JP4547671B2 - High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same - Google Patents

High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same Download PDF

Info

Publication number
JP4547671B2
JP4547671B2 JP2005062187A JP2005062187A JP4547671B2 JP 4547671 B2 JP4547671 B2 JP 4547671B2 JP 2005062187 A JP2005062187 A JP 2005062187A JP 2005062187 A JP2005062187 A JP 2005062187A JP 4547671 B2 JP4547671 B2 JP 4547671B2
Authority
JP
Japan
Prior art keywords
flux density
magnetic flux
high saturation
alloy
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005062187A
Other languages
Japanese (ja)
Other versions
JP2006241569A (en
Inventor
克仁 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005062187A priority Critical patent/JP4547671B2/en
Publication of JP2006241569A publication Critical patent/JP2006241569A/en
Application granted granted Critical
Publication of JP4547671B2 publication Critical patent/JP4547671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、大電流用の各種リアクトル、アクティブフィルタ用チョ−クコイル、平滑チョークコイル、各種トランス、高周波用リアクトル、コモンモードチョークコイルや電磁シールドなどのノイズ対策部品、磁気シールド部材、レーザ電源、加速器用パルスパワー磁性部品、モータ、発電機用磁心や各種センサ部材等に用いられる温度特性が良好で特に高飽和磁束密度で低磁心損失を示す高飽和磁束密度低損失磁性合金およびそれを用いた高性能磁性部品に関する。   The present invention relates to various types of reactors for large currents, choke coils for active filters, smooth choke coils, various transformers, high frequency reactors, common mode choke coils, electromagnetic shields and other noise countermeasure components, magnetic shield members, laser power supplies, accelerators High saturation magnetic flux density and low loss magnetic alloy with good temperature characteristics, especially high saturation magnetic flux density and low magnetic core loss, used in magnetic power components for motors, motors, generator cores and various sensor members Performance magnetic parts

大電流用の各種リアクトル、アクティブフィルタ用チョ−クコイル、平滑チョークコイル、各種トランス、高周波用リアクトル、コモンモードチョークコイルや電磁シールドなどのノイズ対策部品、磁気シールド部材、レーザ電源、加速器用パルスパワー磁性部品、モータ、発電機用磁心や各種センサ部材等に用いられる軟磁性材料としては、珪素鋼、フェライト、アモルファス合金やFe基ナノ結晶合金材料等が知られている。フェライト材料は飽和磁束密度が低く、温度特性が悪い問題があり、動作磁束密度が大きいハイパワーの用途にはフェライトが磁気的に飽和しやすく不向きである。珪素鋼板は、 材料が安価で磁束密度が高いが、高周波の用途に対しては磁心損失が大きいという問題がある。Fe基アモルファス合金は、磁歪が大きく応力により特性が劣化する問題や、可聴周波数帯の電流が重畳するような用途では騒音が大きいという問題がある。一方、Co基アモルファス合金は、飽和磁束密度が実用的な材料では1 T以下と低く、熱的に不安定である問題がある。このため、ハイパワーの用途に使用した場合、部品が大きくなる問題や経時変化のために磁心損失が増加する問題がある。   Various high current reactors, choke coils for active filters, smooth choke coils, various transformers, high frequency reactors, common mode choke coils and electromagnetic shields and other noise countermeasure components, magnetic shield members, laser power supplies, pulse power magnets for accelerators As soft magnetic materials used for parts, motors, generator magnetic cores, various sensor members, etc., silicon steel, ferrite, amorphous alloys, Fe-based nanocrystalline alloy materials, and the like are known. Ferrite materials have a problem of low saturation magnetic flux density and poor temperature characteristics, and are not suitable for high power applications where the operating magnetic flux density is large and the ferrite is likely to be magnetically saturated. Silicon steel sheet is inexpensive and has high magnetic flux density, but there is a problem of high core loss for high frequency applications. The Fe-based amorphous alloy has a problem that its magnetostriction is large and its characteristics deteriorate due to stress, and there is a problem that noise is high in applications where currents in an audible frequency band are superimposed. On the other hand, the Co-based amorphous alloy has a problem that the saturation magnetic flux density is as low as 1 T or less in a practical material and is thermally unstable. For this reason, when used for high power applications, there are problems that the parts become large and that the magnetic core loss increases due to aging.

Fe基ナノ結晶合金は優れた軟磁気特性を示すため、コモンモ−ドチョ−クコイル、高周波トランス、パルストランス等の磁心に使用されている。代表的組成系は特公平4-4393号公報や特開平1-242755号公報に記載のFe−Cu−(Nb,Ti,Zr,Hf,Mo,W,Ta)−Si−B系合金やFe−Cu−(Nb,Ti,Zr,Hf,Mo,W,Ta)−B系合金等が知られている。これらのFe基ナノ結晶合金は、通常液相や気相から急冷し非晶質合金とした後、これを熱処理により微結晶化することにより作製されている。液相から急冷する方法としては単ロ−ル法、双ロ−ル法、遠心急冷法、回転液中紡糸法、アトマイズ法やキャビテーション法等が知られている。また、気相から急冷する方法としては、スパッタ法、蒸着法、イオンプレ−ティング法等が知られている。Fe基ナノ結晶合金はこれらの方法により作製した非晶質合金を微結晶化したもので、非晶質合金にみられるような熱的不安定性がほとんどなく、Fe系アモルファス合金と同程度の高い飽和磁束密度と低磁歪で優れた軟磁気特性を示すことが知られている。更にナノ結晶合金は経時変化が小さく、温度特性にも優れていることが知られている。
また、これらのFe基ナノ結晶合金にCoを添加することも検討されており、特開平9−20965号などに、良好なCo量比の範囲は0.2以下と記載されている。
特開平9−20965号公報((0019)、図1) 特開2004−218037号公報((0006),(0015),図3)
Fe-based nanocrystalline alloys exhibit excellent soft magnetic properties, and are therefore used in magnetic cores such as common mode choke coils, high frequency transformers, and pulse transformers. Typical composition systems are Fe-Cu- (Nb, Ti, Zr, Hf, Mo, W, Ta) -Si-B alloys and Fe-Cu- (Nb, Ti, Zr, Hf, Mo, W, Ta) alloys described in JP-B-4-4393 and JP-A-1-242755. -Cu- (Nb, Ti, Zr, Hf, Mo, W, Ta) -B alloys and the like are known. These Fe-based nanocrystalline alloys are usually produced by rapidly cooling from a liquid phase or a gas phase to form an amorphous alloy and then microcrystallizing it by heat treatment. As a method of quenching from the liquid phase, a single roll method, a twin roll method, a centrifugal quench method, a spinning in spinning solution, an atomizing method, a cavitation method, and the like are known. Further, as a method of quenching from the gas phase, a sputtering method, a vapor deposition method, an ion plating method and the like are known. Fe-based nanocrystalline alloy is a microcrystallized amorphous alloy produced by these methods, has almost no thermal instability as found in amorphous alloys, and is as high as Fe-based amorphous alloys. It is known to exhibit excellent soft magnetic characteristics at a saturation magnetic flux density and low magnetostriction. Furthermore, nanocrystalline alloys are known to have little change over time and excellent temperature characteristics.
Further, addition of Co to these Fe-based nanocrystalline alloys is also under study, and JP-A-9-20965 describes that the range of a good Co amount ratio is 0.2 or less.
Japanese Patent Laid-Open No. 9-20965 ((0019), FIG. 1) Japanese Patent Laying-Open No. 2004-218037 ((0006), (0015), FIG. 3)

