Si,S,C,P,Al,Ge,Ga,Beから選ばれた少なくとも一種以上の元素)で表され、原子%で、0<x≦5、10≦y≦24により表されるものが好ましい。 Further, the Fe-based alloy has a composition formula: Fe 100-xy A x X y (where A is at least one element selected from Cu and Au, X is B, Si, S, C, P) , Al, Ge, Ga, and Be), and those represented by 0 <x ≦ 5 and 10 ≦ y ≦ 24 in atomic% are preferable.

本発明によれば、高飽和磁束密度で低損失の軟磁性材料であって、特に角形性の高い軟磁性薄帯を提供することができる。よって、各種トランス、レーザ電源、加速器用パルスパワー磁性部品、大電流用の各種リアクトル、アクティブフィルタ用チョ−クコイル、平滑チョークコイル、電磁シールド材料などのノイズ対策部品、モータ、発電機等に用いられる高飽和磁束密度で特に低い磁心損失を示す高飽和磁束密度低損失の軟磁性薄帯およびそれを用いた高性能の磁心、磁性部品を実現することができるため、その効果は著しいものがある。   According to the present invention, it is possible to provide a soft magnetic ribbon which is a soft magnetic material having a high saturation magnetic flux density and a low loss and which has a particularly high squareness. Therefore, it is used for various transformers, laser power supplies, pulse power magnetic components for accelerators, various reactors for large currents, choke coils for active filters, smooth choke coils, noise countermeasure components such as electromagnetic shielding materials, motors, generators, etc. Since a soft magnetic ribbon having a high saturation magnetic flux density and a low loss exhibiting a particularly low magnetic core loss at a high saturation magnetic flux density, and a high-performance magnetic core and magnetic parts using the same can be realized, the effect is remarkable.

軟磁性薄帯の表面近傍に見られる層状構造を示す組織写真(平均昇温速度100℃/min未満)。Structure photograph showing the layered structure found near the surface of the soft magnetic ribbon (average heating rate of less than 100 ° C / min). 別の層状構造を示す組織写真(平均昇温速度200℃/min)。Structure photograph showing another layered structure (average heating rate 200 ° C / min). 熱処理の昇温速度を変えた試料を比較したB-H曲線(最大磁場80A/m)。BH curve (maximum magnetic field 80A / m) comparing samples with different heat-up rates. 熱処理の昇温速度を変えた試料を比較したB-H曲線(最大磁場800A/m)。B-H curve (maximum magnetic field 800A / m) comparing samples with different heating rates. 実施例3の軟磁性薄帯のB-H曲線(最大磁場80A/m)。B-H curve of soft magnetic ribbon of Example 3 (maximum magnetic field 80 A / m). 軟磁性材の皮相電力の磁束密度依存性を示す図。The figure which shows the magnetic flux density dependence of the apparent electric power of a soft-magnetic material. 本発明の軟磁性薄帯の組織の状態を示す模式図。The schematic diagram which shows the state of the structure | tissue of the soft-magnetic ribbon of this invention. 図1の組織写真の模式図である。It is a schematic diagram of the structure | tissue photograph of FIG. 図2の組織写真の模式図である。It is a schematic diagram of the structure | tissue photograph of FIG. 従来の軟磁性薄帯の組織の状態を示す模式図である。It is a schematic diagram which shows the state of the structure | tissue of the conventional soft magnetic ribbon.

本発明の軟磁性薄帯は、薄帯の内部に結晶粒径が60nm以下(0を含まず)の結晶粒が非晶質中に体積分率で30%以上分散した母相組織と、前記薄帯の最表面に結晶組織からなる結晶層と、この結晶層の内部側にはアモルファス層とが形成されてなり、前記アモルファス層と母相組織との間に、母相組織の平均粒径よりも大きい結晶粒からなる粗大結晶粒層を有するという特徴を持つ。本発明の軟磁性薄帯は、母相と異なる結晶組織(最表面の結晶層、アモルファス層、粗大結晶粒層)が同一薄帯内に存在しているため、従来得られなかった磁気特性を持つ軟磁性薄帯を実現できることを見出した。また、アモルファス層を有するので曲げに強いという特徴を持つ。これらの軟磁性薄帯は、ロール冷却により鋳造された厚さが100μm以下の合金薄帯などである。   The soft magnetic ribbon of the present invention has a matrix structure in which crystal grains having a crystal grain size of 60 nm or less (not including 0) are dispersed in an amorphous material at a volume fraction of 30% or more in the ribbon, A crystal layer having a crystal structure on the outermost surface of the ribbon, and an amorphous layer is formed on the inner side of the crystal layer, and the average grain size of the matrix structure is between the amorphous layer and the matrix structure. It has a feature of having a coarse crystal grain layer composed of larger crystal grains. Since the soft magnetic ribbon of the present invention has a crystal structure different from the parent phase (the outermost crystal layer, amorphous layer, and coarse crystal grain layer) in the same ribbon, it has a magnetic property that has not been obtained previously. It was found that a soft magnetic ribbon can be realized. Moreover, since it has an amorphous layer, it has the characteristic that it is strong to bending. These soft magnetic ribbons are alloy ribbons having a thickness of 100 μm or less cast by roll cooling.

図7(a)、(b)は本発明の軟磁性薄帯におけるロール冷却面側の表層断面を観察したものである。本発明の軟磁性薄帯は、薄帯の表面側(ロール冷却面およびその裏の自由面の表層部分)において、表面2からの深さが120nmより深い位置で結晶粒径が60nm以下(0を含まず)の結晶粒が非晶質中に体積分率で30%以上分散した母相組織Dを有し、かつこの母相組織Dと薄帯の表面2との間にアモルファス層Bを有する。そして、この軟磁性薄帯は、薄帯の最表面に結晶組織から成る結晶層Aが形成され、この結晶層Aの内部側に前記アモルファス層Bが形成されている。さらに、アモルファス層Bと母相組織Dの間に、母相組織の平均粒径よりも粒径が大きい結晶から成る粗大結晶粒層Cを有するものである。この粗大結晶粒層Cを持つものが角形性の良好な磁気特性を持つ。   FIGS. 7A and 7B are observations of the surface layer cross section on the roll cooling surface side in the soft magnetic ribbon of the present invention. The soft magnetic ribbon of the present invention has a crystal grain size of 60 nm or less at a position where the depth from the surface 2 is deeper than 120 nm on the surface side of the ribbon (the surface of the roll cooling surface and the free surface behind it). Crystal grains (not including) have a matrix structure D in which a volume fraction of 30% or more is dispersed in the amorphous material, and an amorphous layer B is formed between the matrix structure D and the surface 2 of the ribbon. Have. In the soft magnetic ribbon, a crystal layer A having a crystal structure is formed on the outermost surface of the ribbon, and the amorphous layer B is formed inside the crystal layer A. Furthermore, a coarse crystal grain layer C composed of crystals having a grain size larger than the average grain size of the matrix structure is provided between the amorphous layer B and the matrix structure D. Those having this coarse crystal grain layer C have magnetic properties with good squareness.

