JP3719449B2 - Nanocrystalline alloy, method for producing the same, and magnetic core using the same - Google Patents

Nanocrystalline alloy, method for producing the same, and magnetic core using the same Download PDF

Info

Publication number
JP3719449B2
JP3719449B2 JP07705594A JP7705594A JP3719449B2 JP 3719449 B2 JP3719449 B2 JP 3719449B2 JP 07705594 A JP07705594 A JP 07705594A JP 7705594 A JP7705594 A JP 7705594A JP 3719449 B2 JP3719449 B2 JP 3719449B2
Authority
JP
Japan
Prior art keywords
alloy
element selected
temperature
less
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07705594A
Other languages
Japanese (ja)
Other versions
JPH07278764A (en
Inventor
克仁 吉沢
嘉雄 備前
晋 中島
俊介 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP07705594A priority Critical patent/JP3719449B2/en
Publication of JPH07278764A publication Critical patent/JPH07278764A/en
Application granted granted Critical
Publication of JP3719449B2 publication Critical patent/JP3719449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、トランス、チョ−クコイル等の各種磁性部品に用いられる低角形比で特に高い透磁率を示すナノ結晶合金、およびその製造方法ならびにナノ結晶合金からなる磁心に関する。
【0002】
【従来の技術】
ナノ結晶合金は優れた軟磁気特性を示すため、コモンモ−ドチョ−クコイル、高周波トランス、漏電警報器、パルストランス等の磁心に使用されている。代表的組成系としては特公平4−4393号公報に記載されるFe-Cu-Nb-Si-B系や特開平1−242755号公報に記載されるFe-Cu-Nb-B系のナノ結晶合金が知られている。これらのナノ結晶合金は、通常、液相や気相から急冷し非晶質合金とした後、これを熱処理により微結晶化することにより作製されている。液相から急冷する方法としては単ロ−ル法、双ロ−ル法、遠心急冷法、回転液中紡糸法、アトマイズ法やキャビテーション法等が知られている。また、気相から急冷する方法としては、スパッタ法、蒸着法、イオンプレ−ティング法等が知られている。ナノ結晶合金はこれらの方法により作製した非晶質合金を微結晶化したもので、非晶質合金にみられるような熱的不安定性がほとんどなく、高飽和磁束密度、低磁歪で優れた軟磁気特性を示すことが知られている。更にナノ結晶合金は経時変化が小さく、温度特性にも優れていることが知られている。
【0003】
ところでノイズフィルタやパルストランス等に用いられる磁心材料としては、フェライトやアモルファス合金等の高周波特性に優れた高透磁率材料が使用される。また、特公平4−4393号公報には、Fe基の微結晶合金(ナノ結晶合金)が高透磁率低磁心損失特性を示し、これらの用途に適していることが開示されている。
【0004】
ノイズフィルタ(ラインフィルタ)に用いられるコモンモ−ドチョ−ク用磁心材料としては高透磁率特性を示すだけでなく雷や大型のインバ−タ装置等から発生する高電圧パルス状ノイズによる機器の誤動作を防止するために、パルス減衰特性に優れるものが要求されている。このような要求に対して、従来のフェライト材料では飽和磁束密度が低く磁気的に飽和しやすいため小型磁心では十分な性能が得られない問題がある。したがって、従来のフェライト材料を用い十分な性能を得るためには磁心を大型にする必要があった。
また、Fe基アモルファス合金は飽和磁束密度が高く、高電圧パルス性ノイズに対してはフェライトよりも優れた減衰特性を示すが、透磁率がCo基アモルファス合金より低く、低電圧レベルのノイズに対する減衰量が十分でない欠点がある。また、磁歪が著しく大きいために周波数によっては磁歪振動による共振が生じ特性が変化する問題や、可聴周波数成分がある電流がコイルに流れる場合には磁心にうなりが生ずる問題がある。
一方、Co基アモルファス合金は高透磁率であるため、低電圧レベルのノイズに対する減衰量が大きく優れているが、飽和磁束密度が1T以下と低くFe基アモルファス合金に比べて高電圧パルスに対する減衰特性が劣っている。また、高透磁率のCo基アモルファス合金は経時変化が特に大きく、周囲温度が高い環境では特性劣化が大きく信頼性の点でも問題がある。
【0005】
また、ISDN(統合サービス・デジタル網)インタ−フェイス用パルストランスに使用される磁心材料としては高透磁率で温度特性に優れていることが要求される。ISDNインタ−フェイス用パルストランスに用いる場合には特に20kHz付近の透磁率が高いことが重要である。また、使用目的によっては、角形比が低くフラットなB-Hル−プを示すものが必要とされる。しかし、従来の熱処理を行い製造したナノ結晶合金は特開平1−247557号公報に記載されているように角形比が30%よりも低いと比初透磁率は70000未満のものしか得られず、角形比が30%以下で比初透磁率が70000以上のものは実現が困難であった。
しかし、ISDNインタ−フェイス用パルストランスは近年カード型インタ−フェイスへの使用が要求されるようになり小型化薄型化が要求されるようになってきており、20kHzで20mH以上のインダクタンスの規格をこのような小型薄型の形状で満足するためには更に透磁率の高い材料が必要になってきている。また、波形を忠実に伝送するためには、角形比が低くB-Hル−プがフラットな恒透磁率性に優れた材料が望ましい。しかし、フェライトやFe基アモルファス合金では透磁率が低くこのような要求に答えるのは困難である。また、フェライトは温度特性が劣っており、特に室温以下で透磁率が急激に低下するという問題もある。Co基のアモルファス合金は透磁率が高いものが得易いが、周囲温度が高い場合には経時変化が大きく、しかも価格が高い問題があり、汎用として用いるのには限界がある。
【0006】
また、漏電警報器をはじめとする電流センサ、磁気センサ等においても小型高感度および線形な出力を実現する観点から低角形比でB−Hル−プがフラットな形で恒透磁率性に優れかつ透磁率が高い材料が必要となっている。
【0007】
【発明が解決しようとする課題】
ノイズフィルタに用いられるコモンモ−ドチョ−ク用磁心やISDNインタ−フェイス用パルストランス等では、角形比が低く高い比初透磁率を示す材料および磁心が要求されているが、これは角形比が低いと動作磁束密度を大きくでき、かつ比初透磁率が大きいと高性能な磁心が実現でき磁心を小型化したり巻線数を減らすことが可能となるためである。更に、ISDNインターフェース用パルストランス等では恒透磁率性が良好で波形伝送をより忠実に行うことが可能となる。従来の方法で熱処理し製造したナノ結晶合金では角形比と初透磁率の両立が難しく、初透磁率が70000以上の場合は角形比は30%を超えており、角形比が30%以下の場合は初透磁率が70000未満であり、角形比が低く更に透磁率の高いナノ結晶合金が望まれている。
【0008】
したがって、本発明の目的は角形比が低く比初透磁率の高いナノ結晶合金を提供することである。
【0009】
【課題を解決するための手段】
上記問題点を解決するために本発明者ら鋭意検討の結果、一般式:(Fe1-aMa100-x-y-z-b-c-dAxM'yM''zXbSicBd(原子%)(式中MはCo,Niから選ばれた少なくとも1種の元素を、AはCu,Auから選ばれた少なくとも1種の元素、M'はTi,V,Zr,Nb,Mo,Hf,TaおよびWから選ばれた少なくとも1種の元素、M''はCr,Mn,Sn,Zn,Ag,In,白金属元素,Mg,NおよびSから選ばれた少なくとも1種の元素、XはC,Ge,Ga,AlおよびPから選ばれた少なくとも1種の元素を示し、a,x,y,z,b,cおよびdはそれぞれ0≦a≦0.1、0.1≦x≦3、1≦y≦10、0≦z≦10、0≦b≦10、11≦c≦17、3≦d≦10を満たす数である。)で表され、平均結晶粒径が30nm以下である結晶粒が組織の少なくとも一部を占めるナノ結晶合金をある範囲の条件で熱処理を行うことにより、比初透磁率が70000以上、角形比が30%以下である特性を示すことを見い出し本発明に想到した。
【0010】
前述の結晶は主にSiを含むbccFe相であり、規則格子を含む場合もある。また、Si以外の元素たとえばB,Al,Ge,Zr等を固溶している場合もある。前記結晶相以外の残部は主にアモルファス相であるが、実質的に結晶相だけからなる合金も本発明に含まれる。角形比は800A・m-1の磁界を印加した場合の磁束密度をB800、残留磁束密度をBrとするとBr・B800 -1(%)で表されるものである。比初透磁率は直流B-Hル−プの初磁化曲線から求められるものであるが、周波数が高くなるに伴い比初透磁率(実効比透磁率)は一定もしくは低下して行く。このため、たとえば、50Hzから1kHz程度の周波数での比初透磁率μir(実効比透磁率μe)が70000を越えていれば本発明には当然のことながら含まれる。このときの測定励磁レベルは通常0.05A・m-1以下である。