Fe基ナノ結晶軟磁性合金は従来の軟磁性材料に比べてほぼ同一の飽和磁束密度の材料で比較した場合、従来の軟磁性材料より透磁率が高く、磁心損失も低く軟磁気特性が優れている。しかし、代表的なナノ結晶軟磁性合金であるSi量の多いFeCuNbSiB系合金は飽和磁束密度が1.76 Tを超えるような材料で低磁心損失を実現することは困難である。また、Si量の多いFeCuNbSiB系合金にCoを添加しても飽和磁束密度の著しい上昇は認められない。また、Co基のナノ結晶合金としては、特開平3−249151に記載の合金が知られているが、高い磁束密度をこれらの合金において実現するのは困難である。   Compared with conventional soft magnetic materials, Fe-based nanocrystalline soft magnetic alloys have higher permeability, lower magnetic core loss, and better soft magnetic properties than conventional soft magnetic materials. Yes. However, a FeCuNbSiB alloy with a large amount of Si, which is a typical nanocrystalline soft magnetic alloy, is difficult to achieve a low magnetic core loss with a material having a saturation magnetic flux density exceeding 1.76 T. Further, even when Co is added to the FeCuNbSiB alloy having a large amount of Si, no significant increase in the saturation magnetic flux density is observed. As Co-based nanocrystalline alloys, alloys described in JP-A-3-249151 are known, but it is difficult to achieve high magnetic flux density in these alloys.

一方、FeZrB系やFeNbB系合金において1.76 Tを超える飽和磁束密度を示す材料はアモルファス形成能が低下してしまい、大量に材料を製造することは困難であり、熱処理を行っても低い磁心損失を実現するのは困難である。また、磁心損失が温度上昇に伴って急激に増加してしまい温度特性が悪いという欠点を有している。Coを添加すると温度特性が劣るという欠点は解消され、飽和磁束密度が高いという特徴は有しているものの、無磁界中で熱処理された合金は、Co無添加のFe基材料に比べると著しく磁心損失が大きい問題がある。このため、前述の各種磁性部品に使用するのは困難である。したがって、より高飽和磁束密度でかつ低磁心損失の材料の出現が強く望まれている。
このような欠点を解消できる材料として、特開2004−218037号公報に記載の合金が知られている。しかし、当該特許に開示されている合金の飽和磁束密度は1.76Tが最高であり、更なる高飽和磁束密度で低損失を示す合金が望まれていた。
On the other hand, a material exhibiting a saturation magnetic flux density exceeding 1.76 T in FeZrB-based and FeNbB-based alloys has a reduced amorphous forming ability, and it is difficult to produce a large amount of material. It is difficult to realize the loss. In addition, the magnetic core loss rapidly increases as the temperature rises, resulting in a disadvantage that the temperature characteristics are poor. Although the disadvantage that the temperature characteristics are inferior when Co is added is eliminated and the saturation magnetic flux density is high, the alloy that is heat-treated in the absence of a magnetic field is significantly more magnetic than the Fe-based material without Co. There is a problem with a large loss. For this reason, it is difficult to use for the above-mentioned various magnetic components. Therefore, the appearance of a material having a higher saturation magnetic flux density and a lower magnetic core loss is strongly desired.
An alloy described in JP-A-2004-218037 is known as a material that can eliminate such drawbacks. However, the saturation magnetic flux density of the alloy disclosed in the patent is highest at 1.76 T, and an alloy exhibiting a low loss at a further high saturation magnetic flux density has been desired.

上記問題点を解決するために本発明者らは鋭意検討の結果、Co量がある範囲にあり、Si量が一定量以下、かつB量が比較的多い、(Fe1−aCo100−y−c−z M’Siz(原子%)で表され、式中、M’はV,Ti,Zr,Nb,Mo,Hf,TaおよびWから選ばれた少なくとも一種の元素、a,yおよびcはそれぞれ0.2<a<0.6、1≦y≦6、0<c≦2.5、7≦z≦15を満足し、かつ10≦y+c+z≦20を満足する組成であり、組織の一部または全部が粒径100nm以下の結晶粒からなる合金が、23℃における飽和磁束密度Bが1.76T超、120℃,100kHz,0.2Tにおける単位体積当たりの磁心損失Pcvが800kWm−3以下である特に高飽和磁束密度で低磁心損失特性を示し、温度特性にも優れた軟磁性合金が得られることを見出し本発明に想到した。

The present inventors to solve the above problems result of extensive studies, the range where there is a Co amount, Si amount is predetermined amount or less, and the amount of B is relatively large, (Fe 1-a Co a ) 100 'represented by y Si c B z (atomic%), wherein, M' -y-c -z M is V, Ti, Zr, Nb, Mo, at least one selected from Hf, Ta and W element , A, y, and c satisfy 0.2 <a <0.6, 1 ≦ y ≦ 6, 0 <c ≦ 2.5, 7 ≦ z ≦ 15, and 10 ≦ y + c + z ≦ 20, respectively. An alloy composed of crystal grains having a composition with part or all of a grain size of 100 nm or less has a saturation magnetic flux density B s at 23 ° C. of more than 1.76 T, 120 ° C., 100 kHz, 0.2 T per unit volume low magnetic, especially in high saturation magnetic flux density core losses P cv is 800KWm -3 or less It shows the loss characteristics, and conceived the heading present invention that the soft magnetic alloy excellent in temperature characteristics.