アモルファス層が発現する理由を以下に推定する。本合金系は、Feを主成分としかつCu及び/又はAu(以下、A元素)が必須である。Feとほぼ非固溶のA元素は、凝集してナノオーダーのクラスターを形成し、結晶粒の核生成を助ける。表面から離れた部分では、A元素は均一に分散しやすく、そのためにナノ結晶の母相組織Dが形成される。また、非固溶の性質から、最表面ではA元素が偏析しやすくA元素の濃度が高くなり、母相と同様に結晶組織が形成される。一方、最表面の直下内部では、A元素が表面側に取られる分、A元素の濃度が低くなる。そのため、この領域では結晶粒の核生成が起きずにアモルファス層となる。本発明の軟磁性薄帯は、熱処理によって微結晶粒層を析出させるが、上述のようにA元素の分布により微結晶粒の核の濃度が決まる。そのため、表面近傍に核が現れにくくなり、アモルファス層ができると思われる。
Nb、Mo、Ta、Zr等、従来のナノ結晶系で用いられてきた元素には、A元素の偏析や熱拡散を抑える効果があり、多く含みすぎる場合、表面近傍のアモルファス層は得にくくなる。
The reason why the amorphous layer appears is estimated below. This alloy system has Fe as a main component and Cu and / or Au (hereinafter referred to as element A) is essential. The element A, which is substantially insoluble with Fe, aggregates to form nano-order clusters and assists in the nucleation of crystal grains. In the portion away from the surface, the A element is easily dispersed uniformly, and therefore a nanocrystalline matrix structure D is formed. In addition, due to the non-solid solution property, the element A is easily segregated on the outermost surface, and the concentration of the element A is increased, and a crystal structure is formed in the same manner as the matrix. On the other hand, in the interior immediately below the outermost surface, the concentration of the A element is lowered by the amount of the A element taken on the surface side. Therefore, in this region, nucleation of crystal grains does not occur and an amorphous layer is formed. In the soft magnetic ribbon of the present invention, a fine crystal grain layer is deposited by heat treatment, and the concentration of the microcrystal grain nuclei is determined by the distribution of element A as described above. For this reason, nuclei are unlikely to appear near the surface, and an amorphous layer appears to be formed.
Elements such as Nb, Mo, Ta, Zr, etc. that have been used in conventional nanocrystal systems have the effect of suppressing segregation and thermal diffusion of the A element. If too much is included, it is difficult to obtain an amorphous layer near the surface. .

また、粗大結晶粒層Cが発現する理由を以下に推定する。アモルファス層のさらに内側では、A元素の濃度は母相組織となる領域ほど高くなく、核生成も少ない。ナノ結晶粒の粒径は核の濃度と結晶粒成長のスピードの兼ね合いで決まる。A元素の濃度が均一な母相組織の領域では昇温速度の違いによる組織の違いは現れにくいが、A元素の少ないCの領域では、昇温速度が遅ければ、A元素の熱拡散に十分な時間が与えられて核が減る。そのため、結晶粒が粗大化し易くなり、粗大結晶粒層Cが形成される。例えば、昇温速度を速くすると、粗大結晶粒層Cの結晶粒は微細になり、平均粒径が母相に近づく。また、粗大結晶粒層Cの幅は減少する。昇温速度を制御することにより、組織制御がなされ、用途に合わせた磁気的性質が得られる。
ここで、粗大結晶粒層Cとは、母相組織の平均結晶粒径に対して1.5倍以上の部分を指すものとする。また、粗大結晶粒層Cの平均結晶粒径は、母相組織の平均結晶粒径の2倍以下とすることが好ましい。
Further, the reason why the coarse crystal grain layer C appears is estimated as follows. Further inside the amorphous layer, the concentration of the A element is not as high as that of the region that forms the matrix structure, and nucleation is also low. The grain size of nanocrystal grains is determined by the balance between the concentration of nuclei and the speed of grain growth. In the region of the matrix structure in which the concentration of the A element is uniform, the difference in structure due to the difference in the heating rate does not appear easily. However, in the C region where the A element is low, if the heating rate is slow, it is sufficient for the thermal diffusion of the A element. Given the time, the number of nuclei decreases. Therefore, the crystal grains are easily coarsened, and the coarse crystal grain layer C is formed. For example, when the rate of temperature increase is increased, the crystal grains of the coarse crystal grain layer C become fine and the average grain size approaches the parent phase. Further, the width of the coarse crystal grain layer C decreases. By controlling the rate of temperature rise, the structure is controlled and magnetic properties suitable for the application can be obtained.
Here, the coarse crystal grain layer C refers to a portion that is 1.5 times or more the average crystal grain size of the matrix structure. Moreover, it is preferable that the average crystal grain size of the coarse crystal grain layer C is not more than twice the average crystal grain size of the parent phase structure.

本発明の軟磁性薄帯の板厚は、渦電流損失を低減させる効果を得るために100μm以下であることが好ましく、40μm以下がより好ましい。また、本発明において母相組織とは、周期的に繰り替えされる構造に類似性があり、結晶粒のサイズの分布が一様である結晶粒と粒界から成る組織を母相組織と称している。軟磁性薄帯では、薄帯の厚さの中間地点付近の組織を母相とする。
結晶粒径の測定は、電子顕微鏡による組織写真で観察される組織の長径と短径の平均値を取ったものである。平均粒径とは、その結晶粒径を30個以上測定した値の平均値である。
結晶粒の体積分率VVは、線分法、すなわち顕微鏡組織中に任意の直線を想定しそのテストラインの長さをLt、結晶相により占められる線の長さLcを測定し、結晶粒により占められる線の長さの割合LL=Lc/Lt×100により求められる。ここで、結晶粒の体積分率VV=LLである。
In order to obtain the effect of reducing eddy current loss, the thickness of the soft magnetic ribbon of the present invention is preferably 100 μm or less, and more preferably 40 μm or less. In the present invention, the matrix structure is similar to a structure that is periodically repeated, and a structure composed of crystal grains and grain boundaries in which the distribution of crystal grain sizes is uniform is referred to as a matrix structure. Yes. In soft magnetic ribbons, the structure near the midpoint of the ribbon thickness is the parent phase.
The crystal grain size is measured by taking an average value of the major axis and the minor axis of the structure observed in the structure photograph taken with an electron microscope. The average grain size is an average value of values obtained by measuring 30 or more crystal grain sizes.
The volume fraction V V of the crystal grains is determined by the line segmentation method, that is, by assuming an arbitrary straight line in the microstructure, the length of the test line is Lt, and the length Lc of the line occupied by the crystal phase is measured. The ratio of the length of the line occupied by L L = L c / L t × 100. Here, the volume fraction of crystal grains is V V = L L.

本発明の軟磁性薄帯は、熱処理を特定の条件で行うことで、磁場80A/mにおける磁束密度B80と、磁場印加後の残留磁束密度Brの比、Br/B80が、90%以上という角形性の高いB−H曲線を得ることができる。 In the soft magnetic ribbon of the present invention, the ratio of the magnetic flux density B 80 at a magnetic field of 80 A / m to the residual magnetic flux density Br after application of the magnetic field, Br / B 80 is 90% or more by performing heat treatment under specific conditions. A BH curve with high squareness can be obtained.

また、本発明の軟磁性薄帯を用いて積層磁心、巻磁心などの磁心とすることで、1.5T、50Hzにおける鉄損が0.5W/Kg以下の磁心とすることができる。飽和磁束密度は1.65T以上である。また、本発明の軟磁性薄帯は、特に500A/m以下の低磁場において従来の方向性ケイ素鋼板よりも優れた高磁束密度の領域が存在し、かつFe系アモルファス材料よりも高い飽和磁束密度である。角形性が向上しているため、皮相電力を低く抑えることができ、磁束密度領域が拡大している。   Further, by using the soft magnetic ribbon of the present invention as a magnetic core such as a laminated magnetic core or a wound magnetic core, a magnetic core having an iron loss of 1.5 W / Kg or less at 1.5 T and 50 Hz can be obtained. The saturation magnetic flux density is 1.65T or more. In addition, the soft magnetic ribbon of the present invention has a high magnetic flux density region superior to that of a conventional grain-oriented silicon steel sheet, particularly in a low magnetic field of 500 A / m or less, and a higher saturation magnetic flux density than that of an Fe-based amorphous material. It is. Since the squareness is improved, the apparent power can be kept low, and the magnetic flux density region is expanded.