【0011】
本発明合金は、前記組成のアモルファス合金を単ロ−ル法等の超急冷法により作製後、これを磁心の形状に加工し、ある条件範囲内で熱処理を行い平均粒径30nm以下の微結晶を形成することにより作製する。
【0012】
前記組成のアモルファス合金を、熱処理期間の少なくとも一部の期間に磁場を印加する期間および熱処理冷却期間を有する熱処理により微結晶化するナノ結晶合金の製造方法であって、該磁場を印加する時間が 30 秒以上 30 分以下であり、この時間において、前記合金中に結晶が部分的あるいは全部形成し、かつアモルファス合金の結晶化温度以上、かつアモルファス合金の表面温度を結晶化温度+ 100 ℃以下で0分以上30分以下一定温度に保持し、熱処理冷却期間において平均冷却速度10℃/min以上で400℃まで冷却することにより比初透磁率が70000以上、角形比が30%以下であるナノ結晶合金を製造することができる。本発明に係る組成をはずれた合金ではこのような熱処理を行っても比初透磁率が70000以上、角形比が30%以下であるナノ結晶合金を製造することが困難である。さらに、本発明合金は、磁心損失が低いという特徴や温度特性が良好であるという特徴を合わせ持っており、高周波トランス等の用途に使用できるのはもちろんである。また、高透磁率の特性を生かし漏電警報器に用いる電流センサにも適している。
【0013】
本発明ナノ結晶合金の薄帯から構成された磁心は従来よりも小型あるいは巻線が少ない高性能のチョ−クコイルやトランスが実現可能である。
【0014】
400℃以上の温度で磁場を印加する時間を30秒以上30分以内、結晶化温度以上で一定温度に保持する期間が存在しない、あるいは一定温度に保持する時間が30分以内とすることにより比初透磁率が70000以上、角形比が30%以下であるナノ結晶合金を製造することができより好ましい結果が得られる。
【0015】
400℃以上の温度で磁場を印加する時間を30秒以上20分以内とすることにより比初透磁率が100000以上、角形比が30%以下であるナノ結晶合金を製造することができる。300℃未満の温度では磁場を印加しても誘導磁気異方性がつきにくく比較的長時間磁場を印加しても300℃未満の温度では特性に大きな影響を与えない。
磁場を印加する時間を5分以上とすることにより角形比を20%以下とすることが可能であり、低角形比をより重視する用途に適する合金および磁心が得られる。
【0016】
磁場を印加する方向は合金薄帯の幅方向あるいは厚さ方向から多少ずれていても良いが特に合金薄帯の幅方向あるいは厚さ方向である場合に低角形比で高い透磁率が得易い。磁心の場合は磁心の高さ方向あるいは径方向に相当する。
【0017】
合金が板厚15μm以下の薄帯である場合は特に透磁率や磁心損失の周波数特性に優れた特性が実現できる。この場合、特にコモンモ−ドチョ−ク等ノイズフィルタ用のコアや高周波トランス用コア等に好適である。
印加する磁場の強さは形状にもよるが通常は80kA・m-1以上である。磁場は合金が飽和する程度印加する必要がある。印加磁場は大きい程合金の飽和が確実となり好ましいが、合金が完全に飽和する磁界であればそれ以上強い磁界を印加する必要はない。
【0018】
平均結晶粒径が30nm以下である結晶粒が組織の少なくとも一部を占めるナノ結晶合金磁心をアモルファス合金の結晶化を目的とする熱処理により製造する工程において、前記合金磁心表面温度Taを結晶化温度Tx+100℃以下に保つことにより大型磁心でも優れた軟磁気特性が得られ、多量の磁心を熱処理しても特性ばらつきが小さく、量産性に優れ、優れた軟磁気特性のナノ結晶合金磁心を製造することが可能である。合金表面温度を管理しない熱処理ではこのように大型の形状の磁心では、保磁力の増大、初透磁率の減少、磁心損失の増加を招き小形状の磁心に比べて著しい軟磁気特性の劣化が起こり、本来の優れた軟磁気特性を実現できない。
【0019】
この熱処理方法は特に磁心の重量が50g以上である場合に効果が著しい。特に磁心の重量が1kg以上では著しい効果がある。
【0020】
本発明により得られる合金は、超微細な結晶粒組織とするため、結晶化熱処理する際に発熱が起こり磁心の温度が上昇することが判明した。通常のアモルファス合金では熱処理を行うが結晶化させないためにこのような磁心の温度上昇は起こらず大型磁心で特に著しい特性劣化は起こらなかった。しかし、ナノ結晶合金では被熱処理合金磁心の温度は、形状や一度に熱処理する磁心の数、配置にもよるが熱処理のために保持される雰囲気温度よりも高くなる場合があり、これが磁気特性のばらつきの原因になっていることが分った。本発明者等が検討したところ熱処理中の試料の表面温度Taを結晶化温度Tx+100℃以下にコントロ−ルすることにより、磁気特性のばらつきを本発明の低角形比高透磁率材料でなくすことができることが分った。ここで、結晶化温度Txは10℃/minの昇温速度で示差走査熱量計(DSC)で測定した結晶化により発熱ピ−クが生ずる温度である。その1例を図1に示す。
【0021】
ここで、TaをTx+100℃以下と規定したのは、合金磁心表面がTx+100℃を超える温度となった場合、急激に磁気特性の劣化、特に初透磁率の低下や磁心損失の増加が起こるためである。この理由は磁気異方性の大きいFe2B、Fe3B等のFe-B化合物が形成するためである。
【0022】
磁心の結晶化の際の発熱による温度上昇を制御する方法としては種々の方法が考えられる。たとえば、アモルファス合金を熱処理により微結晶化するナノ結晶合金磁心の製造方法において結晶化温度での炉の昇温速度が5℃/min以下となるように昇温し、少なくとも50%以上が結晶となった温度から冷却する方法がある。この方法により、大型形状の磁心でも低角形比で高い透磁率を得ることが可能となる。
【0023】
また、炉の設定温度と合金表面温度との温度差を50℃以内となるように制御することにより、合金の温度を低く抑え容易にナノ結晶合金磁心の磁気特性の劣化を防ぐことができる。本発明において、Taを監視する方法として、磁心表面に直接熱電対を接触させて設置する方法が挙げられる。
【0024】
炉内の雰囲気ガスを強制的に移動させることは、磁心表面からの結晶化による発生する熱の放熱が良くなるため、磁心温度上昇を低く抑えることができるため、より好ましい結果を得ることができる。このような効果はアモルファス合金を熱処理により結晶化させて製造されるナノ結晶合金磁心において起こる特有の現象である。
炉外から炉内に雰囲気ガスを導入するとともに他の場所から炉内のガスを排出し、炉内の雰囲気ガスを強制的に移動させることも同様な効果を得ることができる。
【0025】
炉内の雰囲気ガスをファン等で強制的に攪拌させ移動させることも磁心表面からの放熱を良くすることができるため同様な効果を得ることができる。
雰囲気ガスは窒素、アルゴン、ヘリウム、水素から選ばれた少なくとも1種のガスが特に軟磁気特性の劣化が小さく望ましい。必要に応じて大気中で熱処理しても良い。
ナノ結晶合金表面温度と炉の設定温度の差が50℃以下になるように雰囲気ガスの炉内移動量を調整する機構を設けることにより、形状が大きくなった場合にも容易に対応可能となる。特にナノ結晶合金表面温度と炉の設定温度の差が10℃以下である場合は特性の劣化および特性のばらつきが非常に小さく非常に好ましい結果が得られる。
【0026】
ナノ結晶合金磁心の間に隙間をあけて熱処理することにより各磁心の放熱が良くなり各磁心から結晶化により発生する熱による磁心の温度上昇を低く抑えることが可能となる。隙間は磁心1個ずつあけた場合に最も良い効果が得られるがスペ−スを取るため生産性を重視する場合は何個かおきに設けても良い。
アモルファス合金を熱処理により微結晶化するナノ結晶合金磁心の製造方法において結晶化温度に相当する温度での昇温速度を5℃/min以下となるように昇温し、少なくとも50%以上が結晶となった温度から冷却することにより、大型磁心においても優れた軟磁気特性が得られる。より好ましくは2℃/min以下である。この場合は特に大きな形状の磁心に対しても軟磁気特性の劣下を抑えることができる。
【0027】
本発明合金および磁心は必要に応じてSiO2、MgO、Al2O3等の粉末あるいは膜で合金薄帯表面を覆ったり、化成処理により表面を処理し層間絶縁が行われる場合がある。これは特に高周波における渦電流の影響を低減し、透磁率や磁心損失を改善する効果がある。この効果は表面状態の良好でかつ広幅の薄帯から構成された磁心の場合に著しい。
【0028】
【実施例】
以下本発明を実施例にしたがって説明するが本発明はこれらに限定されるものではない。
(実施例1)
原子%でCu 1%, Nb 3.2%, Si 15.6%, B 6.4%残部実質的にFeからなる合金溶湯を単ロ−ル法により急冷し、幅6.5mm厚さ18μmのアモルファス合金を得た。このアモルファス合金を外径20mm、内径10mmに巻回し、トロイダル磁心を作製した。この合金の結晶化温度Txを測定したところ506℃であった。
作製した磁心をアルゴン雰囲気、450℃に保った熱処理炉に挿入し、図2に示す熱処理パタ−ンで保持時間taを換え熱処理を行った。磁場は温度を保持しているtaの時間だけ印加した。磁場印加方向は薄帯の幅方向すなわち磁心の高さ方向とし、280kA・m-1の磁場を印加した。
【0029】
比較のために原子%でCu 1%, Nb 3.2%, Si 10.5at%, B 9at%の組成の本発明外の組成の合金Bについても同様の熱処理パタ−ンで熱処理を行った。熱処理前の合金の結晶化温度Txは452℃であった。得られた磁気特性を表1に示す。
【表1】