本発明合金は、前記組成の溶湯を単ロ−ル法等の超急冷法により急冷し、一旦アモルファス合金を作製後、これを加工し結晶化温度以上に昇温して熱処理を行い平均粒径100 nm以下の微結晶を形成することにより作製する。熱処理前のアモルファス合金は結晶相を含まない方が望ましいが一部に結晶相を含んでも良い。本合金に形成する結晶粒は粒径100nm以下の結晶粒であり、少なくとも一部または全部が体心立方構造の結晶粒である。
単ロール法などの超急冷法は活性な金属を含まない場合は大気中で行うことが可能であるが、活性な金属を含む場合はAr,Heなどの不活性ガス中あるいは減圧中で行う。また、窒素ガス、一酸化炭素あるいは二酸化炭素ガスを含む雰囲気で製造する場合もある。熱処理は通常はアルゴンガス、窒素ガス、ヘリウム等の不活性ガス中あるいは真空中で行う。熱処理期間の少なくとも一部の期間合金が飽和するのに十分な強さの磁界を印加して磁界中熱処理を行い、誘導磁気異方性を付与する方がより磁心損失が低減するため望ましい結果が得られる。合金磁心の形状にも依存するが一般には薄帯の幅方向(巻磁心の場合は磁心の高さ方向)に8 kAm−1以上の磁界を印加する。印加する磁界は、直流、交流、繰り返しのパルス磁界のいずれを用いても良い。磁界は200℃以上の温度領域で通常20分以上印加する。昇温中、一定温度に保持中および冷却中も印加した方が、磁心損失が低くかつ角形比も小さくなり、より好ましい結果が得られる。角形比B ―1が10%以下に調整した場合に特に低い磁心損失が得られ、応用上も好ましい結果が得られる。磁界中熱処理を適用し、比較的大きな誘導磁気異方性を付与することにより、このような高飽和磁束密度合金においても優れた軟磁気特性を実現する。高飽和磁束密度組成においては比較的結晶粒径が大きくなるが、磁界中熱処理を行うと軟磁気特性の劣化を抑制することができる。これに対して、無磁界で熱処理し、磁界中熱処理を適用しない場合は、磁心損失が増加しやすい。
The alloy of the present invention is obtained by quenching a molten metal having the above composition by a super rapid cooling method such as a single roll method, once producing an amorphous alloy, processing this, raising the temperature to the crystallization temperature or higher, and performing a heat treatment to obtain an average particle size It is produced by forming microcrystals of 100 nm or less. Although it is desirable that the amorphous alloy before the heat treatment does not contain a crystalline phase, it may contain a crystalline phase in part. The crystal grains formed in this alloy are crystal grains having a grain size of 100 nm or less, and at least a part or all of them are crystal grains having a body-centered cubic structure.
The ultra-rapid cooling method such as the single roll method can be performed in the atmosphere when no active metal is contained, but when it contains an active metal, it is carried out in an inert gas such as Ar or He or under reduced pressure. Moreover, it may manufacture in the atmosphere containing nitrogen gas, carbon monoxide, or a carbon dioxide gas. The heat treatment is usually performed in an inert gas such as argon gas, nitrogen gas, helium, or in vacuum. Applying a magnetic field that is strong enough to saturate the alloy for at least part of the heat treatment period and performing heat treatment in the magnetic field to provide induced magnetic anisotropy results in a reduction in core loss. can get. Although it depends on the shape of the alloy magnetic core, a magnetic field of 8 kAm −1 or more is generally applied in the width direction of the ribbon (in the case of a wound core, the height direction of the magnetic core). As the magnetic field to be applied, any of direct current, alternating current, and repetitive pulse magnetic field may be used. A magnetic field is usually applied for 20 minutes or more in a temperature range of 200 ° C. or more. When the temperature is raised, kept at a constant temperature and during cooling, the magnetic core loss is lower and the squareness ratio is smaller, and a more preferable result is obtained. When the squareness ratio B r B s −1 is adjusted to 10% or less, a particularly low magnetic core loss can be obtained, and a favorable result can be obtained in application. By applying a heat treatment in a magnetic field and imparting a relatively large induced magnetic anisotropy, excellent soft magnetic properties are realized even in such a high saturation magnetic flux density alloy. Although the crystal grain size becomes relatively large in the high saturation magnetic flux density composition, the deterioration of the soft magnetic characteristics can be suppressed by performing the heat treatment in a magnetic field. On the other hand, when the heat treatment is performed without a magnetic field and the heat treatment in a magnetic field is not applied, the magnetic core loss tends to increase.

熱処理は通常露点が−30℃以下の不活性ガス雰囲気中で行うことが望ましく、露点が−60℃以下の不活性ガス雰囲気中で熱処理を行うと、ばらつきが小さくより好ましい結果が得られる。熱処理の際の最高到達温度は結晶化温度以上であり、通常400℃から700℃の範囲である。一定温度に保持する熱処理パターンの場合は、一定温度での保持時間は通常は量産性の観点から24時間以下であり、好ましくは4時間以下である。熱処理の際の平均昇温速度は好ましくは0.1℃/minから200℃/min、より好ましくは0.1℃/minから100℃/min、平均冷却速度は好ましくは0.1℃/minから3000℃/min、より好ましくは0.1℃/minから100℃/minであり、この範囲で特に低磁心損失の合金が得られる。熱処理は1段ではなく多段の熱処理や複数回の熱処理を行うこともできる。更に、合金に直流、交流あるいはパルス電流を流して合金を発熱させ熱処理することもできる。
以上のようなプロセスを経て製造された本発明合金は、飽和磁束密度Bが1.76 Tを超え、120℃,100kHz, 0.2Tにおける単位体積当たりの磁心損失Pcvが800kW m-3以下の特性を実現することができる。
Usually, the heat treatment is desirably performed in an inert gas atmosphere having a dew point of −30 ° C. or lower. When the heat treatment is performed in an inert gas atmosphere having a dew point of −60 ° C. or lower, a more favorable result can be obtained with less variation. The highest temperature reached during the heat treatment is equal to or higher than the crystallization temperature, and is usually in the range of 400 to 700 ° C. In the case of the heat treatment pattern held at a constant temperature, the holding time at the constant temperature is usually 24 hours or less, preferably 4 hours or less from the viewpoint of mass productivity. The average heating rate during the heat treatment is preferably from 0.1 ° C / min to 200 ° C / min, more preferably from 0.1 ° C / min to 100 ° C / min, and the average cooling rate is preferably 0.1 ° C / min. To 3000 ° C./min, more preferably 0.1 ° C./min to 100 ° C./min. In this range, an alloy having a particularly low magnetic core loss can be obtained. The heat treatment is not limited to a single step, and a multi-step heat treatment or a plurality of heat treatments can be performed. Furthermore, the alloy can be heated and heat-treated by passing a direct current, an alternating current or a pulsed current through the alloy.
The present invention alloy manufactured through the process described above, the saturation magnetic flux density B s of greater than 1.76 T, 120 ° C., 100kHz, core loss P cv per unit volume in the 0.2T is 800 kW m -3 The following characteristics can be realized.