母相組織中の結晶粒は体積分率で30%以上である。50%以上、さらには60%以上分散したものが好ましい。平均結晶粒径は60nm以下である必要があるが、特に望ましい平均結晶粒径は2nmから25nmであり、この範囲において特に低い保磁力および磁心損失が得られる。
前述の合金中に形成する微結晶粒は主にFeを主体とする体心立方構造(bcc)の結晶相であり、Si,B,AlやGe等が固溶しても良い。また、規則格子を含んでも良い。前記結晶相以外の残部は主にアモルファス相であるが、実質的に結晶相だけからなる合金も本発明に含まれる。一部にCu,Auを含む面心立方構造の相(fcc相)も存在する場合がある。
また、アモルファス相が結晶粒の周囲に存在する場合、抵抗率が高くなり、結晶粒成長の抑制により結晶粒が微細化され、より好ましい軟磁気特性が得られる。
上記合金において化合物相が存在しない場合により低い磁心損失を示すが化合物相を一部に含んでも良い。
The crystal grains in the matrix structure are 30% or more in volume fraction. What dispersed 50% or more, further 60% or more is preferable. Although the average crystal grain size needs to be 60 nm or less, a particularly desirable average crystal grain size is 2 nm to 25 nm, and in this range, particularly low coercive force and magnetic core loss can be obtained.
The fine crystal grains formed in the above-described alloy have a body-centered cubic (bcc) crystal phase mainly composed of Fe, and Si, B, Al, Ge, etc. may be dissolved. Further, a regular lattice may be included. The balance other than the crystalline phase is mainly an amorphous phase, but an alloy consisting essentially of the crystalline phase is also included in the present invention. There may be a face-centered cubic structure phase (fcc phase) partially containing Cu and Au.
Further, when an amorphous phase is present around the crystal grains, the resistivity is increased, the crystal grains are refined by suppressing the crystal grain growth, and more preferable soft magnetic characteristics can be obtained.
When the compound phase does not exist in the above alloy, the magnetic core loss is lower, but the compound phase may be partially included.

本発明の軟磁性薄帯は、組成式:Fe100-x-y(但し、AはCuあるいはCu及びAuであり、XはB、Si、C、P、Al、Ge、Gaから選ばれた少なくとも一種の元素でBとSiは必須で含み、原子%で、1<x≦3、10≦y≦24により表されるものが好ましい。以下にその限定理由を述べる。
The soft magnetic ribbon of the present invention has a composition formula: Fe 100-xy A x X y (where A is Cu or Cu and Au , and X is B, Si, C, P, Al, Ge, Ga) At least one element selected from the group consisting of B and Si is essential, and is preferably expressed in terms of atomic% by 1 <x ≦ 3 and 10 ≦ y ≦ 24.

A元素(Cu、Au)の量は5原子%以下(0%を含まず)とする。本発明の合金組成におけるA元素は特に重要である。前述したように、A元素はFeとほぼ非固溶のため、熱処理や機械的振動、電気的衝撃、磁気的衝撃等の外的あるいは内的な要因によって、拡散を起こす。特に、薄帯表面と内部で温度分布や温度差が生じやすい熱処理を施した場合には、拡散が起き易い部位と相互の拡散が妨げられ易い部位が存在し、内部で組織は傾斜的、層状的に変質する。磁気的性質を制御するには、薄帯の厚さ、組成の制御、熱処理時の熱処理温度、熱処理時間、昇温速度、降温速度を制御することが有効であり、用途に合わせて、B−H曲線の形を変えられる。また、他の方法、振動等を与えること等でCu原子の拡散を促進することも可能である。
A元素の量は5原子%を超えるとA元素同士が凝集し、熱拡散が起こりにくくなる。好ましくは3原子%以下とする。また、A元素は、上記の効果を得るために0.1原子%以上、さらには0.5原子%以上、さらには0.8原子%以上を添加することが好ましい。A元素は原料コストを考慮するとCuを選択することが好ましい。
The amount of element A (Cu, Au) is 5 atomic% or less (excluding 0%). The element A in the alloy composition of the present invention is particularly important. As described above, since element A is almost insoluble in Fe, diffusion occurs due to external or internal factors such as heat treatment, mechanical vibration, electrical shock, and magnetic shock. In particular, when heat treatment is performed that tends to cause temperature distribution or temperature difference between the ribbon surface and the inside, there is a site where diffusion is likely to occur and a site where mutual diffusion is likely to be hindered. Will change. In order to control the magnetic properties, it is effective to control the thickness of the ribbon, the composition, the heat treatment temperature during the heat treatment, the heat treatment time, the temperature raising rate, and the temperature lowering rate. The shape of the H curve can be changed. It is also possible to promote the diffusion of Cu atoms by applying other methods, vibrations, or the like.
When the amount of the A element exceeds 5 atomic%, the A elements are aggregated, and thermal diffusion hardly occurs. Preferably it is 3 atomic% or less. In order to obtain the above effect, the element A is preferably added in an amount of 0.1 atomic% or more, further 0.5 atomic% or more, and further 0.8 atomic% or more. In consideration of the raw material cost, it is preferable to select Cu as the element A.

X元素(B、Si、C、P、Al、Ge、Ga)はA元素(Cu、Au)が同一薄帯内に存在する本発明の軟磁性薄帯を形成するために不可欠な元素である。10原子%未満であるとアモルファスの形成を促進する効果が不十分である。また24原子%を超えると軟磁気特性が悪化してしまう。好ましい範囲は12原子%以上20原子%以下である。
特にBはアモルファスの形成を促進するために重要な元素であり添加することが好ましい。Bの濃度が10≦y≦20原子%であると、Feの含有量を高く維持しつつアモルファスが安定に得られる。
また、Si、C、P、Al、Ge、Gaを添加すると、結晶磁気異方性の大きいFe−Bが析出開始する温度が高くなるため、熱処理温度を高温にできる。高温の熱処理を施すことで微結晶相の割合が増え、Bsが増加し、B−H曲線の角形性が改善される。また、試料表面の変質、変色を抑える効果がある。Si、C、P、Al、Ge、Gaの添加量は、0原子%超〜7原子%とすることが好ましい。特にSiはこの効果が顕著であり、好ましい。
X element (B, Si, C , P, Al, Ge, Ga) is an indispensable element for forming the soft magnetic ribbon of the present invention in which the A element (Cu, Au) exists in the same ribbon. . If it is less than 10 atomic%, the effect of promoting the formation of amorphous is insufficient. On the other hand, if it exceeds 24 atomic%, the soft magnetic characteristics are deteriorated. A preferable range is 12 atom% or more and 20 atom% or less.
In particular, B is an important element for accelerating the formation of amorphous and is preferably added. When the concentration of B is 10 ≦ y ≦ 20 atomic%, an amorphous phase can be stably obtained while maintaining a high Fe content.
In addition, when Si, C , P, Al, Ge, and Ga are added, the temperature at which Fe—B having a large magnetocrystalline anisotropy starts to precipitate increases, so that the heat treatment temperature can be increased. By applying a high temperature heat treatment, the proportion of the microcrystalline phase increases, Bs increases, and the squareness of the BH curve is improved. In addition, there is an effect of suppressing deterioration and discoloration of the sample surface. The addition amount of Si, C , P, Al, Ge, Ga is preferably more than 0 atomic% to 7 atomic%. Particularly, Si is preferable since this effect is remarkable.

Feの一部をFeとA元素に共に固溶するNi、Coから選ばれた少なくとも一種以上の元素で置換してもよい。これらの元素を置換した軟磁性薄帯はアモルファスの形成能が高くなり、A元素の含有量を増加させることが可能である。A元素の含有量が増加することで、結晶組織の微細化が促進され軟磁気特性が改善される。また、Ni、Coを置換した場合には飽和磁束密度が増加する。これらの元素を多く置換すると、価格の高騰につながるため、Niの置換量は10原子%未満、好ましくは5原子%未満、さらには2原子%未満が適当であり、Coの場合は10原子%未満、好ましくは2原子%未満、より好ましくは1原子%未満が適当である。 A part of Fe may be substituted with at least one element selected from Ni and Co that are dissolved in Fe and A together. Soft magnetic ribbons substituted with these elements have a high ability to form an amorphous phase and can increase the content of element A. Increasing the content of element A promotes refinement of the crystal structure and improves soft magnetic properties. Further, when Ni and Co are replaced, the saturation magnetic flux density increases. Substituting a large amount of these elements leads to an increase in the price. Therefore, the amount of substitution of Ni is less than 10 atomic%, preferably less than 5 atomic%, more preferably less than 2 atomic%, and in the case of Co, 10 atomic%. Less than, preferably less than 2 atomic%, more preferably less than 1 atomic% is suitable.