Figure 0003719449
表から分るように本発明に係わる合金Aではtaが10秒以上30分以内、冷却速度s2が10℃/min以上で角形比Br・B800 -1が30%以下で比初透磁率μirが70000以上の特性が得られる。taが30minを越えると比初透磁率が70000未満となり、s2が10℃/min未満でも比初透磁率が70000未満となる。図1にta=15min,s2=20℃/minで熱処理した際の直流B-Hル−プの例を示す。低角形比でフラットな形状のB-Hル−プであり、高透磁率でありながら恒透磁率性にも優れている。飽和磁束密度も1Tをはるかに越えており動作磁束密度を大きくできる。
【0030】
taが30秒以上20min以内で比初透磁率μirが100000以上、角形比Br・B800 -1が30%以下であるナノ結晶合金を製造することができる。taを5分以上とすることにより角形比を20%以下とすることが可能である。
一方、本発明にかかる組成外の合金では、本発明熱処理を行った場合角形比を低くする効果はあるが本発明ナノ結晶合金のような低角形比で70000を越える高い比初透磁率は得られない。
【0031】
(実施例2)
原子%でCu 1%, Nb 3%, Si 13.5%, B 9%残部実質的にFeからなる合金溶湯を単ロ−ル法により急冷し、幅5mmで厚さの異なるアモルファス合金を得た。次にこのアモルファス合金薄帯表面をSiO2により被覆した。このアモルファス合金薄帯を外径19mm、内径15mmに巻回し、トロイダル磁心を作製した。この合金の結晶化温度Txを測定したところ520℃であった。
【0032】
次にこの合金を実施例1と同様な熱処理パタ−ンで熱処理した。この際taは15分、s2は40℃/minとした。得られた直流磁気特性を表2に示す。次にこれらの合金磁心の実効比透磁率μeの周波数依存性を図4に示す。板厚が薄くなるほど高周波におけるμeが改善され周波数特性が改善されているのが分かる。特に板厚が15μm以下では100kHzにおける実効比透磁率が20000以上となり優れた高周波特性を示す。このように板厚が15μm以下の場合低周波から高周波まで優れた特性を示し、特に高周波の応用にも適する特性を示す。
【表2】
Figure 0003719449
【0033】
(実施例3)
表3に示す組成の合金溶湯単ロ−ル法により急冷し、幅12.5mm厚さ18μmのアモルファス合金薄帯を得た。次にこの合金薄帯を外径20mm内径14mmに巻回し、トロイダル巻磁心を作製した。次に図5に示す熱処理パタ−ンで熱処理を行った。熱処理後の合金の角形比Br・B800 -1および比初透磁率μirを測定した。測定した結果を表3に示す。
【表3】
Figure 0003719449
【0034】
本発明合金の組成範囲において、角形比30%以下、比初透磁率70000以上が得られる。この理由は本発明範囲外では磁場中熱処理により大きな異方性がつくことや磁歪が大きくなることが関連していると思われる。本発明の熱処理と組み合わせることにより初めてこのような低角形比で高い比初透磁率が実現されたものと考えられる。
【0035】
(実施例4)
原子%でCu 1%, Nb 3%, Si 14%, B 7.5%残部実質的にFeからなる合金溶湯を単ロ−ル法により急冷し、幅25.4mm厚さ18μmのアモルファス合金薄帯を得た。このアモルファス合金を外径100mm、内径80mmに巻回し、トロイダル磁心を作製した。
次に図6に示す熱処理パタ−ンで結晶化温度に相当する温度での炉の昇温速度s1を変えて熱処理を行った。磁気特性を測定したところ比初透磁率μirが98000、角形比Br・B800 -1が8%が得られた。炉の昇温速度が5℃/min以下となるように昇温し、少なくとも50%以上が結晶となった温度から冷却する方法を行うことにより大型形状の磁心でも低角形比で高い比初透磁率を得ることができた。一方、s1が5℃/minを越えると比初透磁率μirが70000未満に低下してしまった。
【0036】
比較のため幅5mm厚さ18μmのアモルファス合金薄帯を作製し、外径19mm、内径15mmのトロイダル磁心を作製し、図6の熱処理パタ−ンで熱処理した。小型形状の磁心ではs1が20℃/minの条件でもμirは101000であり比初透磁率の劣下は認められなかった。昇温速度を5℃/min以下にすることは大型の磁心に特に有効であることが分かった。また、外径19mm、内径15mmのトロイダル磁心でも多数まとめて熱処理した場合には、s1が5℃/minを越える場合に中央部で透磁率の劣下が見られ70000を切る値となることが分かった。多量に処理する場合は昇温速度を遅くし、磁心温度の上昇を低く抑えることが有効であることが分った。
【0037】
(実施例5)
原子%でCu 1%, Nb 2.5%, Ta 0.5%, Si 15%, B 7.2%残部実質的にFeからなる合金溶湯を単ロ−ル法により急冷し、幅25mm厚さ18μmのアモルファス合金薄帯を得た。この合金の結晶化温度は505℃であった。このアモルファス合金を外径300mm、内径200mmに巻回し、トロイダル磁心を作製した。
【0038】
次に結晶化温度にほぼ相当する500℃で15min保持後550℃まで昇温する図7に示す熱処理パタ−ンで熱処理を行った。磁心表面に熱電対を接触させて温度を測定した所、温度上昇が見られ結晶化により発熱していることが確認された。大型形状の磁心でも低角形比で高い比初透磁率を得ることが可能となった。一方、550℃に保持した炉に直接磁心を挿入した場合は比初透磁率が低下してしまった。表面温度を測定したところ最高到達温度は600℃を越えており比較のため幅5mm厚さ18μmのアモルファス合金薄帯を作製し、外径19mm、内径15mmのトロイダル磁心を作製し、図7の熱処理パタ−ンで熱処理した。小型の磁心ではほとんど比初透磁率の劣下は認められず、大型の磁心でこの熱処理方法が有効であることが分った。また、外径19mm、内径15mmのトロイダル磁心でも多数まとめて熱処理した場合には、小型形状の磁心でも配置した磁心の中央部の磁心で比初透磁率の低下が見られ、多量に処理する場合の本熱処理の有効性が確認された。
【0039】
(実施例6)
原子%でCu 1%, Nb 2.5%, Cr 0.5%, Si 13.8%, B 7.5%残部実質的にFeからなる合金溶湯を単ロ−ル法により急冷し、幅10mm厚さ18μmのアモルファス合金薄帯を得た。この合金の結晶化温度は490℃であった。このアモルファス合金を外径30mm、内径20mmに巻回し、トロイダル磁心を作製した。
【0040】
次に図8(a)(b)(c)(d)に示す熱処理パタ−ンで熱処理を行った。そろぞれの熱処理パタ−ンで行った場合の合金Cの角形比、比初透磁率を表4に示す。比較のため本発明合金の範囲外の組成の合金(原子%でCu 1%, Nb 2.5%, Si 10%, B 11%)(合金D)の磁気特性も示す。
本発明合金の組成では本熱処理が有効であり、低角形比で高い透磁率が実現されるが、本発明合金の組成範囲外では70000を越える比初透磁率が得られない。
【表4】
Figure 0003719449
【0041】
(実施例7)
原子%でCu 1%, Nb 2.5%, Cr 0.3%, Ta 0.2%, Si 15.8%, B 7%残部実質的にFeからなる合金溶湯を単ロ−ル法により急冷し、幅2mm厚さ12μmのアモルファス合金薄帯を得た。この合金の結晶化温度は503℃であった。このアモルファス合金を外径8mm、内径5mmに巻回し、トロイダル磁心を作製した。
【0042】
次に図9に示す熱処理パタ−ンで熱処理を行った。角形比Br・B800 -1、比初透磁率μirおよび20kHzにおける実効比透磁率μeを表5に示す。次にこの磁心に巻線を施しISDN用磁心を作製した。この磁心に47ターンの巻線を施しISDN用のパルストランスを作製した。20kHzにおける室温でのインダクタンスは31.1mHであった。実際に使用したところ良好な波形伝送特性を示し十分使用可能であることが分かった。また、-50℃から120℃までインダクタンスを測定した結果、インダクタンスの変化率は5%未満であり良好な温度特性を示した。一方、フェライトで同形状、同巻数のISDN用パルストランスを作製したところ室温におけるインダクタンスは4.7mHであり、仕様を満足できなかった。また、-50℃から120℃までインダクタンスを測定した結果、インダクタンスの変化は70%と著しく大きく温度特性が悪かった。
【表5】
Figure 0003719449
【0043】
(実施例8)
原子%でCu 1%, Nb 3%, Sn 0.05%, Si 15.5%, B 6.3%残部実質的にFeからなる合金溶湯を単ロ−ル法により急冷し、幅2mm厚さ12μmのアモルファス合金薄帯を得た。この合金の結晶化温度は502℃であった。このアモルファス合金を外径8mm、内径5mmに巻回し、薄型のトロイダル磁心を作製した。
【0044】
次に実施例7と同様な熱処理パタ−ンで熱処理を行った。800A・m-1における磁束密度B800、角形比Br・B800 -1、比初透磁率μirおよび1kHzにおける実効比透磁率μeを表6に示す。次にこの磁心に巻線を施しコモンモ−ドチョ−ク用磁心を作製した。この磁心に23ターンの巻線を2巻線施しコモンモ−ドチョ−クを作製した。インダクタンスは10.0mHであった。実際に使用したところ特に500kHz以下の周波数において減衰量が5dB以上大きくフェライトよりも優れたノイズ減衰特性を示した。また、パルス減衰特性を測定したところフェライトを使用した場合よりも約2倍の電圧でも出力電圧が上昇せず優れたパルス減衰特性を示すことが分かった。
【表6】
Figure 0003719449
【0045】
(実施例9)
表7に示す組成の合金溶湯単ロ−ル法により急冷し、幅12.5mm厚さ18μmのアモルファス合金薄帯を得た。次にこの合金薄帯を外径20mm内径14mmに巻回し、トロイダル巻磁心を作製した。次に図10に示す熱処理パタ−ンで熱処理を行った。熱処理後の合金の角形比Br・B800 -1、比初透磁率μirおよび100kHz, 0.2Tにおける磁心損失Pcを測定した。測定した結果を表7に示す。
【表7】
Figure 0003719449
【0046】
本発明合金の組成範囲において、角形比30%以下、比初透磁率70000以上が得られる。この理由は本発明範囲外では磁場中熱処理により大きな異方性がつくことや磁歪が大きくなることが関連していると思われる。本発明の熱処理からはずれる冷却速度s2で冷却した場合は高い透磁率は得られず本発明の熱処理と組み合わせることにより初めてこのような低角形比で高い比初透磁率が実現された。また、磁心損失Pcも300kW・m-3以下と低く、磁心損失が低いことも重要である各種トランスやチョ−クコイル等の用途にも適する。
【0047】
【発明の効果】
本発明によれば、角形比が低く比初透磁率の高い従来にない高性能のナノ結晶合金、およびそれを用いた磁心を提供すること、およびその製造方法を提供することができるためその効果は著しいものがある。
【図面の簡単な説明】
【図1】結晶化温度を説明するための示差走査熱量計で測定したDSC曲線である。
【図2】本発明に係わる熱処理パタ−ンを示した図である。
【図3】本発明合金の直流B-Hル−プの一例を示した図である。
【図4】本発明合金磁心の実効比透磁率μeの周波数依存性を示した図である。
【図5】本発明に係わる熱処理パタ−ンを示した図である。
【図6】本発明に係わる熱処理パタ−ンを示した図である。
【図7】本発明に係わる熱処理パタ−ンを示した図である。
【図8】本発明に係わる熱処理パタ−ンを示した図である。
【図9】本発明に係わる熱処理パタ−ンを示した図である。
【図10】本発明に係わる熱処理パタ−ンを示した図である。[0001]
[Industrial application fields]
The present invention relates to a nanocrystalline alloy having a low squareness ratio and a particularly high magnetic permeability used for various magnetic parts such as transformers and choke coils, a manufacturing method thereof, and a magnetic core made of the nanocrystalline alloy.
[0002]
[Prior art]
Since nanocrystalline alloys exhibit excellent soft magnetic properties, they are used in magnetic cores such as common mode choke coils, high frequency transformers, leakage alarms, and pulse transformers. Typical composition systems include Fe-Cu-Nb-Si-B system described in JP-B-4-4393 and Fe-Cu-Nb-B system nanocrystal described in JP-A-1-242755. Alloys are known. These nanocrystalline alloys are usually produced by quenching from a liquid phase or gas phase to form an amorphous alloy and then microcrystallizing it by heat treatment. As a method of quenching from the liquid phase, a single roll method, a twin roll method, a centrifugal quench method, a spinning in spinning solution, an atomizing method, a cavitation method, and the like are known. Further, as a method of quenching from the gas phase, a sputtering method, a vapor deposition method, an ion plating method and the like are known. Nanocrystalline alloys are microcrystallized amorphous alloys produced by these methods, have almost no thermal instability as found in amorphous alloys, and have excellent softness with high saturation magnetic flux density and low magnetostriction. It is known to exhibit magnetic properties. Furthermore, nanocrystalline alloys are known to have little change over time and excellent temperature characteristics.
[0003]
By the way, as a magnetic core material used for a noise filter, a pulse transformer, or the like, a high magnetic permeability material having excellent high frequency characteristics such as a ferrite or an amorphous alloy is used. Japanese Examined Patent Publication No. 4-4393 discloses that an Fe-based microcrystalline alloy (nanocrystalline alloy) exhibits high magnetic permeability and low core loss characteristics and is suitable for these applications.
[0004]
As a core material for common mode chokes used for noise filters (line filters), not only exhibits high permeability characteristics, but also malfunctions of equipment due to high voltage pulse noise generated from lightning or large inverter devices. In order to prevent this, a device having excellent pulse attenuation characteristics is required. In response to such a demand, the conventional ferrite material has a problem in that sufficient performance cannot be obtained with a small magnetic core because the saturation magnetic flux density is low and the magnetic material is easily saturated. Therefore, in order to obtain sufficient performance using a conventional ferrite material, it is necessary to enlarge the magnetic core.
Fe-based amorphous alloys have a high saturation magnetic flux density and exhibit better damping characteristics than ferrite for high-voltage pulse noise, but have lower permeability than Co-based amorphous alloys and attenuate low-voltage level noise. There is a disadvantage that the amount is not enough. In addition, since the magnetostriction is remarkably large, there is a problem that resonance occurs due to magnetostriction vibration depending on the frequency and the characteristics change, and when a current having an audible frequency component flows through the coil, there is a problem that the magnetic core is beaten.
On the other hand, because Co-based amorphous alloys have high permeability, the attenuation against low-voltage level noise is large and excellent, but the saturation magnetic flux density is as low as 1T or less, and the attenuation characteristics against high-voltage pulses compared to Fe-based amorphous alloys Is inferior. In addition, a Co-based amorphous alloy having a high magnetic permeability has a particularly large change with time, and there is a problem in terms of reliability due to a large characteristic deterioration in an environment where the ambient temperature is high.
[0005]
Further, a magnetic core material used for a pulse transformer for ISDN (Integrated Services Digital Network) interface is required to have high magnetic permeability and excellent temperature characteristics. When used for a pulse transformer for an ISDN interface, it is important that the magnetic permeability around 20 kHz is particularly high. Depending on the purpose of use, it is necessary to have a flat B-H loop with a low squareness ratio. However, the nanocrystalline alloy produced by performing the conventional heat treatment can obtain only a specific permeability less than 70000 when the squareness ratio is lower than 30% as described in JP-A-1-247557, When the squareness ratio is 30% or less and the relative initial permeability is 70000 or more, it is difficult to realize.
However, in recent years, pulse transformers for ISDN interfaces have been required to be used for card-type interfaces, and miniaturization and thinning have been required. In order to satisfy such a small and thin shape, a material having a higher magnetic permeability is required. Further, in order to faithfully transmit the waveform, a material having a low squareness ratio and a flat BH loop and excellent constant magnetic permeability is desirable. However, ferrite and Fe-based amorphous alloys have a low magnetic permeability and it is difficult to meet such requirements. In addition, ferrite has poor temperature characteristics, and there is also a problem that the magnetic permeability rapidly decreases particularly at room temperature or lower. Co-based amorphous alloys with high magnetic permeability are easy to obtain, but when the ambient temperature is high, there is a problem that the change with time is large and the price is high, and there is a limit to use as a general purpose.