本発明において、Co量比aは0.2<a<0.6である必要がある。aが0.2以下では低損失な状態で1.76T以上の高い飽和磁束密度を得ることが困難なため好ましくなく、aが0.6以上では飽和磁束密度の低下や磁心損失の急激な増加が起こるため好ましくない。特に好ましいCo量比aの範囲は0.3≦a≦0.4である。この範囲で特に飽和磁束密度が1.8 T以上で室温よりも高い使用温度で低磁心損失の合金が得られるため実用上好ましい。   In the present invention, the Co amount ratio a needs to be 0.2 <a <0.6. If a is 0.2 or less, it is not preferable because it is difficult to obtain a high saturation magnetic flux density of 1.76 T or more in a low loss state, and if a is 0.6 or more, the saturation magnetic flux density decreases or the core loss increases rapidly. Is not preferable. A particularly preferable range of the Co amount ratio a is 0.3 ≦ a ≦ 0.4. In this range, a saturation magnetic flux density of 1.8 T or more and an alloy having a low magnetic core loss at a use temperature higher than room temperature can be obtained.

M’はアモルファス形成を促進する元素である。M’はV,Ti,Zr,Nb,Mo,Hf,TaおよびWから選ばれた少なくとも一種の元素であり、M’量yは1≦y≦6である。yが1原子%未満では、磁心損失が著しく増加し好ましくない。yが6原子%を超えると飽和磁束密度の低下があり飽和磁束密度が1.76 Tを超えるのが困難となり好ましくない。さらに好ましい範囲は1.5≦y≦5である
Siは、必須の元素であり磁心損失を低減する効果を有するが、Si量cは、c≦2.5を満足する必要がある。これは、Si量cが2.5原子%を超えると飽和磁束密度の著しい低下を招くためである。特に好ましいSi量cは0.1≦c≦2である。この範囲で特に高い飽和磁束密度を維持しつつ、低い磁心損失を示す合金が得られる。Bは必須の元素であり、アモルファス形成を助ける効果がある。B量zは、7≦z≦15を満足する必要がある。B量zが7原子%未満では、1.76Tを超えるような飽和磁束密度を示す合金では、急冷時に完全にアモルファス化することが困難となり熱処理後に組織が不均一となり低磁心損失を実現するのが困難である。一方、B量zが15原子%を超えると、1.76 Tを超える飽和磁束密度を示す合金では、熱処理により結晶化すると結晶粒径が著しく増加してしまい、磁心損失が著しく増加するため好ましくない。特に望ましいB量zの範囲はz≧10である。この範囲で1.8T以上の高飽和磁束密度を示し低磁心損失の特性が得られる。M‘、Si、Bの総量y+c+zは、10≦y+c+z≦20を満足する必要がある。M‘、Si、Bの総量が10原子%未満では、急冷時にアモルファス化するのが困難となり、熱処理後の組織が不均一となるため、磁心損失が増加し好ましくなく、M‘、Si、Bの総量が20原子%を超えると飽和磁束密度が減少し1.76Tを超える飽和磁束密度を実現するのが困難となるため好ましくない。
Feの2原子%以下をCu、Auから選ばれた少なくとも一種の元素で置換した場合、Co量比aがa≦0.4の場合、著しく磁心損失を低減することが可能であり、好ましい結果が得られる。
Feの5原子%以下をNiで置換した場合、磁束密度の低下を抑えつつ、耐食性やリボン表面性状を向上することができる。
M’の一部をCr,Mn,Sn,Zn,In,Ag,Sc,白金属元素,Mg,Ca,Sr,Y,希土類元素,N,OおよびSから選ばれた少なくとも一種の元素で置換した場合、耐食性を改善する、低効率を高める、磁気特性を調整する等の効果が得られる。
Bの一部をC,Ge,Ga,AlおよびPから選ばれた少なくとも一種の元素で置換した場合、磁歪を調整する、結晶粒を微細化する等の効果が得られる。
M ′ is an element that promotes amorphous formation. M ′ is at least one element selected from V, Ti, Zr, Nb, Mo, Hf, Ta, and W, and the M ′ amount y is 1 ≦ y ≦ 6. If y is less than 1 atomic%, the magnetic core loss is remarkably increased, which is not preferable. If y exceeds 6 atomic%, the saturation magnetic flux density decreases, and it becomes difficult for the saturation magnetic flux density to exceed 1.76 T. A more preferable range is 1.5 ≦ y ≦ 5 Si is an essential element and has an effect of reducing magnetic core loss, but the Si amount c needs to satisfy c ≦ 2.5. This is because when the Si amount c exceeds 2.5 atomic%, the saturation magnetic flux density is significantly reduced. A particularly preferable Si amount c is 0.1 ≦ c ≦ 2. In this range, an alloy showing a low core loss while maintaining a particularly high saturation magnetic flux density can be obtained. B is an essential element and has an effect of assisting the formation of amorphous. The B amount z needs to satisfy 7 ≦ z ≦ 15. When the amount of B is less than 7 atomic%, an alloy exhibiting a saturation magnetic flux density exceeding 1.76 T is difficult to be completely amorphized at the time of rapid cooling, and the structure becomes non-uniform after heat treatment, thereby realizing low core loss. Is difficult. On the other hand, if the amount of B exceeds 15 atomic%, an alloy exhibiting a saturation magnetic flux density exceeding 1.76 T is preferable because crystallization by heat treatment significantly increases the crystal grain size and significantly increases the core loss. Absent. A particularly desirable range of the B amount z is z ≧ 10. Within this range, a high saturation magnetic flux density of 1.8 T or more is exhibited, and a low core loss characteristic is obtained. The total amount y + c + z of M ′, Si, and B needs to satisfy 10 ≦ y + c + z ≦ 20. If the total amount of M ′, Si, and B is less than 10 atomic%, it becomes difficult to be amorphized at the time of rapid cooling, and the structure after heat treatment becomes non-uniform. If the total amount exceeds 20 atomic%, the saturation magnetic flux density decreases and it becomes difficult to realize a saturation magnetic flux density exceeding 1.76 T, which is not preferable.
When 2 atomic% or less of Fe is substituted with at least one element selected from Cu and Au, when the Co content ratio a is a ≦ 0.4, the core loss can be remarkably reduced, and preferable results Is obtained.
When 5 atomic% or less of Fe is replaced with Ni, corrosion resistance and ribbon surface properties can be improved while suppressing a decrease in magnetic flux density.
Part of M ′ is replaced with at least one element selected from Cr, Mn, Sn, Zn, In, Ag, Sc, white metal elements, Mg, Ca, Sr, Y, rare earth elements, N, O and S In this case, effects such as improving the corrosion resistance, increasing the low efficiency, and adjusting the magnetic characteristics can be obtained.
When a part of B is substituted with at least one element selected from C, Ge, Ga, Al and P, effects such as adjusting magnetostriction and refining crystal grains can be obtained.