Feの一部をTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、白金族元素、Ag、Zn、In、Sn、As、Sb、Bi、Y、N、O及び希土類元素から選ばれた少なくとも一種以上の元素で置換した場合、これらの元素はA元素やメタロイド元素と共に熱処理後も残留するアモルファス相に優先的に入るため、Fe濃度の高い微細結晶粒の生成を助ける働きをする。そのため、軟磁気特性の改善に寄与する。一方、本発明の軟磁性薄帯における実質的な磁性の担い手はFeであるため、Feの含有量を高く保つ必要があるが、これら、原子量の大きい元素を含有することは、単位重量あたりのFeの含有量が低下することになる。特に、置換する元素がNb、Zrの場合、置換量は2原子%未満が適当であり、置換する元素がTa、Hfの場合、置換量は1.2原子%未満が適当である。また、Mnを置換する場合は、飽和磁束密度の低下がおこるため、置換量は2原子%未満である。
但し、特に高い飽和磁束密度を得るためには、これらの元素の総量が1.8原子%以下とすることが好ましい。また、総量が1.0原子%以下とすることがさらに好ましい。
Part of Fe is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, platinum group elements, Ag, Zn, In, Sn, As, Sb, Bi , Y, N, O And at least one element selected from rare earth elements, these elements preferentially enter the amorphous phase that remains after heat treatment together with the A element and metalloid element, so that the formation of fine grains with high Fe concentration Work to help. Therefore, it contributes to the improvement of soft magnetic characteristics. On the other hand, since the substantial magnetic player in the soft magnetic ribbon of the present invention is Fe, it is necessary to keep the content of Fe high. However, the inclusion of these elements having a large atomic weight per unit weight The Fe content will decrease. In particular, when the element to be substituted is Nb or Zr, the substitution amount is suitably less than 2 atom%, and when the element to be substituted is Ta or Hf, the substitution amount is suitably less than 1.2 atom%. Further, when Mn is substituted, the saturation magnetic flux density is lowered, so that the substitution amount is less than 2 atomic%.
However, in order to obtain a particularly high saturation magnetic flux density, the total amount of these elements is preferably 1.8 atomic% or less. Further, it is more preferable that the total amount is 1.0 atomic% or less.

本発明の具体的な製造方法は、前記組織の溶湯を単ロール法等の急冷技術によって100℃/sec以上の冷却速度で急冷し、平均粒径30nm以下の結晶粒が非晶質相中に体積分率で0%超30%未満で分散した母相組織のFe基合金を作製後、これを加工し、結晶化温度の近傍で熱処理を施し、平均粒径が60nm以下の微結晶組織を形成することによって得られる。 Specific production methods of the present invention, the tissue of the melt was quenched with 100 ° C. / sec or more cooling rate by quenching technique such as a single roll method, a flat Hitoshitsubu径30nm or less crystal grains amorphous phase After preparing a Fe-base alloy with a matrix structure dispersed in a volume fraction of more than 0% and less than 30%, this was processed and heat-treated near the crystallization temperature, and the microcrystalline structure with an average grain size of 60 nm or less Is obtained.

本発明において、溶湯を急冷する方法としては、単ロール法の他、双ロール法、回転液中紡糸法、ガスアトマイズ法、水アトマイズ法などがあり、薄片や薄帯、粉末を製造することができる。また、溶湯急冷時の溶湯温度は、合金の融点よりも50℃〜300℃程度高い温度とするのが望ましい。
単ロール法などの超急冷法は、活性な金属を含まない場合は大気中あるいは局所Arあるいは窒素ガスなどの雰囲気中で行うことが可能であるが、活性な金属を含む場合はAr、Heなどの不活性ガス中、窒素ガス中あるいは減圧中、あるいはノズル先端部のロール表面付近のガス雰囲気を制御する。また、CO2ガスをロールに吹き付ける方法や、COガスをノズル近傍のロール表面付近で燃焼させながら合金薄帯製造を行う。
単ロール法の場合の冷却ロール周速は、15m/sから50m/s程度の範囲が望ましく、冷却ロール材質は、熱伝導が良好な純銅やCu−Be、Cu−Cr、Cu−Zr、Cu−Zr−Crなどの銅合金が適している。大量に製造する場合、板厚が厚い薄帯や広幅薄帯を製造する場合は、冷却ロールは水冷構造とした方が好ましい。
In the present invention, as a method for rapidly cooling the molten metal, there are a twin roll method, a spinning in spinning solution, a gas atomizing method, a water atomizing method and the like in addition to a single roll method, and it is possible to produce flakes, ribbons, and powders. . Further, it is desirable that the molten metal temperature at the time of rapid cooling of the molten metal is higher by about 50 ° C. to 300 ° C. than the melting point of the alloy.
The ultra-rapid cooling method such as the single roll method can be performed in the atmosphere or in an atmosphere such as local Ar or nitrogen gas when no active metal is contained, but when active metal is contained, Ar, He, etc. The gas atmosphere in the inert gas, nitrogen gas or reduced pressure, or near the roll surface of the nozzle tip is controlled. In addition, a method of spraying CO 2 gas onto the roll, or manufacturing an alloy ribbon while burning CO gas near the roll surface near the nozzle.
In the case of the single roll method, the peripheral speed of the cooling roll is desirably in the range of about 15 m / s to 50 m / s, and the material of the cooling roll is pure copper, Cu—Be, Cu—Cr, Cu—Zr, Cu with good heat conduction. A copper alloy such as -Zr-Cr is suitable. When manufacturing in large quantities, when manufacturing a thin strip with a large plate thickness or a wide strip, it is preferable that the cooling roll has a water cooling structure.

熱処理は大気中、真空中、Ar、窒素ヘリウム等の不活性ガス中で行うことができるが、特に不活性ガス中で行うことが望ましい。熱処理により体心立方構造のFeを主体とする結晶粒の体積分率が増加し、飽和磁束密度が上昇する。また、熱処理により磁歪も低減する。本発明の軟磁性合金は、磁界中熱処理を行うことにより、誘導磁気異方性を付与することができる。磁界中熱処理は、熱処理期間の少なくとも一部の期間合金が飽和するのに十分な強さの磁界を印加して行う。合金磁心の形状にも依存するが、一般には薄帯の幅方向(環状磁心の場合:磁心の高さ方向)に印加する場合は8kAm−1以上の磁界を、長手方向(環状磁心の場合は磁路方向)に印加する場合は80Am−1以上の磁界を印加する。印加する磁界は、直流、交流、繰り返しのパルス磁界のいずれを用いても良い。磁界は200℃以上の温度領域で通常20分以上印加する。昇温中、一定温度に保持中および冷却中も印加した方が、良好な一軸の誘導磁気異方性が付与されるので、より望ましい直流あるいは交流ヒステリシスループ形状が実現される。磁界中熱処理の適用により高角形比あるいは低角形比の直流ヒステリシスループを示す合金が得られる。磁界中熱処理を適用しない場合、本発明の軟磁性薄帯は中程度の角形比の直流ヒステリシスループとなる。熱処理は、通常露点が−30℃以下の不活性ガス雰囲気中で行うことが望ましく、露点が−60℃以下の不活性ガス雰囲気中で熱処理を行うと、ばらつきが更に小さくより好ましい結果が得られる。熱処理の際、最高到達温度は結晶化温度からそれよりも70℃程度高い温度範囲が望ましい。 The heat treatment can be performed in the atmosphere, in a vacuum, or in an inert gas such as Ar or nitrogen helium, but it is particularly preferable to perform in an inert gas. By heat treatment, the volume fraction of crystal grains mainly composed of Fe having a body-centered cubic structure is increased, and the saturation magnetic flux density is increased. Moreover, magnetostriction is also reduced by the heat treatment. The soft magnetic alloy of the present invention can be provided with induced magnetic anisotropy by performing a heat treatment in a magnetic field. The heat treatment in a magnetic field is performed by applying a magnetic field having a strength sufficient to saturate the alloy for at least a part of the heat treatment period. Although it depends on the shape of the alloy magnetic core, generally, a magnetic field of 8 kAm −1 or more is applied when applied in the width direction of the ribbon (in the case of an annular magnetic core: the height direction of the magnetic core), and in the longitudinal direction (in the case of an annular magnetic core). When applying in the magnetic path direction), a magnetic field of 80 Am −1 or more is applied. As the magnetic field to be applied, any of direct current, alternating current, and repetitive pulse magnetic field may be used. A magnetic field is usually applied for 20 minutes or more in a temperature range of 200 ° C. or more. A better uniaxial induction magnetic anisotropy is imparted when the temperature is increased, maintained at a constant temperature and during cooling, so that a more desirable DC or AC hysteresis loop shape is realized. By applying heat treatment in a magnetic field, an alloy exhibiting a DC hysteresis loop with a high squareness ratio or a low squareness ratio can be obtained. When heat treatment in a magnetic field is not applied, the soft magnetic ribbon of the present invention becomes a direct current hysteresis loop having a medium squareness ratio. It is desirable to perform the heat treatment in an inert gas atmosphere having a dew point of −30 ° C. or lower. When the heat treatment is performed in an inert gas atmosphere having a dew point of −60 ° C. or lower, the variation is further reduced and a more preferable result is obtained. . In the heat treatment, it is desirable that the maximum temperature is about 70 ° C. higher than the crystallization temperature.