[0006]
In addition, current sensors such as earth leakage alarms, magnetic sensors, etc. have excellent constant magnetic permeability with a low squareness ratio and a flat BH loop from the viewpoint of realizing high sensitivity and linear output. In addition, a material having high magnetic permeability is required.
[0007]
[Problems to be solved by the invention]
Common mode choke magnetic cores and ISDN interface pulse transformers used for noise filters require materials and magnetic cores that have a low squareness ratio and a high relative initial permeability, but this has a low squareness ratio. This is because if the operating magnetic flux density can be increased and the relative initial permeability is large, a high-performance magnetic core can be realized, and the magnetic core can be downsized and the number of windings can be reduced. Furthermore, in ISDN interface pulse transformers and the like, the constant magnetic permeability is good and waveform transmission can be performed more faithfully. In the nanocrystalline alloy manufactured by heat treatment by the conventional method, it is difficult to achieve both the squareness ratio and the initial permeability. When the initial permeability is 70000 or more, the squareness ratio exceeds 30%, and the squareness ratio is 30% or less. Is desired to be a nanocrystalline alloy having an initial permeability of less than 70000, a low squareness ratio and a high permeability.
[0008]
Accordingly, an object of the present invention is to provide a nanocrystalline alloy having a low squareness ratio and a high relative initial permeability.
[0009]
[Means for Solving the Problems]
  As a result of intensive studies by the present inventors in order to solve the above problems, the general formula: (Fe1-aMa)100-xyzbcdAxM 'yM ''zXbSicBd(Atom%) (wherein M is at least one element selected from Co and Ni, A is at least one element selected from Cu and Au, and M ′ is Ti, V, Zr, Nb, Mo) At least one element selected from H, Hf, Ta and W, M '' is at least one element selected from Cr, Mn, Sn, Zn, Ag, In, white metal elements, Mg, N and S , X represents at least one element selected from C, Ge, Ga, Al and P, and a, x, y, z, b, c and d are 0 ≦ a ≦ 0.1 and 0.1 ≦ x ≦ 3, respectively. 1 ≦ y ≦ 10, 0 ≦ z ≦ 10, 0 ≦ b ≦ 10, 11 ≦ c ≦ 17, and 3 ≦ d ≦ 10)), and the average crystal grain size is 30 nm or less In the present invention, it has been found that by performing a heat treatment on a nanocrystalline alloy in which crystal grains occupy at least a part of the structure under a certain range of conditions, a specific initial permeability is 70000 or more and a squareness ratio is 30% or less. I came up with it.
[0010]
The aforementioned crystal is a bccFe phase mainly containing Si, and may contain a regular lattice. In addition, elements other than Si, such as B, Al, Ge, Zr, etc. may be dissolved. The balance other than the crystalline phase is mainly an amorphous phase, but an alloy consisting essentially of the crystalline phase is also included in the present invention. Squareness ratio is 800A ・ m-1The magnetic flux density when B magnetic field is applied is B800, Residual magnetic flux density BrThen Br・ B800 -1(%). The relative initial permeability is obtained from the initial magnetization curve of the direct current B-H loop, but the relative initial permeability (effective relative permeability) becomes constant or decreases as the frequency increases. For this reason, for example, the relative initial permeability μ at a frequency of about 50 Hz to 1 kHz.ir(Effective relative permeability μe) Exceeds 70000, it is naturally included in the present invention. The measurement excitation level at this time is usually 0.05Am-1It is as follows.
[0011]
The alloy of the present invention is an amorphous alloy having the above-mentioned composition prepared by a rapid quenching method such as a single roll method, then processed into a magnetic core shape, and subjected to heat treatment within a certain range of conditions, thereby producing fine crystals having an average particle size of 30 nm or less. It is produced by forming.
[0012]
  A method for producing a nanocrystalline alloy, wherein an amorphous alloy having the above composition is microcrystallized by a heat treatment having a magnetic field application period and a heat treatment cooling period during at least a part of the heat treatment period, wherein the magnetic field is applied.The time 30 More than seconds 30 Less than a minute and this timeIn the alloy, crystals are partially or entirely formed in the alloy, and the temperature is equal to or higher than the crystallization temperature of the amorphous alloy.And the surface temperature of the amorphous alloy is the crystallization temperature + 100 ℃ or lessIs maintained at a constant temperature for 0 to 30 minutes and cooled to 400 ° C. at an average cooling rate of 10 ° C./min or more during the heat treatment cooling period, so that the relative initial permeability is 70000 or more and the squareness ratio is 30% or less. Crystal alloys can be produced. With an alloy having a composition different from that of the present invention, it is difficult to produce a nanocrystalline alloy having a relative initial permeability of 70000 or more and a squareness ratio of 30% or less even when such a heat treatment is performed. Furthermore, the alloy of the present invention has a feature of low magnetic core loss and a good temperature characteristic, and it can be used for applications such as a high-frequency transformer. Moreover, it is suitable for a current sensor used for a leakage alarm using the characteristics of high permeability.
[0013]
The magnetic core composed of the ribbon of the nanocrystalline alloy of the present invention can realize a high-performance choke coil or transformer having a smaller size and fewer windings than conventional ones.
[0014]
Compared by applying a magnetic field at a temperature of 400 ° C or higher for 30 seconds or more and 30 minutes or less, a period for maintaining a constant temperature above the crystallization temperature, or for a period of 30 minutes or less. A nanocrystalline alloy having an initial permeability of 70000 or more and a squareness ratio of 30% or less can be produced, and a more preferable result is obtained.
[0015]
By setting the magnetic field application time at a temperature of 400 ° C. or higher to 30 seconds or longer and 20 minutes or less, a nanocrystalline alloy having a relative initial permeability of 100,000 or more and a squareness ratio of 30% or less can be produced. Even if a magnetic field is applied at a temperature below 300 ° C., induced magnetic anisotropy is difficult to occur, and even if a magnetic field is applied for a relatively long time, the characteristics are not greatly affected at a temperature below 300 ° C.
By setting the magnetic field application time to 5 minutes or more, the squareness ratio can be reduced to 20% or less, and an alloy and a magnetic core suitable for applications in which the low squareness ratio is more important can be obtained.
[0016]
The direction in which the magnetic field is applied may be slightly deviated from the width direction or thickness direction of the alloy ribbon, but high permeability is easily obtained with a low squareness ratio, particularly when the direction is the width direction or thickness direction of the alloy ribbon. In the case of a magnetic core, it corresponds to the height direction or radial direction of the magnetic core.
[0017]
When the alloy is a thin ribbon having a thickness of 15 μm or less, it is possible to realize characteristics excellent in the frequency characteristics of magnetic permeability and core loss. In this case, it is particularly suitable for a noise filter core such as a common mode choke or a high-frequency transformer core.
The strength of the applied magnetic field depends on the shape, but is usually 80 kA ・ m-1That's it. The magnetic field must be applied to such an extent that the alloy is saturated. The larger the applied magnetic field, the better the saturation of the alloy, which is preferable, but it is not necessary to apply a stronger magnetic field as long as the alloy is completely saturated.
[0018]
In the step of producing a nanocrystalline alloy magnetic core in which crystal grains having an average crystal grain size of 30 nm or less occupy at least a part of the structure by heat treatment for crystallization of the amorphous alloy, the alloy magnetic core surface temperature TaThe crystallization temperature TxBy maintaining below + 100 ° C, excellent soft magnetic characteristics can be obtained even with large magnetic cores, and even if a large number of magnetic cores are heat-treated, there is little variation in characteristics, mass production is excellent, and nanocrystalline alloy cores with excellent soft magnetic characteristics are manufactured. It is possible. In heat treatment that does not control the alloy surface temperature, the magnetic core with a large shape in this way causes an increase in coercive force, a decrease in initial permeability, and an increase in core loss. The original excellent soft magnetic properties cannot be realized.
[0019]
This heat treatment method is particularly effective when the weight of the magnetic core is 50 g or more. In particular, when the weight of the magnetic core is 1 kg or more, the effect is remarkable.
[0020]
Since the alloy obtained by the present invention has an ultrafine crystal grain structure, it has been found that heat generation occurs during the crystallization heat treatment and the temperature of the magnetic core increases. A normal amorphous alloy is heat-treated but is not crystallized, so such a temperature rise of the magnetic core does not occur, and no significant characteristic deterioration occurs in a large-sized magnetic core. However, in a nanocrystalline alloy, the temperature of the heat-treated alloy magnetic core may be higher than the ambient temperature maintained for the heat treatment depending on the shape, the number of magnetic cores to be heat-treated at one time, and the arrangement. It was found that this was the cause of variation. As a result of studies by the present inventors, the surface temperature T of the sample during the heat treatmentaThe crystallization temperature TxIt has been found that by controlling the temperature to + 100 ° C. or less, it is possible to eliminate variations in magnetic properties with the low squareness ratio high permeability material of the present invention. Where crystallization temperature TxIs a temperature at which an exothermic peak is generated by crystallization as measured by a differential scanning calorimeter (DSC) at a rate of temperature increase of 10 ° C./min. One example is shown in FIG.