平均粒径100nm以下の結晶粒の残部にアモルファス相が存在した方が高い抵抗率を実現でき、結晶粒が微細になり磁心損失も低減されるためより好ましい結果が得られる。この結晶粒は組織の30%以上の割合であることが望ましく、より好ましくは50%以上、特に好ましくは60%以上である。
本発明合金は必要に応じてSiO、MgO、Al等の粉末あるいは膜で合金薄帯表面を被覆する、化成処理により表面処理し絶縁層を形成する、アノード酸化処理により表面に酸化物絶縁層を形成し層間絶縁を行う、ポリイミド系、エポキシ系、ポリアミド系、アクリル系などの有機系樹脂で表面に絶縁層を形成する等の処理を行うとより好ましい結果が得られる。これは特に層間を渡る高周波における渦電流の影響を低減し、高周波における磁心損失を改善する効果があるためである。この効果は表面状態が良好でかつ広幅の薄帯から構成された磁心に使用した場合に特に著しい。更に、本発明合金から磁心を作製する際に必要に応じて含浸やコーティング等を行うことも可能である。本発明合金は高周波の用途特にパルス状電流が流れるような応用に最も性能を発揮するが、センサや低周波の磁性部品の用途にも使用可能である。特に、磁気飽和が問題となる用途に優れた特性を発揮でき、ハイパワーのパワーエレクトロニクスの用途に特に適する。
使用時に磁化する方向とほぼ垂直な方向に磁界を印加しながら熱処理した本発明合金は、従来の高飽和磁束密度の材料よりも低い磁心損失が得られる。更に本発明合金は薄膜や粉末でも優れた特性を得ることができる。
When the amorphous phase is present in the remainder of the crystal grains having an average grain size of 100 nm or less, a higher resistivity can be realized, and the crystal grains become finer and the magnetic core loss is reduced. The crystal grains are desirably 30% or more of the structure, more preferably 50% or more, and particularly preferably 60% or more.
The alloy of the present invention is coated with a powder or film of SiO 2 , MgO, Al 2 O 3 or the like as necessary, and the surface of the alloy ribbon is formed by chemical conversion treatment to form an insulating layer, and the surface is oxidized by anodic oxidation treatment. More preferable results can be obtained by performing a treatment such as forming an insulating layer on the surface with an organic resin such as polyimide, epoxy, polyamide, or acrylic based on forming an insulating layer and performing interlayer insulation. This is particularly because the effect of eddy currents at high frequencies across the layers is reduced and magnetic core loss at high frequencies is improved. This effect is particularly remarkable when used in a magnetic core having a good surface state and a wide ribbon. Furthermore, impregnation and coating can be performed as necessary when producing a magnetic core from the alloy of the present invention. The alloy of the present invention is most effective for high-frequency applications, particularly for applications where a pulsed current flows, but can also be used for sensors and low-frequency magnetic parts. In particular, it can exhibit excellent characteristics in applications where magnetic saturation is a problem, and is particularly suitable for applications in high-power power electronics.
The alloy of the present invention, which is heat-treated while applying a magnetic field in a direction substantially perpendicular to the direction of magnetization during use, can obtain a lower core loss than a conventional material having a high saturation magnetic flux density. Furthermore, the alloy of the present invention can obtain excellent characteristics even in a thin film or powder.

前述の本発明合金中に形成する結晶粒は主にFeCoを主体とする体心立方構造(bcc)の結晶相であり、Si,B,Al,GeやZr等を固溶しても良い。また、規則格子を含んでも良く、a=0.5付近で規則格子が形成し易い。この付近の組成では規則化すると軟磁性が向上する。前記結晶相以外の残部は主にアモルファス相であるが、実質的に結晶相だけからなる合金も本発明に含まれる。CuやAuを含む合金の場合は、一部にCuやAuを含む面心立方構造の相(fcc相)も存在する場合がある。
また、アモルファス相が結晶粒の周囲に存在する場合、抵抗率が高くなり、結晶粒成長の抑制により、結晶粒が微細化されており軟磁気特性が改善されるためより好ましい結果が得られる。
本発明合金において化合物相が存在しない場合により低い磁心損失を示すが、軟磁気特性を劣化させない程度の化合物相を一部に含んでも良い。
The crystal grains formed in the above-described alloy of the present invention have a body-centered cubic (bcc) crystal phase mainly composed of FeCo, and may contain Si, B, Al, Ge, Zr, or the like as a solid solution. Further, a regular lattice may be included, and the regular lattice is easily formed in the vicinity of a = 0.5. When the composition in the vicinity is ordered, soft magnetism is improved. The balance other than the crystalline phase is mainly an amorphous phase, but an alloy consisting essentially of the crystalline phase is also included in the present invention. In the case of an alloy containing Cu or Au, a face centered cubic phase (fcc phase) partially containing Cu or Au may also exist.
Further, when an amorphous phase is present around the crystal grains, the resistivity is increased, and by suppressing the crystal grain growth, the crystal grains are refined and the soft magnetic characteristics are improved, so that a more preferable result is obtained.
In the alloy of the present invention, when the compound phase is not present, a lower magnetic core loss is exhibited, but a compound phase that does not deteriorate the soft magnetic characteristics may be partially included.

もう一つの本発明は、前記温度特性に優れた高飽和磁束密度低損失磁性合金から構成されていることを特徴とする磁性部品である。前記本発明合金により磁性部品を構成することにより、アノードリアクトルなどの大電流用の各種リアクトル、アクティブフィルタ用チョ−クコイル、平滑チョークコイル、各種トランス、磁気シールド、電磁シールド材料などのノイズ対策部品、レーザ電源、加速器用パルスパワー磁性部品、モータ、発電機等に好適な高性能あるいは小型の磁性部品を実現することができる。   Another aspect of the present invention is a magnetic component comprising the high saturation magnetic flux density and low loss magnetic alloy having excellent temperature characteristics. By configuring magnetic parts with the alloy of the present invention, various types of reactors for large currents such as anode reactors, choke coils for active filters, smooth choke coils, various transformers, magnetic shields, noise shielding parts such as electromagnetic shield materials, High performance or small magnetic parts suitable for laser power supplies, pulse power magnetic parts for accelerators, motors, generators, etc. can be realized.