熱処理時の昇温速度を制御することにより、図7に示す結晶相A、アモルファス層B、粗大結晶粒層Cの層状構造の幅を変えることができ、目的にあったB−H曲線を得ることができる。例えば、昇温速度を100℃未満とした場合は、層状構造の範囲が広くなり、異相が増えるため、低保磁力での磁化過程と高保磁力での磁化過程に大きな差が生じ、低保磁力での角形性が良好になる。さらにこの特性を顕著に出すためには、300℃以上の平均昇温速度を80℃/min未満とすることが好ましい。   By controlling the heating rate during the heat treatment, the width of the layered structure of the crystal phase A, the amorphous layer B, and the coarse crystal grain layer C shown in FIG. 7 can be changed, and a BH curve suitable for the purpose is obtained. be able to. For example, when the rate of temperature rise is less than 100 ° C., the range of the layered structure becomes wider and the number of heterogeneous phases increases, resulting in a large difference between the magnetization process with low coercivity and the magnetization process with high coercivity. The squareness at is improved. Furthermore, in order to bring out this characteristic remarkably, it is preferable that the average temperature rising rate of 300 ° C. or higher is less than 80 ° C./min.

本発明の軟磁性微結晶合金は、必要に応じて、SiO、MgO、Al等の粉末あるいは膜で合金薄帯表面を被覆する、化成処理により表面処理し絶縁層を形成する、アノード酸化処理により表面に酸化物絶縁層を形成し、薄帯と薄帯の層間の絶縁を行う等の処理を行うことにより好ましい結果が得られる。これは特に層間を渡る高周波における渦電流の影響を低減し、高周波における磁心損失を改善する効果があるためである。この効果は表面状態が良好でかつ広幅の薄帯から構成された磁心に使用した場合に特に著しい。更に、本発明の軟磁性薄帯から磁心を作製する際に必要に応じて含浸やコーティング等を行うことも可能である。本発明の軟磁性薄帯は高周波の用途として特にパルス状電流が流れるような応用に最も性能を発揮するが、センサや低周波の磁性部品の用途にも使用可能である。特に、磁気飽和が問題となる用途に優れた特性を発揮でき、ハイパワーのパワーエレクトロニクスの用途に特に適する。
使用時に磁化する方向とほぼ垂直な方向に磁界を印加しながら熱処理した本発明の軟磁性薄帯は、従来の高飽和磁束密度の材料よりも低い磁心損失が得られる。
If necessary, the soft magnetic microcrystalline alloy of the present invention covers the surface of the alloy ribbon with a powder or film of SiO 2 , MgO, Al 2 O 3, etc., and is surface-treated by chemical conversion treatment to form an insulating layer. A preferable result can be obtained by forming an oxide insulating layer on the surface by an anodic oxidation treatment and performing an insulation treatment between the thin ribbon layers. This is particularly because the effect of eddy currents at high frequencies across the layers is reduced and magnetic core loss at high frequencies is improved. This effect is particularly remarkable when used in a magnetic core having a good surface state and a wide ribbon. Furthermore, impregnation and coating can be performed as necessary when producing a magnetic core from the soft magnetic ribbon of the present invention. The soft magnetic ribbon of the present invention is most effective for high-frequency applications, particularly in applications where a pulsed current flows, but can also be used for applications of sensors and low-frequency magnetic parts. In particular, it can exhibit excellent characteristics in applications where magnetic saturation is a problem, and is particularly suitable for applications in high-power power electronics.
The soft magnetic ribbon of the present invention, which is heat-treated while applying a magnetic field in a direction substantially perpendicular to the direction of magnetization during use, has a lower magnetic core loss than a conventional high saturation magnetic flux density material.