[0021]
Where TaTx+ 100 ℃ or less is specified because the surface of the alloy core is TxThis is because when the temperature exceeds + 100 ° C., the magnetic characteristics are rapidly deteriorated, particularly the initial permeability is lowered and the core loss is increased. The reason for this is Fe with high magnetic anisotropy2B, FeThreeThis is because Fe—B compounds such as B are formed.
[0022]
  Various methods are conceivable as a method for controlling the temperature rise due to heat generation during the crystallization of the magnetic core. For example, in a method for producing a nanocrystalline alloy core that microcrystallizes an amorphous alloy by heat treatment, the temperature is raised so that the temperature rise rate of the furnace at the crystallization temperature is 5 ° C./min or less, and at least 50% or more of the crystal is There is a method of cooling from the temperature. This method makes it possible to obtain a high magnetic permeability with a low squareness ratio even with a large-sized magnetic core.
[0023]
  Further, by controlling the temperature difference between the set temperature of the furnace and the alloy surface temperature to be within 50 ° C., it is possible to easily suppress the deterioration of the magnetic properties of the nanocrystalline alloy core while keeping the temperature of the alloy low. In the present invention, TaAs a method for monitoring, there is a method in which a thermocouple is placed in direct contact with the surface of the magnetic core.
[0024]
Forcibly moving the atmospheric gas in the furnace improves heat dissipation due to crystallization from the surface of the magnetic core, so that the rise in the core temperature can be kept low, and a more preferable result can be obtained. . Such an effect is a peculiar phenomenon that occurs in a nanocrystalline alloy magnetic core manufactured by crystallizing an amorphous alloy by heat treatment.
A similar effect can be obtained by introducing atmospheric gas from the outside of the furnace into the furnace, exhausting the gas in the furnace from other places, and forcibly moving the atmospheric gas in the furnace.
[0025]
Forcibly stirring and moving the atmospheric gas in the furnace with a fan or the like can improve the heat radiation from the surface of the magnetic core, so that the same effect can be obtained.
As the atmospheric gas, at least one gas selected from nitrogen, argon, helium, and hydrogen is particularly desirable since the deterioration of soft magnetic properties is small. You may heat-process in air | atmosphere as needed.
By providing a mechanism that adjusts the amount of atmospheric gas moved in the furnace so that the difference between the nanocrystal alloy surface temperature and the furnace set temperature is 50 ° C or less, it is possible to easily cope with large shapes. . In particular, when the difference between the surface temperature of the nanocrystalline alloy and the set temperature of the furnace is 10 ° C. or less, the deterioration of characteristics and the dispersion of characteristics are very small, and very favorable results can be obtained.
[0026]
By heat-treating with a gap between the nanocrystalline alloy magnetic cores, the heat dissipation of each magnetic core is improved, and the temperature rise of the magnetic core due to the heat generated by crystallization from each magnetic core can be suppressed low. The best effect can be obtained when one magnetic core is opened. However, if space is taken, productivity may be emphasized every several.
In the method for producing a nanocrystalline alloy core that microcrystallizes an amorphous alloy by heat treatment, the temperature rise rate at a temperature corresponding to the crystallization temperature is raised to 5 ° C./min or less, and at least 50% or more of the crystal is By cooling from the above temperature, excellent soft magnetic characteristics can be obtained even in a large magnetic core. More preferably, it is 2 ° C./min or less. In this case, it is possible to suppress the deterioration of the soft magnetic characteristics even for a particularly large magnetic core.
[0027]
The alloy of the present invention and the magnetic core are made of SiO2, MgO, Al2OThreeIn some cases, the surface of the alloy ribbon is covered with a powder or film of the like, or the surface is treated by chemical conversion treatment to perform interlayer insulation. This has the effect of reducing the influence of eddy currents at high frequencies and improving the magnetic permeability and the core loss. This effect is remarkable in the case of a magnetic core composed of a thin ribbon having a good surface state and a wide width.
[0028]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
Example 1
A molten alloy consisting essentially of Cu 1%, Nb 3.2%, Si 15.6%, B 6.4% balance Fe in atomic% was quenched by a single roll method to obtain an amorphous alloy with a width of 6.5 mm and a thickness of 18 μm. This amorphous alloy was wound around an outer diameter of 20 mm and an inner diameter of 10 mm to produce a toroidal magnetic core. The crystallization temperature T of this alloyxWas measured to be 506 ° C.
The produced magnetic core was inserted into a heat treatment furnace maintained at 450 ° C. in an argon atmosphere, and the holding time t was kept with the heat treatment pattern shown in FIG.aAnd heat treatment was performed. Magnetic field keeps temperature taWas applied for a period of time. The direction of magnetic field application is the width direction of the ribbon, that is, the height direction of the magnetic core, and 280 kA ・ m-1The magnetic field was applied.
[0029]
For comparison, the alloy B having a composition of Cu 1%, Nb 3.2%, Si 10.5 at%, and B 9 at% in terms of atomic% was also heat-treated with the same heat treatment pattern. Crystallization temperature T of alloy before heat treatmentxWas 452 ° C. The obtained magnetic properties are shown in Table 1.
[Table 1]
Figure 0003719449
As can be seen from the table, the alloy A according to the present invention is t.a10 seconds or more and 30 minutes or less, cooling rate s2Square ratio B at 10 ℃ / min or morer・ B800 -1Is less than 30% relative initial permeability μirA characteristic of 70000 or more can be obtained. taExceeds 30 min, the relative initial permeability becomes less than 70000, and s2Is less than 10 000 / min, the relative initial permeability is less than 70000. T in FIG.a= 15min, s2An example of a direct current B-H loop when heat-treated at = 20 ° C / min is shown. It is a B-H loop that is flat with a low squareness ratio, and has high permeability and excellent constant permeability. The saturation magnetic flux density is well over 1T, and the operating magnetic flux density can be increased.
[0030]
taThe relative initial permeability μ within 30 seconds and 20 minutesirIs 100000 or more, squareness ratio Br・ B800 -1It is possible to produce a nanocrystalline alloy whose content is 30% or less. taBy making the value 5 minutes or longer, the squareness ratio can be made 20% or less.
On the other hand, an alloy having a composition outside the composition according to the present invention has an effect of lowering the squareness ratio when the heat treatment according to the present invention is performed, but a high specific initial permeability exceeding 70000 is obtained at a low squareness ratio like the nanocrystalline alloy of the present invention. I can't.
[0031]
(Example 2)
A molten alloy consisting essentially of Cu 1%, Nb 3%, Si 13.5%, B 9% balance Fe in atomic% was quenched by a single roll method to obtain amorphous alloys of 5mm width and different thickness. Next, the surface of this amorphous alloy ribbon is2Coated. This amorphous alloy ribbon was wound around an outer diameter of 19 mm and an inner diameter of 15 mm to produce a toroidal magnetic core. The crystallization temperature T of this alloyxIt was 520 degreeC when measured.
[0032]
Next, this alloy was heat-treated with the same heat treatment pattern as in Example 1. At this time taIs 15 minutes, s2Was 40 ° C / min. Table 2 shows the obtained DC magnetic characteristics. Next, the effective relative permeability μ of these alloy coreseThe frequency dependence of is shown in FIG. As the plate thickness decreases, μeIt can be seen that the frequency characteristics are improved. In particular, when the plate thickness is 15 μm or less, the effective relative permeability at 100 kHz is 20000 or more, and excellent high frequency characteristics are exhibited. Thus, when the plate thickness is 15 μm or less, it exhibits excellent characteristics from low frequency to high frequency, and particularly suitable for high frequency applications.
[Table 2]
Figure 0003719449
[0033]
(Example 3)
The alloy was melted rapidly by a single roll method having the composition shown in Table 3 to obtain an amorphous alloy ribbon having a width of 12.5 mm and a thickness of 18 μm. Next, this alloy ribbon was wound around an outer diameter of 20 mm and an inner diameter of 14 mm to produce a toroidal wound magnetic core. Next, heat treatment was performed with the heat treatment pattern shown in FIG. Square ratio B of heat-treated alloyr・ B800 -1And relative initial permeability μirWas measured. Table 3 shows the measurement results.
[Table 3]
Figure 0003719449
[0034]
In the composition range of the alloy of the present invention, a squareness ratio of 30% or less and a relative initial permeability of 70000 or more are obtained. This reason seems to be related to the fact that a large anisotropy or magnetostriction is increased by heat treatment in a magnetic field outside the scope of the present invention. Only in combination with the heat treatment of the present invention is it possible to realize a high specific initial permeability at such a low squareness ratio.
[0035]
Example 4
A molten alloy consisting essentially of Cu 1%, Nb 3%, Si 14%, B 7.5% balance Fe in atomic% is quenched by a single roll method to obtain an amorphous alloy ribbon with a width of 25.4mm and a thickness of 18μm. It was. The amorphous alloy was wound around an outer diameter of 100 mm and an inner diameter of 80 mm to produce a toroidal magnetic core.