本発明によれば、大電流用の各種リアクトル、アクティブフィルタ用チョ−クコイル、平滑チョークコイル、各種トランス、電磁シールド材料などのノイズ対策部品、レーザ電源、加速器用パルスパワー磁性部品、モータ、発電機等に用いられる高飽和磁束密度で特に低い磁心損失を示す高飽和磁束密度低損失磁性合金およびそれを用いた高性能磁性部品を実現することができるため、その効果は著しいものがある。   According to the present invention, various types of reactors for large currents, choke coils for active filters, smooth choke coils, various transformers, noise shielding parts such as electromagnetic shield materials, laser power supplies, pulse power magnetic parts for accelerators, motors, generators The high saturation magnetic flux density and low loss magnetic alloy showing a particularly low magnetic core loss at the high saturation magnetic flux density used in the above and the high performance magnetic parts using the same can be realized, and the effect is remarkable.

以下本発明を実施例にしたがって説明するが本発明はこれらに限定されるものではない。
(実施例1)
(Fe0.75Co0.35bal.Cu0.9NbySi0.915-y(原子%)の合金溶湯を単ロ−ル法により急冷し、幅5mm厚さ21μmのアモルファス合金薄帯を得た。このアモルファス合金薄帯を外径19mm、内径15mmに巻回し、トロイダル磁心を作製した。
作製した磁心を窒素ガス雰囲気の熱処理炉に挿入し、図1に示す熱処理パタ−ンで熱処理を行った。熱処理の際、合金磁心の磁路と垂直方向(合金薄帯の幅方向)、すなわち磁心の高さ方向に240 kAm−1の磁界を印加した。図2に熱処理後の合金の自由凝固面のX線回折パターンを示す。X線回折パターンからは体心立方構造の相を示す結晶ピークが認められた。 図3に透過電子顕微鏡TEMにより観察したミクロ組織を示す。結晶粒径はNb量yが少なくなるに伴い増加しているが、100nm以下の結晶粒径である。次に、これらの合金磁心の直流B−Hループ、100kHz、0.2Tにおける単位体積当たりの磁心損失Pcvを測定した。図4に23℃における飽和磁束密度B、角形比B/B、保磁力H、1kHzにおける交流比初透磁率μ、120℃、100kHz、0.2Tにおける磁心損失Pcvを示す。また図5に(Fe0.75Co0.35bal.Cu0.9NbSi0.913合金の23℃における直流B−Hループを示す。
Nb量yが本発明範囲内である6原子%以下において1.76Tを超える高い飽和磁束密度Bsが得られ、Nb量yが1原子%未満では、磁心損失が800 kWm-3を超えてしまい低い磁心損失が得られないことが分る。図5から本発明合金は1.86Tという高飽和磁束密度でありながら、非常に直線性の良いヒステリシスの小さいB-Hループを実現できることが分る。このため各種チョークコイル、トランスの小型に寄与できる。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
Example 1
. (Fe 0.75 Co 0.35) bal Cu 0.9 Nb y Si 0.9 B 15-y Tanro molten alloy (atomic%) - was quenched by Le method to obtain an amorphous alloy ribbon of width 5mm thickness 21 [mu] m. The amorphous alloy ribbon was wound around an outer diameter of 19 mm and an inner diameter of 15 mm to produce a toroidal magnetic core.
The produced magnetic core was inserted into a heat treatment furnace in a nitrogen gas atmosphere, and heat treatment was performed with the heat treatment pattern shown in FIG. During the heat treatment, a magnetic field of 240 kAm −1 was applied in a direction perpendicular to the magnetic path of the alloy magnetic core (in the width direction of the alloy ribbon), that is, in the height direction of the magnetic core. FIG. 2 shows an X-ray diffraction pattern of the free solidified surface of the alloy after the heat treatment. From the X-ray diffraction pattern, a crystal peak indicating a phase of a body-centered cubic structure was observed. FIG. 3 shows a microstructure observed by a transmission electron microscope TEM. The crystal grain size increases as the Nb amount y decreases, but is 100 nm or less. Next, the core loss P cv per unit volume of these alloy magnetic cores at a DC BH loop, 100 kHz, 0.2 T was measured. FIG. 4 shows saturation magnetic flux density B s at 23 ° C., squareness ratio B r / B s , coercive force H c , AC ratio initial permeability μ r at 1 kHz, magnetic core loss P cv at 120 ° C., 100 kHz, 0.2T. . FIG. 5 shows (Fe 0.75 Co 0.35 ) bal. It shows a DC B-H loop at 23 ° C. of Cu 0.9 Nb 2 Si 0.9 B 13 alloy.
A high saturation magnetic flux density Bs exceeding 1.76 T is obtained when the Nb amount y is 6 atomic% or less within the range of the present invention. When the Nb amount y is less than 1 atomic%, the magnetic core loss exceeds 800 kWm −3 and is low. It can be seen that no core loss is obtained. From FIG. 5, it can be seen that the alloy of the present invention can realize a BH loop with a very good hysteresis and a small hysteresis while having a high saturation magnetic flux density of 1.86T. For this reason, it can contribute to the miniaturization of various choke coils and transformers.

(実施例2)
表1に示す組成の合金溶湯をAr雰囲気中で単ロ−ル法により急冷し、幅5mm厚さ21μmのアモルファス合金薄帯を得た。このアモルファス合金薄帯を外径19mm、内径15mmに巻回し、トロイダル磁心を作製した。この合金磁心を実施例1と同様な熱処理パタ−ンで熱処理し磁気測定を行った。熱処理後の合金の組織中にはアモルファス母相中に粒径100nm以下の極微細な結晶粒が形成していた。主相はFeとCoを主に含むbcc相で、CuやAuを含む場合、X線では明確ではなく表には示していないが電子顕微鏡による電子線回折の結果CuやAuを含む粒径が10nm以下のfcc相も僅かに形成していることが確認された。表1に23゜Cにおける飽和磁束密度B、角形比B/B、120℃, 100kHz,0.2Tにおける単位体積当たりの磁心損失Pcvを示す。比較のため本発明組成外の合金の磁気特性も示す。角形比B/Bが10%以下の本発明合金は、特に低い磁心損失Pcvを示す。これに対して、本発明外の飽和磁束密度が1.76Tを超える合金は、本発明合金よりもPcvが大きく、高飽和磁束密度材料ではあるが磁心損失が大きく、本発明外の低磁心損失の合金はBsが1.76T以下と低く、本発明合金は1.76Tを超える高飽和磁束密度でありながら低磁心損失を示し優れた特性を示す。
(Example 2)
The molten alloy having the composition shown in Table 1 was rapidly cooled in an Ar atmosphere by a single roll method to obtain an amorphous alloy ribbon having a width of 5 mm and a thickness of 21 μm. The amorphous alloy ribbon was wound around an outer diameter of 19 mm and an inner diameter of 15 mm to produce a toroidal magnetic core. This alloy magnetic core was heat-treated with the same heat-treatment pattern as in Example 1 and subjected to magnetic measurements. In the alloy structure after the heat treatment, ultrafine crystal grains having a grain size of 100 nm or less were formed in the amorphous matrix. The main phase is a bcc phase mainly containing Fe and Co. When Cu or Au is contained, it is not clear by X-ray and is not shown in the table, but the particle size containing Cu or Au is the result of electron beam diffraction by an electron microscope. It was confirmed that a fcc phase of 10 nm or less was also formed slightly. Table 1 shows the saturation magnetic flux density B s at 23 ° C., the squareness ratio B r / B s , the magnetic core loss P cv per unit volume at 120 ° C., 100 kHz, and 0.2 T. For comparison, the magnetic properties of alloys outside the composition of the present invention are also shown. The alloy of the present invention having a squareness ratio B r / B s of 10% or less exhibits a particularly low magnetic core loss P cv . On the other hand, an alloy having a saturation magnetic flux density exceeding 1.76 T outside the present invention has a larger P cv than the alloy according to the present invention, and has a high core loss although it is a high saturation magnetic flux density material. The loss alloy has a low Bs of 1.76 T or less, and the alloy of the present invention exhibits a low magnetic core loss and excellent characteristics while having a high saturation magnetic flux density exceeding 1.76 T.