以下本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
液体急冷法で1300℃に加熱した合金溶湯を周速32m/sで回転する外径300mmのCu-Be合金単ロールに溶湯を噴出し、厚さ約20μmのFebalCu1.5Si4B14(原子%)の合金組成からなる薄帯を作製した。X線回折および透過電子顕微鏡(TEM)観察の結果、非晶質相中に微細結晶が体積分率で30%未満分散した組織であることが確認された。
この合金薄帯に熱処理を施した。熱処理のパターンは、300℃から最高温度までの平均昇温速度が100℃/min未満のものと、約200℃/minのものをそれぞれ行った。熱処理の保持温度は両方とも450℃で10分間とし、その後、放冷して本発明の軟磁性薄帯を得た。
図1は、熱処理時の300℃以上の平均昇温速度が100℃/min未満とした本発明の軟磁性薄帯(1−1)の透過型電子顕微鏡による薄帯表面近傍の組織写真である。図8にその模式図を示す。最表面から順に、ナノ結晶粒の結晶層A、アモルファス層B、母相組織Dの平均結晶粒径の約2倍に粗大化した結晶粒から成る粗大結晶粒層C、母相組織Dの構造から成る。母相組織Dは平均粒径が約25nmの微細結晶粒が80%以上存在していた。軟磁性薄帯(1−1)は熱処理の際に、300℃以上の平均昇温速度を100℃/min未満に制御することにより、表面近傍で粗大化した結晶粒の粗大結晶粒層Dが析出しやすくなる。また、図2には熱処理時の300℃以上の平均昇温速度が約200℃/minとした軟磁性薄帯(1−2)の試料の組織写真を示す。また、図9にその模式図を示す。この組織では最表面から順に、ナノ結晶粒の結晶層A、アモルファス相Bが見られ、次に粗大結晶粒層Cが僅かに見られる。さらにその内部側は母相組織Dが見られる。また、アモルファス層Bの領域も軟磁性薄帯(1−1)から比べると狭い。以上のように300℃以上の平均昇温速度を制御することにより表面近傍の層状構造を制御できる。
また、比較のために、液体急冷法で1300℃に加熱した合金溶湯を周速32m/sで回転する外径300mmのCu-Be合金単ロールに溶湯を噴出し、約20μmの組成式:FebalCu1.5Si4B14NbとFebalCu1.0BNb3.5である合金薄帯を作製した。これらの合金薄帯の表面を同様に観察したが、本願のようなアモルファス層は観察されず、図10に模式図を示すように、全体的にほぼ同じ大きさをもつナノ結晶合金であった。
Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
(Example 1)
The molten alloy heated to 1300 ° C. by the liquid quenching method was jetted onto a single roll of 300 mm outer diameter Cu—Be alloy rotating at a peripheral speed of 32 m / s, and about 20 μm thick Fe bal Cu 1.5 Si 4 B 14 ( A thin ribbon having an alloy composition of (at%) was prepared. As a result of X-ray diffraction and transmission electron microscope (TEM) observation, it was confirmed that the microstructure was a structure in which fine crystals were dispersed in an amorphous phase in a volume fraction of less than 30%.
This alloy ribbon was heat treated. As the heat treatment pattern, an average temperature rising rate from 300 ° C. to the maximum temperature was less than 100 ° C./min, and about 200 ° C./min, respectively. The holding temperature for both heat treatments was 450 ° C. for 10 minutes, and then allowed to cool to obtain the soft magnetic ribbon of the present invention.
FIG. 1 is a photograph of the structure of the soft ribbon (1-1) of the present invention in the vicinity of the surface of the ribbon obtained by a transmission electron microscope in which the average heating rate of 300 ° C. or higher during heat treatment was less than 100 ° C./min. . FIG. 8 shows a schematic diagram thereof. In order from the outermost surface, the structure of the coarse crystal grain layer C composed of crystal grains coarsened to about twice the average crystal grain size of the nanocrystal grain crystal layer A, amorphous layer B, and matrix phase structure D, and the matrix phase structure D Consists of. In the matrix structure D, 80% or more of fine crystal grains having an average grain size of about 25 nm were present. When the soft magnetic ribbon (1-1) is subjected to heat treatment, the average temperature rising rate of 300 ° C. or higher is controlled to be less than 100 ° C./min. Precipitates easily. Further, FIG. 2 shows a structure photograph of a sample of the soft magnetic ribbon (1-2) in which an average temperature rising rate of 300 ° C. or higher during heat treatment is about 200 ° C./min. Moreover, the schematic diagram is shown in FIG. In this structure, a crystal layer A of nanocrystal grains and an amorphous phase B are observed in order from the outermost surface, and then a coarse crystal grain layer C is slightly observed. Furthermore, the matrix structure D is seen on the inner side. The region of the amorphous layer B is also narrower than that of the soft magnetic ribbon (1-1). As described above, the layered structure in the vicinity of the surface can be controlled by controlling the average heating rate of 300 ° C. or higher.
For comparison, the molten alloy heated to 1300 ° C. by liquid quenching is jetted onto a single roll of 300 mm outer diameter Cu—Be alloy rotating at a peripheral speed of 32 m / s, and the composition formula of about 20 μm: Fe An alloy ribbon comprising bal Cu 1.5 Si 4 B 14 Nb 5 and Fe bal Cu 1.0 B 6 Nb 3.5 was prepared. Although the surfaces of these alloy ribbons were observed in the same manner, the amorphous layer as in the present application was not observed, and as shown in the schematic diagram of FIG. 10, the nanocrystalline alloy had almost the same size as a whole. .

(実施例2)
図3には本発明の軟磁性薄帯(1−1)について最大磁場Bmが80A/mのB-H曲線を示す。また、同一組成で300℃以上の平均昇温速度が200℃/minの軟磁性薄帯(1−2)のB−H曲線を点線で示す。これらの軟磁性薄帯は実施例1の図1、2に示した試料である。昇温速度の遅い軟磁性薄帯(1−1)のB-H曲線は、昇温速度の速い軟磁性薄帯(1−2)よりも角形性が良好であり、Br/B80は約94%と高い値となる。また、低い磁場で、大きな磁束密度が得られる。昇温速度の速い軟磁性薄帯(1−2)では、角形性を示すBr/B80は67%程度で、低磁場では飽和しにくいものである。図4には上記の2試料の、Bmを800A/mとした場合のB-H曲線を示す。B800は、約1.8Tと同程度であるが、1.5T以上のB-H曲線におけるヒステリシスで大きな違いが現れる。熱処理時の昇温速度の遅い軟磁性薄帯(1−1)では、1.5T以上の500A/mの磁場領域までヒステリシスが存在する。一方、昇温速度の速い軟磁性薄帯(1−2)では、この磁束密度の領域ではヒステリシスが減少している。一般的には、ヒステリシスは損失であり少ないことが望まれるが、使用する磁場および磁束密度の領域によっては、角形性が重要となる場合がある。図3、4の比較から1.5T以上の領域でヒステリシスが発生することとマイナーループの角形性の間には密接な関係があることがわかる。以上のように、300℃度以上の平均昇温速度を制御することで、B−H曲線の形状を制御することが可能となる。
(Example 2)
Shows the B-H curve of the maximum magnetic field B m is 80A / m for the soft magnetic ribbon (1-1) of the present invention in FIG. A BH curve of the soft magnetic ribbon (1-2) having the same composition and an average temperature rising rate of 300 ° C. or higher of 200 ° C./min is shown by a dotted line. These soft magnetic ribbons are the samples shown in FIGS. The BH curve of the soft magnetic ribbon (1-1) with a slow rate of temperature rise has better squareness than the soft magnetic ribbon (1-2) with a fast rate of temperature rise, and B r / B 80 is The value is as high as about 94%. Moreover, a large magnetic flux density can be obtained with a low magnetic field. In the soft magnetic ribbon (1-2) having a high rate of temperature increase, the B r / B 80 exhibiting the squareness is about 67%, and is difficult to be saturated in a low magnetic field. FIG. 4 shows BH curves of the above two samples when B m is 800 A / m. B800 is about 1.8T, but a large difference appears in the hysteresis in the BH curve of 1.5T or more. In the soft magnetic ribbon (1-1) having a slow temperature rise rate during the heat treatment, hysteresis exists up to a magnetic field region of 500 A / m of 1.5 T or more. On the other hand, in the soft magnetic ribbon (1-2) having a high temperature rising rate, the hysteresis is reduced in the magnetic flux density region. In general, hysteresis is a loss and it is desirable that hysteresis be small, but squareness may be important depending on the magnetic field and magnetic flux density regions used. 3 and 4, it can be seen that there is a close relationship between the occurrence of hysteresis in the region of 1.5 T or more and the squareness of the minor loop. As described above, the shape of the BH curve can be controlled by controlling the average temperature rising rate of 300 ° C. or higher.

(実施例3)
液体急冷法で厚さ約18μmのFebalCu1.35Si2B14合金薄帯を作製した。合金薄帯の製造条件は実施例1と同様であり、得られた合金薄帯は非晶質相中に微細結晶が体積分率で30%未満分散した組織であることが確認された。この合金薄帯に300℃での昇温速度が100℃/minより小さくなるように熱処理を施したところ、実施例1の軟磁性薄帯(1−1)と同様の組織を持つ軟磁性薄帯(2−1)が得られた。図5にこの軟磁性薄帯(2−1)のB−H曲線を示す。図3の軟磁性薄帯(1−1)と同様なB−H曲線となり、B80=1.7Tと大きなBが得られ、角形性も、Br/B80=94%と高い値を得た。
(Example 3)
A Fe bal Cu 1.35 Si 2 B 14 alloy ribbon having a thickness of about 18 μm was prepared by a liquid quenching method. The production conditions of the alloy ribbon were the same as in Example 1. It was confirmed that the obtained alloy ribbon had a structure in which fine crystals were dispersed in an amorphous phase in a volume fraction of less than 30%. When this alloy ribbon was heat-treated so that the rate of temperature increase at 300 ° C. was less than 100 ° C./min, a soft magnetic ribbon having the same structure as the soft magnetic ribbon (1-1) of Example 1 was obtained. Band (2-1) was obtained. FIG. 5 shows a BH curve of the soft magnetic ribbon (2-1). A BH curve similar to that of the soft magnetic ribbon (1-1) in FIG. 3 is obtained, a large B of B 80 = 1.7T is obtained, and the squareness is also a high value of B r / B 80 = 94%. Obtained.