Next, the heating rate s of the furnace at a temperature corresponding to the crystallization temperature in the heat treatment pattern shown in FIG.1The heat treatment was performed while changing When the magnetic properties were measured, the relative initial permeability μir98,000, squareness ratio BrB800 -18% was obtained. By heating the furnace so that the rate of temperature rise is 5 ° C / min or less, and cooling it from the temperature at which at least 50% of the crystal is crystallized, even a large-sized magnetic core has a low initial ratio and a high ratio of initial permeability. Magnetic susceptibility could be obtained. Meanwhile, s1When the temperature exceeds 5 ° C / min, the relative initial permeability μirHas fallen below 70000.
[0036]
For comparison, an amorphous alloy ribbon having a width of 5 mm and a thickness of 18 μm was produced, and a toroidal core having an outer diameter of 19 mm and an inner diameter of 15 mm was produced and heat-treated with the heat treatment pattern of FIG. For small cores1Is 20 μC / min.irWas 101000, and no deterioration of the relative initial permeability was observed. It was found that a heating rate of 5 ° C / min or less is particularly effective for large magnetic cores. If a large number of toroidal cores with an outer diameter of 19 mm and an inner diameter of 15 mm are heat treated together,1When the temperature exceeded 5 ° C / min, it was found that the permeability was inferior at the center and the value was less than 70000. It has been found that it is effective to slow the rate of temperature rise and to keep the rise in the core temperature low when processing in large quantities.
[0037]
(Example 5)
At 1%, Cu 1%, Nb 2.5%, Ta 0.5%, Si 15%, B 7.2% The remaining alloy, which consists essentially of Fe, is quenched by a single roll method to form an amorphous alloy thin film 25mm wide and 18μm thick. I got a belt. The crystallization temperature of this alloy was 505 ° C. This amorphous alloy was wound around an outer diameter of 300 mm and an inner diameter of 200 mm to produce a toroidal magnetic core.
[0038]
Next, heat treatment was performed with a heat treatment pattern shown in FIG. 7 in which the temperature was increased to 550 ° C. after being maintained at 500 ° C. for approximately 15 minutes at crystallization temperature. When the temperature was measured by bringing a thermocouple into contact with the surface of the magnetic core, it was confirmed that the temperature increased and heat was generated by crystallization. Even with a large-sized magnetic core, it is possible to obtain a high specific initial permeability with a low squareness ratio. On the other hand, when the magnetic core was directly inserted into the furnace maintained at 550 ° C., the relative initial permeability decreased. When the surface temperature was measured, the maximum temperature reached 600 ° C. For comparison, an amorphous alloy ribbon having a width of 5 mm and a thickness of 18 μm was prepared, and a toroidal magnetic core having an outer diameter of 19 mm and an inner diameter of 15 mm was prepared. Heat-treated with a pattern. It was found that this heat treatment method is effective for a large magnetic core, with almost no deterioration in specific initial permeability observed for a small magnetic core. In addition, when a large number of toroidal cores with an outer diameter of 19 mm and an inner diameter of 15 mm are heat treated together, the relative permeability at the center of the magnetic core disposed even in a small-sized magnetic core is reduced, resulting in a large amount of processing. The effectiveness of this heat treatment was confirmed.
[0039]
(Example 6)
At 1% of the alloy, Cu 1%, Nb 2.5%, Cr 0.5%, Si 13.8%, B 7.5% The remaining alloy, which is substantially Fe, is rapidly cooled by a single roll method to form a thin amorphous alloy with a width of 10mm and a thickness of 18μm. I got a belt. The crystallization temperature of this alloy was 490 ° C. This amorphous alloy was wound around an outer diameter of 30 mm and an inner diameter of 20 mm to produce a toroidal magnetic core.
[0040]
Next, heat treatment was performed using the heat treatment pattern shown in FIGS. 8 (a), (b), (c), and (d). Table 4 shows the squareness ratio and specific magnetic permeability of Alloy C when the heat treatment patterns are used. For comparison, the magnetic properties of an alloy (Cu 1% in atomic%, Nb 2.5%, Si 10%, B 11%) (Alloy D) are also shown for comparison.
This heat treatment is effective in the composition of the alloy of the present invention, and a high magnetic permeability is realized at a low squareness ratio. However, a relative initial permeability exceeding 70000 cannot be obtained outside the composition range of the alloy of the present invention.
[Table 4]
Figure 0003719449
[0041]
(Example 7)
At 1%, Cu 1%, Nb 2.5%, Cr 0.3%, Ta 0.2%, Si 15.8%, B 7% The remaining alloy, consisting essentially of Fe, is quenched by a single roll method, 2mm wide, 12μm thick An amorphous alloy ribbon was obtained. The crystallization temperature of this alloy was 503 ° C. This amorphous alloy was wound around an outer diameter of 8 mm and an inner diameter of 5 mm to produce a toroidal magnetic core.
[0042]
Next, heat treatment was performed with the heat treatment pattern shown in FIG. Squareness ratio Br・ B800 -1, Relative initial permeability μirAnd effective relative permeability μ at 20kHzeIs shown in Table 5. Next, winding was applied to this magnetic core to produce a magnetic core for ISDN. A 47-turn winding was applied to this magnetic core to produce a pulse transformer for ISDN. The inductance at room temperature at 20kHz was 31.1mH. In actual use, it showed good waveform transmission characteristics and was found to be sufficiently usable. As a result of measuring the inductance from -50 ° C to 120 ° C, the rate of change of inductance was less than 5%, indicating good temperature characteristics. On the other hand, when an ISDN pulse transformer with the same shape and number of turns was made of ferrite, the inductance at room temperature was 4.7 mH, and the specification could not be satisfied. As a result of measuring the inductance from -50 ° C to 120 ° C, the change in inductance was as large as 70% and the temperature characteristics were poor.
[Table 5]
Figure 0003719449
[0043]
(Example 8)
At 1%, Cu 1%, Nb 3%, Sn 0.05%, Si 15.5%, B 6.3% The alloy melt consisting essentially of Fe is rapidly cooled by a single roll method to form a thin amorphous alloy with a width of 2mm and a thickness of 12μm. I got a belt. The crystallization temperature of this alloy was 502 ° C. This amorphous alloy was wound around an outer diameter of 8 mm and an inner diameter of 5 mm to produce a thin toroidal magnetic core.
[0044]
Next, heat treatment was performed using the same heat treatment pattern as in Example 7. 800A ・ m-1Magnetic flux density at800, Squareness ratio Br・ B800 -1, Relative initial permeability μirAnd effective relative permeability μ at 1 kHzeIs shown in Table 6. Next, a winding was applied to the magnetic core to produce a common mode choke magnetic core. Two 23-turn windings were applied to this magnetic core to produce a common mode choke. The inductance was 10.0mH. When actually used, especially at frequencies below 500 kHz, the attenuation was greater than 5 dB and showed better noise attenuation characteristics than ferrite. In addition, when the pulse attenuation characteristics were measured, it was found that the output voltage did not increase even at a voltage about twice that when ferrite was used, and that excellent pulse attenuation characteristics were exhibited.
[Table 6]
Figure 0003719449
[0045]
Example 9
Quenching was performed by a single-roll method of molten alloy having the composition shown in Table 7 to obtain an amorphous alloy ribbon having a width of 12.5 mm and a thickness of 18 μm. Next, this alloy ribbon was wound around an outer diameter of 20 mm and an inner diameter of 14 mm to produce a toroidal wound magnetic core. Next, heat treatment was performed with the heat treatment pattern shown in FIG. Square ratio B of heat-treated alloyr・ B800 -1, Relative initial permeability μirAnd core loss P at 100kHz and 0.2TcWas measured. Table 7 shows the measurement results.
[Table 7]
Figure 0003719449
[0046]
In the composition range of the alloy of the present invention, a squareness ratio of 30% or less and a relative initial permeability of 70000 or more are obtained. This reason seems to be related to the fact that a large anisotropy and magnetostriction increase due to heat treatment in a magnetic field outside the scope of the present invention. Cooling rate s deviating from the heat treatment of the present invention2High magnetic permeability was not realized when cooled by the above method, and a high specific initial permeability was realized with such a low squareness ratio only when combined with the heat treatment of the present invention. Magnetic core loss Pc300kW ・ m-3It is also suitable for applications such as various transformers and choke coils, which are as low as below and low in core loss.
[0047]
【The invention's effect】
According to the present invention, it is possible to provide an unprecedented high-performance nanocrystalline alloy having a low squareness ratio and a high relative initial permeability, and a magnetic core using the same, and a method for producing the same. There is something remarkable.
[Brief description of the drawings]
FIG. 1 is a DSC curve measured with a differential scanning calorimeter for explaining a crystallization temperature.
FIG. 2 is a view showing a heat treatment pattern according to the present invention.
FIG. 3 is a diagram showing an example of a direct current B—H loop of an alloy of the present invention.
FIG. 4 shows effective relative permeability μ of the alloy core of the present invention.eIt is the figure which showed the frequency dependence.
FIG. 5 is a view showing a heat treatment pattern according to the present invention.
FIG. 6 is a view showing a heat treatment pattern according to the present invention.
FIG. 7 is a view showing a heat treatment pattern according to the present invention.
FIG. 8 is a view showing a heat treatment pattern according to the present invention.
FIG. 9 is a view showing a heat treatment pattern according to the present invention.
FIG. 10 is a view showing a heat treatment pattern according to the present invention.