(実施例3)
(Fe0.72Co0.38bal.Cu1.1Nb2.5Si1.112.5(原子%)の合金溶湯を単ロ−ル法により急冷し、幅20mm厚さ20.5μmのアモルファス合金薄帯を得た。このアモルファス合金薄帯を巻回し、トロイダル磁心を作製した。
作製した磁心を窒素ガス雰囲気の熱処理炉に挿入し、図1に示す熱処理パタ−ンで熱処理を行った。熱処理の際、合金磁心の磁路と垂直方向(合金薄帯の幅方向)、すなわち磁心の高さ方向に240kAm−1の磁界を印加した。熱処理後の合金は結晶化しており、電子顕微鏡観察の結果組織のほとんどが粒径50 nm程度の微細な体心立方構造の結晶粒からなっており、結晶粒の割合は65%程度と見積もられた。結晶相のほとんどは体心立方構造であった。残部のマトリックスは主にアモルファス相であった。23゜Cにおける飽和磁束密度Bは1.84T、120℃、20kHz、0.2Tにおける単位体積当たりの磁心損失Pcvは610 kW m−3であった。この磁心をエポキシ樹脂で含浸し、一部を切断し0.5mmのギャップを形成した。次にフォルマル線を巻きチョークコイルを作製し、10kHzの周波数において直流重畳特性を測定した断面積は1cm2、平均直径は3cm、巻数は20ターンとした。図6に23゜Cにおける直流重畳特性を示す。比較のために従来の材料を用いたチョークコイルの結果も示す。本発明合金を用いたチョークコイルの直流重畳特性は従来のチョークよりも優れており、より大電流まで高いインダクタンスを示し優れていることが分る。
(Example 3)
A molten alloy of (Fe 0.72 Co 0.38 ) bal. Cu 1.1 Nb 2.5 Si 1.1 B 12.5 (atomic%) was rapidly cooled by a single roll method, and was 20 mm wide and 20.5 μm thick. An amorphous alloy ribbon was obtained. The amorphous alloy ribbon was wound to produce a toroidal magnetic core.
The produced magnetic core was inserted into a heat treatment furnace in a nitrogen gas atmosphere, and heat treatment was performed with the heat treatment pattern shown in FIG. During the heat treatment, a magnetic field of 240 kAm −1 was applied in a direction perpendicular to the magnetic path of the alloy magnetic core (in the width direction of the alloy ribbon), that is, in the height direction of the magnetic core. The alloy after heat treatment is crystallized, and as a result of electron microscope observation, most of the structure consists of fine body-centered cubic crystal grains with a grain size of about 50 nm, and the proportion of crystal grains is estimated to be about 65%. It was. Most of the crystal phase had a body-centered cubic structure. The remaining matrix was mainly in the amorphous phase. The saturation magnetic flux density B s at 23 ° C. was 1.84 T, 120 ° C., 20 kHz, and the core loss P cv per unit volume at 0.2 T was 610 kW m −3 . This magnetic core was impregnated with an epoxy resin, and a part thereof was cut to form a 0.5 mm gap. Next, a choke coil was prepared by winding a formal wire, and the cross-sectional area measured for DC superposition characteristics at a frequency of 10 kHz was 1 cm 2 , the average diameter was 3 cm, and the number of turns was 20 turns. Fig. 6 shows the DC superposition characteristics at 23 ° C. For comparison, the result of a choke coil using a conventional material is also shown. It can be seen that the DC superimposition characteristics of the choke coil using the alloy of the present invention are superior to those of the conventional choke, and show a high inductance up to a larger current.

本発明に係わる熱処理パタ−ンの一例を示した図である。It is the figure which showed an example of the heat processing pattern concerning this invention. 本発明に係わる合金の熱処理後の自由凝固面のX線回折パターンの一例を示した図である。It is the figure which showed an example of the X-ray-diffraction pattern of the free solidification surface after heat processing of the alloy concerning this invention. 本発明に係わる合金の熱処理後の透過電子顕微鏡TEMにより観察したミクロ組織を示した図である。It is the figure which showed the microstructure observed with the transmission electron microscope TEM after the heat processing of the alloy concerning this invention. 本発明に係わる合金の飽和磁束密度B、角形比B/B、保磁力H、1kHzにおける交流比初透磁率μ、120℃、100kHz、0.2Tにおける磁心損失Pcvを示した図である。The saturation magnetic flux density B s , squareness ratio B r / B s , coercive force H c , AC ratio initial permeability μ r at 1 kHz, magnetic core loss P cv at 120 ° C., 100 kHz, 0.2 T are shown for the alloys according to the present invention. It is a figure. 本発明合金の直流B−Hループの一例を示した図である。It is the figure which showed an example of direct current | flow BH loop of this invention alloy. 本発明合金および従来材料を用いたチョークコイルの直流重畳特性の一例を示した図である。It is the figure which showed an example of the direct current superimposition characteristic of the choke coil using this invention alloy and the conventional material.