(実施例4)
実施例3と同様にして、表1に示す合金組成(原子%で表す。以下の表も同様)の軟磁性薄帯を製造した。この軟磁性薄帯の角形比Br/B8000、Br/B80を示す。表1に示すように、本発明の軟磁性薄帯はアモルファス層が形成されている。また、熱処理の昇温速度を遅くしたNo.4-1〜4-12はBr/B80が90%以上の高い値を示し、角形性が良好であることがわかる。また、Br/B8000とBr/B80に5〜20%程度の開きがあり、マイナーループを描いている場合と、フルループを描く場合で角形性に違いが現れる。組織制御により、薄帯表面近傍に母相の平均結晶粒の約2倍の大きさの粗大結晶粒から成る層を析出させた場合には、B−Hループの形状が変わり、角形性が良くなる。表1に示すように、組成が同じ場合でも粗大結晶粒層の有無によって、角形性に大きな違いが現れる。このような現象を用いて、磁場領域の違いを利用したスイッチング素子として有望となる。
Example 4
In the same manner as in Example 3, soft magnetic ribbons having the alloy composition shown in Table 1 (expressed in atomic%, the same applies to the following tables) were produced. The square ratios B r / B 8000 and B r / B 80 of this soft magnetic ribbon are shown. As shown in Table 1, the soft magnetic ribbon of the present invention has an amorphous layer. Also, Nanba4-1~4-12 that slow heating rate of the heat treatment B r / B 80 is a high value of 90% or more, it can be seen that squareness is good. Further, there is an opening of about 5 to 20% between B r / B 8000 and B r / B 80 , and a difference appears in the squareness between when a minor loop is drawn and when a full loop is drawn. When a layer composed of coarse crystal grains approximately twice as large as the average grain size of the parent phase is deposited near the surface of the ribbon by structural control, the shape of the BH loop changes and the squareness is good. Become. As shown in Table 1, even when the composition is the same, a large difference appears in the squareness depending on the presence or absence of the coarse crystal grain layer. By using such a phenomenon, it is promising as a switching element utilizing the difference in the magnetic field region.

(実施例5)
液体急冷法で厚さ約18〜20μmのFebalCu1.5Si4B14合金薄帯(表1:4-1)、およびFebalCu1.35Si2B14合金薄帯(表1:4-2)を作製した。合金薄帯の製造条件は実施例1と同様であり、得られた合金薄帯は非晶質相中に微細結晶が体積分率で30%未満分散した組織であることが確認された。この合金薄帯に300℃以上の平均昇温速度が100℃/minより小さくなるように熱処理を施したところ、実施例1の軟磁性薄帯(1−1)と同様の組織を持つ軟磁性薄帯が得られた。300℃以上の平均昇温速度が小さい場合、粗大結晶粒層の平均粒径は大きくなる傾向にある。
図6には本発明の軟磁性薄帯(表1:4−1、4−2)における皮相電力の磁場依存性P15/50、P15.5/50を示す。また、300℃以上の平均昇温速度が200℃/minの場合の同組成の軟磁性薄帯(表1:4−13)のデータも記載する。また、比較のために、方向性ケイ素鋼板およびFe系アモルファス材のデータも共に示す。
また、表2には、50Hzで1.5Tおよび1.55Tにおける鉄損P15/50,P15.5/50と皮相電力S15/50,S15.5/50を示す。低磁場においては、Fe系アモルファス材よりも皮相電力が大きいが、約1.5T以上1.7T未満の領域でFe系アモルファス材、ケイ素鋼板のいずれに対しても皮相電力が低くなる。特に本発明の軟磁性薄帯(4−2)ではP16/50=0.35、P16.5/50=0.41、S16/50=0.42、S16.5/50=0.53と1.6〜1.7Tの領域で、最も低い鉄損および皮相電力となる。また、粗大結晶粒層が存在する軟磁性薄帯4−1と、同組成で粗大結晶粒層が無い軟磁性薄帯4−13を比べると、粗大結晶粒層が存在する軟磁性薄帯4−1の方が、1.4〜1.6T近辺で皮相電力が低くなる。本発明薄帯はFe系アモルファス材よりも飽和磁束密度が約15%高く、飽和磁束密度が1.8T以上である。また、飽和性がケイ素鋼板よりも良好であるため、ケイ素鋼板よりも優れた皮相電力特性を示す領域が1.4T≦Bに存在し、軟磁性体として有望である。
(Example 5)
Fe bal Cu 1.5 Si 4 B 14 alloy ribbon (Table 1: 4-1) and Fe bal Cu 1.35 Si 2 B 14 alloy ribbon (Table 1: 4-2) about 18-20 μm thick by liquid quenching method ) Was produced. The production conditions of the alloy ribbon were the same as in Example 1. It was confirmed that the obtained alloy ribbon had a structure in which fine crystals were dispersed in an amorphous phase in a volume fraction of less than 30%. When this alloy ribbon was heat-treated so that the average temperature rising rate of 300 ° C. or higher was less than 100 ° C./min, a soft magnetic film having the same structure as the soft magnetic ribbon (1-1) of Example 1 was obtained. A ribbon was obtained. When the average heating rate of 300 ° C. or higher is small, the average grain size of the coarse crystal grain layer tends to increase.
FIG. 6 shows the magnetic field dependence P 15/50 and P 15.5 / 50 of the apparent power in the soft magnetic ribbons (Tables 1: 4-1, 4-2) of the present invention. In addition, data of a soft magnetic ribbon (Table 1: 4-13) having the same composition when the average heating rate of 300 ° C. or higher is 200 ° C./min is also described. For comparison, data on grain-oriented silicon steel sheets and Fe-based amorphous materials are also shown.
Table 2 shows iron losses P 15/50 and P 15.5 / 50 and apparent powers S 15/50 and S 15.5 / 50 at 1.5 T and 1.55 T at 50 Hz. In a low magnetic field, the apparent power is larger than that of the Fe-based amorphous material, but the apparent power is lower than that of both the Fe-based amorphous material and the silicon steel plate in the region of about 1.5 T or more and less than 1.7 T. Especially in the soft magnetic ribbon (4-2) of the present invention, P 16/50 = 0.35, P 16.5 / 50 = 0.41, S 16/50 = 0.42, S 16.5 / 50 = 0.53 and 1.6 to 1.7 T, The lowest iron loss and apparent power. Further, when the soft magnetic ribbon 4-1 having the coarse crystal grain layer is compared with the soft magnetic ribbon 4-13 having the same composition and no coarse crystal grain layer, the soft magnetic ribbon 4 having the coarse crystal grain layer is compared. In the case of -1, the apparent power is lower in the vicinity of 1.4 to 1.6T. The thin ribbon of the present invention has a saturation magnetic flux density of about 15% higher than that of the Fe-based amorphous material, and the saturation magnetic flux density is 1.8 T or more. Further, since the saturation is better than that of the silicon steel plate, a region having an apparent power characteristic superior to that of the silicon steel plate exists in 1.4T ≦ B, which is promising as a soft magnetic material.

表3−1、表3−2は様々な組成に対する。磁束密度および角形比Br/B80の熱処理温度と昇温速度依存性を示す。薄帯の幅は約5mm、厚さは約21μmである。下表の組成はいずれも角形比Br/B80が90%以上である。 Tables 3-1 and 3-2 show various compositions. The dependence of the magnetic flux density and the squareness ratio B r / B 80 on the heat treatment temperature and the heating rate is shown. The ribbon has a width of about 5 mm and a thickness of about 21 μm. In all the compositions in the table below, the squareness ratio B r / B 80 is 90% or more.