Claims (10)

一般式:(Fe1-aMa100-x-y-z-b-c-dAxM'yM''zXbSicBd(原子%)(式中MはCo,Niから選ばれた少なくとも1種の元素を、AはCu,Auから選ばれた少なくとも1種の元素、M'はTi,V,Zr,Nb,Mo,Hf,TaおよびWから選ばれた少なくとも1種の元素、M''はCr,Mn,Sn,Zn,Ag,In,白金属元素,Mg,NおよびSから選ばれた少なくとも1種の元素、XはC,Ge,Ga,AlおよびPから選ばれた少なくとも1種の元素を示し、a,x,y,z,b,cおよびdはそれぞれ0≦a≦0.1、0.1≦x≦3、1≦y≦10、0≦z≦10、0≦b≦10、11≦c≦17、3≦d≦10を満たす数である。)で表され、平均結晶粒径が30nm以下である結晶粒が組織の少なくとも一部を占め、比初透磁率が70000以上、角形比が30%以下であることを特徴とするナノ結晶合金。General formula: (Fe 1-a M a ) 100-xyzbcd A x M ′ y M ″ z X b Si c B d (atomic%) (where M is at least one element selected from Co and Ni) A is at least one element selected from Cu and Au, M ′ is at least one element selected from Ti, V, Zr, Nb, Mo, Hf, Ta and W, and M ″ is Cr. , Mn, Sn, Zn, Ag, In, at least one element selected from white metal elements, Mg, N and S, X is at least one element selected from C, Ge, Ga, Al and P A, x, y, z, b, c and d are 0 ≦ a ≦ 0.1, 0.1 ≦ x ≦ 3, 1 ≦ y ≦ 10, 0 ≦ z ≦ 10, 0 ≦ b ≦ 10, 11 ≦, respectively. c ≦ 17 and 3 ≦ d ≦ 10)), the crystal grains having an average crystal grain size of 30 nm or less occupy at least a part of the structure, the relative initial permeability is 70000 or more, the square ratio Nanocrystalline alloy characterized in that the content is 30% or less. 比初透磁率が100000以上である請求項1に記載のナノ結晶合金。  The nanocrystalline alloy according to claim 1, wherein the relative initial permeability is 100,000 or more. 角形比が20%以下である請求項1または2に記載のナノ結晶合金。  The nanocrystalline alloy according to claim 1 or 2, wherein the squareness ratio is 20% or less. ナノ結晶合金が板厚15μm以下の薄帯であることを特徴とする請求項1ないし3のいずれかに記載のナノ結晶合金。  The nanocrystalline alloy according to any one of claims 1 to 3, wherein the nanocrystalline alloy is a ribbon having a thickness of 15 µm or less. 一般式:(Fe1-aMa100-x-y-z-b-c-dAxM'yM''zXbSicBd(原子%)(式中MはCo,Niから選ばれた少なくとも1種の元素を、AはCu,Auから選ばれた少なくとも1種の元素、M'はTi,V,Zr,Nb,Mo,Hf,TaおよびWから選ばれた少なくとも1種の元素、M''はCr,Mn,Sn,Zn,Ag,In,白金属元素,Mg,NおよびSから選ばれた少なくとも1種の元素、XはC,Ge,Ga,AlおよびPから選ばれた少なくとも1種の元素を示し、a,x,y,z,b,cおよびdはそれぞれ0≦a≦0.1、0.1≦x≦3、1≦y≦10、0≦z≦10、0≦b≦10、11≦c≦17、3≦d≦10を満たす数である。)で表され、平均結晶粒径が30nm以下である結晶粒が組織の少なくとも一部を占め、比初透磁率が70000以上、角形比が30%以下であるナノ結晶合金から構成されたことを特徴とする磁心。General formula: (Fe 1-a M a ) 100-xyzbcd A x M ′ y M ″ z X b Si c B d (atomic%) (where M is at least one element selected from Co and Ni) A is at least one element selected from Cu and Au, M ′ is at least one element selected from Ti, V, Zr, Nb, Mo, Hf, Ta and W, and M ″ is Cr. , Mn, Sn, Zn, Ag, In, at least one element selected from white metal elements, Mg, N and S, X is at least one element selected from C, Ge, Ga, Al and P A, x, y, z, b, c and d are 0 ≦ a ≦ 0.1, 0.1 ≦ x ≦ 3, 1 ≦ y ≦ 10, 0 ≦ z ≦ 10, 0 ≦ b ≦ 10, 11 ≦, respectively. c ≦ 17 and 3 ≦ d ≦ 10)), the crystal grains having an average crystal grain size of 30 nm or less occupy at least a part of the structure, the relative initial permeability is 70000 or more, the square ratio A magnetic core characterized in that the magnetic core is made of a nanocrystalline alloy whose content is 30% or less. 一般式:(Fe1-aMa100-x-y-z-b-c-dAxM'yM''zXbSicBd(原子%)(式中MはCo,Niから選ばれた少なくとも1種の元素を、AはCu,Auから選ばれた少なくとも1種の元素、M'はTi,V,Zr,Nb,Mo,Hf,TaおよびWから選ばれた少なくとも1種の元素、M''はCr,Mn,Sn,Zn,Ag,In,白金属元素,Mg,NおよびSから選ばれた少なくとも1種の元素、XはC,Ge,Ga,AlおよびPから選ばれた少なくとも1種の元素を示し、a,x,y,z,b,cおよびdはそれぞれ0≦a≦0.1、0.1≦x≦3、1≦y≦10、0≦z≦10、0≦b≦10、11≦c≦17、3≦d≦10を満たす数である。)で表されるアモルファス合金を、熱処理期間の少なくとも一部の期間に磁場を印加する期間および熱処理冷却期間を有する熱処理により微結晶化するナノ結晶合金の製造方法であって、該磁場を印加する時間が30秒以上30分以下であり、この時間において、前記合金中に結晶が部分的あるいは全部形成し、かつアモルファス合金の結晶化温度以上、かつアモルファス合金の表面温度を結晶化温度+100℃以下で0分以上30分以下一定温度に保持し、熱処理冷却期間において平均冷却速度10℃/min以上で400℃まで冷却することを特徴とするナノ結晶合金の製造方法。General formula: (Fe 1-a M a ) 100-xyzbcd A x M ′ y M ″ z X b Si c B d (atomic%) (where M is at least one element selected from Co and Ni) A is at least one element selected from Cu and Au, M ′ is at least one element selected from Ti, V, Zr, Nb, Mo, Hf, Ta and W, and M ″ is Cr. , Mn, Sn, Zn, Ag, In, at least one element selected from white metal elements, Mg, N and S, X is at least one element selected from C, Ge, Ga, Al and P A, x, y, z, b, c and d are 0 ≦ a ≦ 0.1, 0.1 ≦ x ≦ 3, 1 ≦ y ≦ 10, 0 ≦ z ≦ 10, 0 ≦ b ≦ 10, 11 ≦, respectively. c ≦ 17 and 3 ≦ d ≦ 10.) is crystallized by a heat treatment having a magnetic field application period and a heat treatment cooling period in at least a part of the heat treatment period. A method for producing a nanocrystalline alloy, wherein the time for applying the magnetic field is not less than 30 seconds and not more than 30 minutes, and at this time, crystals are formed in the alloy. Is partially or completely formed, and the amorphous alloy surface temperature is maintained at a constant temperature of 0 to 30 minutes at a crystallization temperature of + 100 ° C. or lower and the average cooling rate during the heat treatment cooling period. A method for producing a nanocrystalline alloy, comprising cooling to 400 ° C. at 10 ° C./min or more. 磁場を印加する時間が30秒以上20分以下であることを特徴とする請求項6に記載のナノ結晶合金の製造方法。  The method for producing a nanocrystalline alloy according to claim 6, wherein the time for applying the magnetic field is from 30 seconds to 20 minutes. アモルファス合金が薄帯であって、磁場を印加する方向がアモルファス合金薄帯の幅方向あるいは厚さ方向であることを特徴とする請求項6ないし請求項7に記載のナノ結晶合金の製造方法。  The method for producing a nanocrystalline alloy according to any one of claims 6 to 7, wherein the amorphous alloy is a ribbon, and a direction in which a magnetic field is applied is a width direction or a thickness direction of the amorphous alloy ribbon. 印加する磁場の強さが80kA・m-1以上である請求項6ないし8のいずれかに記載のナノ結晶合金の製造方法。The method for producing a nanocrystalline alloy according to any one of claims 6 to 8, wherein the strength of the applied magnetic field is 80 kA · m -1 or more. アモルファス合金の結晶化温度での昇温速度が5℃/min以下となるように昇温し、少なくとも50%以上が結晶となった温度から冷却することを特徴とする請求項6ないし9のいずれかに記載のナノ結晶合金の製造方法。  10. The temperature of the amorphous alloy is increased so that the rate of temperature increase at a crystallization temperature is 5 ° C./min or less, and cooling is performed from the temperature at which at least 50% of the amorphous alloy is crystallized. A method for producing a nanocrystalline alloy according to claim 1.
JP07705594A 1994-04-15 1994-04-15 Nanocrystalline alloy, method for producing the same, and magnetic core using the same Expired - Lifetime JP3719449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07705594A JP3719449B2 (en) 1994-04-15 1994-04-15 Nanocrystalline alloy, method for producing the same, and magnetic core using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07705594A JP3719449B2 (en) 1994-04-15 1994-04-15 Nanocrystalline alloy, method for producing the same, and magnetic core using the same