この高飽和磁束密度低損失の軟磁性薄帯から磁性部品を構成することにより、アノードリアクトルなどの大電流用の各種リアクトル、アクティブフィルタ用チョ−クコイル、平滑チョークコイル、各種トランス、磁気シールド、電磁シールド材料などのノイズ対策部品、レーザ電源、加速器用パルスパワー磁性部品、モータ、発電機等に好適な高性能あるいは小型の磁性部品を実現することができる。   By constructing magnetic parts from this high saturation magnetic flux density and low loss soft magnetic ribbon, various reactors for large currents such as anode reactors, choke coils for active filters, smooth choke coils, various transformers, magnetic shields, electromagnetic High-performance or small-sized magnetic parts suitable for noise countermeasure parts such as shielding materials, laser power supplies, pulse power magnetic parts for accelerators, motors, generators, and the like can be realized.

1:軟磁性薄帯、2:薄帯の表面
1: Soft magnetic ribbon, 2: Surface of ribbon

Claims (6)

組成式:Fe100-x-yAX(但し、AはCuあるいはCu及びAuであり、XはB、Si、C、P、Al、Ge、Gaから選ばれた少なくとも一種の元素でBとSiを必須に含み、原子%で、1<x≦3、10≦y≦24)により表され、薄帯の内部に平均結晶粒径が60nm以下(0を含まず)の結晶粒が非晶質相中に体積分率で30%以上分散した母相組織と、前記薄帯の最表面に結晶組織からなる結晶層と、この結晶層の内部側にはアモルファス層が形成されてなり、さらに前記アモルファス層と母相組織との間に、母相組織の平均粒径に対して1.5倍以上の結晶粒を有する粗大結晶粒層を有し、磁場80A/mにおける磁束密度B80と、磁場印加後の残留磁束密度Brの比、Br/B80が、90%以上であることを特徴とする軟磁性薄帯。 Composition formula: Fe 100-xy A x X y (where A is Cu or Cu and Au , and X is at least one element selected from B, Si, C, P, Al, Ge, and Ga) B and Si are essential, expressed in terms of atomic%, 1 <x ≦ 3 , 10 ≦ y ≦ 24), and crystal grains having an average crystal grain size of 60 nm or less (not including 0) are contained inside the ribbon. A parent phase structure in which a volume fraction of 30% or more is dispersed in the amorphous phase, a crystal layer composed of a crystal structure on the outermost surface of the ribbon, and an amorphous layer is formed inside the crystal layer. And a coarse crystal grain layer having a crystal grain of 1.5 times or more with respect to the average grain size of the matrix structure between the amorphous layer and the matrix structure, and a magnetic flux density B at a magnetic field of 80 A / m. A soft magnetic ribbon characterized by having a ratio of 80 to a residual magnetic flux density Br after application of a magnetic field, Br / B 80 of 90% or more. 請求項1に記載の軟磁性薄帯を用いた磁心。 A magnetic core using the soft magnetic ribbon according to claim 1. 請求項1に記載の軟磁性薄帯、または請求項2に記載の磁心を用いた磁性部品。 A magnetic component using the soft magnetic ribbon according to claim 1 or the magnetic core according to claim 2. 組成式:Fe100-x-yAX(但し、AはCuあるいはCu及びAuであり、XはB、Si、C、P、Al、Ge、Gaから選ばれた少なくとも一種の元素でBとSiを必須に含み、原子%で、1<x≦3、10≦y≦24)により表される合金溶湯を急冷することにより、平均粒径30nm以下(0を含まず)の結晶粒が非晶質相中に体積分率で0%超30%未満で分散した母相組織からなるFe基合金の軟磁性薄帯を作製する工程と、前記軟磁性薄帯に熱処理を行い平均粒径60nm以下の体心立方構造の結晶粒が非晶質相中に体積分率で30%以上分散した母相組織と、薄帯の最表面に結晶組織からなる結晶層と、この結晶層の内部側にはアモルファス層が形成されてなり、前記アモルファス層と母相組織との間に、母相組織の平均粒径に対して1.5倍以上の結晶粒を有する粗大結晶粒層を有する組織となす熱処理工程を有し、前記熱処理は300℃以上からの平均昇温速度が100℃/min未満で450℃以下の保持温度まで昇温する工程を有することを特徴とする軟磁性薄帯の製造方法。 Composition formula: Fe 100-xy A x X y (where A is Cu or Cu and Au , and X is at least one element selected from B, Si, C, P, Al, Ge, and Ga) Crystal grains having an average grain size of 30 nm or less (not including 0) are obtained by quenching a molten alloy containing B and Si in an atomic percent and represented by 1 <x ≦ 3 , 10 ≦ y ≦ 24) Producing a soft magnetic ribbon of an Fe-based alloy having a matrix structure dispersed in an amorphous phase with a volume fraction of more than 0% and less than 30%, and subjecting the soft magnetic ribbon to a heat treatment to average grains A body phase structure in which grains of a body-centered cubic structure with a diameter of 60 nm or less are dispersed in an amorphous phase by a volume fraction of 30% or more, a crystal layer composed of a crystal structure on the outermost surface of the ribbon, the inner side becomes formed amorphous layer, between the amorphous layer and the matrix structure, has crystal grains of more than 1.5 times the average particle size of the matrix structure A heat treatment step for forming a structure having a large crystal grain layer, wherein the heat treatment includes a step of raising the average temperature increase rate from 300 ° C. or higher to a holding temperature of 450 ° C. or less at a temperature less than 100 ° C./min. A method for producing a soft magnetic ribbon. Bは10原子%〜20原子%、Siは0原子%超〜7原子%の範囲で含むことを特徴とする請求項4に記載の軟磁性薄帯の製造方法。 The method for producing a soft magnetic ribbon according to claim 4, wherein B is contained in a range of 10 atomic% to 20 atomic%, and Si is contained in a range of more than 0 atomic% to 7 atomic%. 前記保持温度が420〜450℃であることを特徴とする請求項4または5に記載の軟磁性薄帯の製造方法。 The method for producing a soft magnetic ribbon according to claim 4 or 5, wherein the holding temperature is 420 to 450 ° C.
JP2009209241A 2009-09-10 2009-09-10 Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon Active JP5445924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009209241A JP5445924B2 (en) 2009-09-10 2009-09-10 Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009209241A JP5445924B2 (en) 2009-09-10 2009-09-10 Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007074976A Division JP5445891B2 (en) 2007-03-22 2007-03-22 Soft magnetic ribbon, magnetic core, and magnetic parts

Publications (2)

Publication Number Publication Date
JP2009293132A JP2009293132A (en) 2009-12-17
JP5445924B2 true JP5445924B2 (en) 2014-03-19

Family

ID=41541567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009209241A Active JP5445924B2 (en) 2009-09-10 2009-09-10 Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon

Country Status (1)

Country Link
JP (1) JP5445924B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881437A (en) * 2011-07-12 2013-01-16 三信国际电器上海有限公司 Current transformer for detecting aftercurrent, and aftercurrent protection device
JP6554278B2 (en) * 2014-11-14 2019-07-31 株式会社リケン Soft magnetic alloys and magnetic parts
CN112695186B (en) * 2020-12-18 2023-02-17 浙江晶芯磁业有限公司 Heat treatment method of low-coercivity miniature soft magnetic ring

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3594123B2 (en) * 1999-04-15 2004-11-24 日立金属株式会社 Alloy ribbon, member using the same, and method of manufacturing the same
JP4771215B2 (en) * 2005-03-29 2011-09-14 日立金属株式会社 Magnetic core and applied products using it

Also Published As

Publication number Publication date
JP2009293132A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
KR101162080B1 (en) Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP5316921B2 (en) Fe-based soft magnetic alloy and magnetic component using the same
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JP2008231533A5 (en)
JP6080094B2 (en) Winding core and magnetic component using the same
JP4547671B2 (en) High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same
JP2008231534A5 (en)
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JP4003166B2 (en) Co-based magnetic alloy and magnetic component using the same
JP2008150637A (en) Magnetic alloy, amorphous alloy ribbon and magnetic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131212

R150 Certificate of patent or registration of utility model

Ref document number: 5445924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350