Publications (2)

Publication Number Publication Date
JPH07278764A JPH07278764A (en) 1995-10-24
JP3719449B2 true JP3719449B2 (en) 2005-11-24

Family

ID=13623110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07705594A Expired - Lifetime JP3719449B2 (en) 1994-04-15 1994-04-15 Nanocrystalline alloy, method for producing the same, and magnetic core using the same

Country Status (1)

Country Link
JP (1) JP3719449B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3157021A4 (en) * 2014-06-10 2018-05-23 Hitachi Metals, Ltd. Fe-BASED NANOCRYSTALLINE ALLOY CORE AND METHOD FOR PRODUCING Fe-BASED NANOCRYSTALLINE ALLOY CORE
EP3176797B1 (en) * 2014-07-28 2020-09-02 Hitachi Metals, Ltd. Method for manufacturing a current transformer core

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2922844B2 (en) * 1996-04-19 1999-07-26 日立金属株式会社 Apparatus using inverter
US6773619B2 (en) 2001-07-17 2004-08-10 Tdk Corporation Magnetic core for transformer, Mn-Zn based ferrite composition and methods of producing the same
CN100435244C (en) * 2003-04-10 2008-11-19 同济大学 Nano crystal soft magnetic alloy superthin belt and mfg method thereof
CN100405468C (en) * 2003-09-26 2008-07-23 鸿富锦精密工业(深圳)有限公司 Magnetic memory medium and its mfg method
KR100710613B1 (en) * 2005-08-04 2007-04-24 한국과학기술연구원 Fe-BASED NANO CRYSTALLINE ALLOY AND METHOD FOR MANUFACTURING THE SAME
CN102515256B (en) * 2011-11-29 2014-06-04 温州大学 Preparation for Cu-In-Zn-S nanocrystals capable of emitting red light and with wurtzite structure
EP3050977B1 (en) * 2013-09-27 2018-11-21 Hitachi Metals, Ltd. Method for producing fe-based nano-crystal alloy, and method for producing fe-based nano-crystal alloy magnetic core
CN104078180B (en) * 2014-05-28 2016-11-23 浙江大学 A kind of nano-crystal soft-magnetic composite and preparation method thereof
JP6707845B2 (en) * 2015-11-25 2020-06-10 セイコーエプソン株式会社 Soft magnetic powder, dust core, magnetic element and electronic device
JP6862743B2 (en) * 2016-09-29 2021-04-21 セイコーエプソン株式会社 Soft magnetic powder, powder magnetic core, magnetic element and electronic equipment
JP6729705B2 (en) * 2016-09-29 2020-07-22 日立金属株式会社 Nano crystalline alloy magnetic core, magnetic core unit, and method for manufacturing nano crystalline alloy magnetic core
KR102262900B1 (en) * 2017-10-20 2021-06-09 삼성전기주식회사 Coil component
KR102004239B1 (en) 2017-10-20 2019-07-26 삼성전기주식회사 Coil component
JP7192511B2 (en) * 2019-01-10 2022-12-20 トヨタ自動車株式会社 Manufacturing method of alloy ribbon
CN113348526B (en) 2019-02-05 2023-03-14 日立金属株式会社 Wound magnetic core, alloy core, and method for manufacturing wound magnetic core
JPWO2022019335A1 (en) * 2020-07-22 2022-01-27
CN113284690B (en) * 2021-05-25 2022-05-20 深圳市驭能科技有限公司 Nanocrystalline magnetic conductive sheet for high-power wireless charging and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3157021A4 (en) * 2014-06-10 2018-05-23 Hitachi Metals, Ltd. Fe-BASED NANOCRYSTALLINE ALLOY CORE AND METHOD FOR PRODUCING Fe-BASED NANOCRYSTALLINE ALLOY CORE
EP3693980A1 (en) * 2014-06-10 2020-08-12 Hitachi Metals, Ltd. Fe-based nanocrystalline alloy core
EP3176797B1 (en) * 2014-07-28 2020-09-02 Hitachi Metals, Ltd. Method for manufacturing a current transformer core

Also Published As

Publication number Publication date
JPH07278764A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
US5340413A (en) Fe-NI based soft magnetic alloys having nanocrystalline structure
EP1237165B1 (en) Co-based magnetic alloy and magnetic members made of the same
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
US5611871A (en) Method of producing nanocrystalline alloy having high permeability
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP2573606B2 (en) Magnetic core and manufacturing method thereof
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JPH03219009A (en) Production of fe-base soft-magnetic alloy
JPWO2008133301A1 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JPH044393B2 (en)
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JP4547671B2 (en) High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same
JP2008231534A5 (en)
JP3424767B2 (en) Nanocrystalline alloy core and heat treatment method for nanocrystalline alloy core
JP3856245B2 (en) Method for producing high permeability nanocrystalline alloy
JPH01247557A (en) Manufacture of hyperfine-crystal soft-magnetic alloy
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP2713373B2 (en) Magnetic core
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JPH0867911A (en) Method for heat-treating nano-crystalline magnetic alloy
JP4003166B2 (en) Co-based magnetic alloy and magnetic component using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

EXPY Cancellation because of completion of term