Claims (12)

(Fe1−aCo100−y−c−z M’Siz(原子%)で表され、式中、M’はV,Ti,Zr,Nb,Mo,Hf,TaおよびWから選ばれた少なくとも一種の元素、a,yおよびcはそれぞれ0.2<a<0.6、1≦y≦6、0<c≦2.5、7≦z≦15を満足し、かつ10≦y+c+z≦20を満足する組成であり、組織の一部または全部が粒径100nm以下の結晶粒からなり、23℃における飽和磁束密度Bが1.76T超、120℃,100kHz,0.2Tにおける単位体積当たりの磁心損失P が800kWm−3以下であることを特徴とする高飽和磁束密度低損失磁性合金。 (Fe 1-a Co a) ' is represented by y Si c B z (atomic%), wherein, M' 100-y-c -z M is V, Ti, Zr, Nb, Mo, Hf, Ta and At least one element selected from W, a, y, and c satisfy 0.2 <a <0.6, 1 ≦ y ≦ 6, 0 <c ≦ 2.5, and 7 ≦ z ≦ 15, respectively. In addition, the composition satisfies 10 ≦ y + c + z ≦ 20, and part or all of the structure is made of crystal grains having a particle size of 100 nm or less, and the saturation magnetic flux density B s at 23 ° C. exceeds 1.76 T, 120 ° C., 100 kHz, 0 high saturation magnetic flux density and low loss magnetic alloy core losses P c v per unit volume in .2T is characterized in that it 800KWm -3 or less. 23℃における飽和磁束密度Bが1.80T以上であることを特徴とする請求項1に記載の高飽和磁束密度低損失磁性合金。High saturation magnetic flux density and low loss magnetic alloy according to claim 1, saturation magnetic flux density B s at 23 ° C. is characterized in that at least 1.80T. 磁界中で熱処理されており、角形比B
-1が10%以下であることを特徴とする請求項1又は請求項2に記載の高飽和磁束密度低損失磁性合金。
Heat treated in a magnetic field, squareness ratio B r
The high saturation magnetic flux density low loss magnetic alloy according to claim 1 or 2, wherein B s -1 is 10% or less.
z≧10であることを特徴とする請求項1乃至請求項3のいずれかに記載の高飽和磁束密度低損失磁性合金。The high saturation magnetic flux density and low loss magnetic alloy according to any one of claims 1 to 3, wherein z ≧ 10. 0.1≦c≦2であることを特徴とする請求項1乃至請求項4のいずれかに記載の高飽和磁束密度低損失磁性合金。The high saturation magnetic flux density and low loss magnetic alloy according to claim 1, wherein 0.1 ≦ c ≦ 2. アモルファス相が一部に存在することを特徴とする請求項1乃至請求項5のいずれかに記載の高飽和磁束密度低損失磁性合金。6. The high saturation magnetic flux density and low loss magnetic alloy according to claim 1, wherein an amorphous phase is partially present. 粒径100nm以下の結晶粒の少なくとも一部または全部が体心立方構造の結晶粒であることを特徴とする請求項1乃至請求項6のいずれかに記載の高飽和磁束密度低損失磁性合金。The high saturation magnetic flux density low loss magnetic alloy according to any one of claims 1 to 6, wherein at least a part or all of crystal grains having a grain size of 100 nm or less are crystal grains having a body-centered cubic structure. 0.3≦a≦0.4であることを特徴とする請求項1乃至請求項のいずれかに記載の高飽和磁束密度低損失磁性合金。0.3 ≦ a ≦ 0.4 a high saturation flux density low loss magnetic alloy according to any one of claims 1 to 7, characterized in that. Feの2原子%以下をCu、Auから選ばれた少なくとも一種の元素で置換したことを特徴とする請求項1乃至請求項のいずれかに記載の高飽和磁束密度低損失磁性合金。Cu 2 atomic% or less of Fe, the high saturation magnetic flux density and low loss magnetic alloy according to any one of claims 1 to 8, characterized in that substituted with at least one element selected from Au. Feの5原子%以下をNiで置換したことを特徴とする請求項1乃至請求項のいずれかに記載の高飽和磁束密度低損失磁性合金。The high saturation magnetic flux density and low loss magnetic alloy according to any one of claims 1 to 9 , wherein 5 atomic% or less of Fe is substituted with Ni. M’の一部をCr,Mn,Sn,Zn,In,Ag,Sc,白金属元素,Mg,Ca,Sr,Y,希土類元素,N,OおよびSから選ばれた少なくとも一種の元素で置換したことを特徴とする請求項1乃至請求項10のいずれかに記載の高飽和磁束密度低損失磁性合金。Part of M ′ is replaced with at least one element selected from Cr, Mn, Sn, Zn, In, Ag, Sc, white metal elements, Mg, Ca, Sr, Y, rare earth elements, N, O and S The high saturation magnetic flux density low loss magnetic alloy according to any one of claims 1 to 10 . 請求項1乃至請求項11のいずれかに記載の高飽和磁束密度低損失磁性合金から構成されていることを特徴とする磁性部品。A magnetic component comprising the high saturation magnetic flux density and low-loss magnetic alloy according to any one of claims 1 to 11 .
JP2005062187A 2005-03-07 2005-03-07 High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same Expired - Fee Related JP4547671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062187A JP4547671B2 (en) 2005-03-07 2005-03-07 High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062187A JP4547671B2 (en) 2005-03-07 2005-03-07 High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same

Publications (2)

Publication Number Publication Date
JP2006241569A JP2006241569A (en) 2006-09-14
JP4547671B2 true JP4547671B2 (en) 2010-09-22

Family

ID=37048261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062187A Expired - Fee Related JP4547671B2 (en) 2005-03-07 2005-03-07 High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same

Country Status (1)

Country Link
JP (1) JP4547671B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558664B2 (en) 2006-02-28 2010-10-06 株式会社日立産機システム Amorphous transformer for power distribution
JP5316920B2 (en) * 2007-03-16 2013-10-16 日立金属株式会社 Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
US8007600B2 (en) * 2007-04-25 2011-08-30 Hitachi Metals, Ltd. Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip
EP2463397B1 (en) 2009-08-24 2016-09-07 NEC TOKIN Corporation ALLOY COMPOSITION, NANOCRYSTALLINE Fe ALLOY, AND PREPARATION METHOD THEREFOR
JP5932907B2 (en) 2014-07-18 2016-06-08 国立大学法人東北大学 Alloy powder and magnetic parts
CN106282848B (en) * 2016-08-16 2018-05-08 南通巨升非晶科技有限公司 A kind of Fe-based amorphous alloy composite material
CN106076562B (en) * 2016-08-16 2018-09-18 浙江国正安全技术有限公司 Fluidized bed air flow crusher
KR20190038014A (en) * 2017-09-29 2019-04-08 삼성전기주식회사 Fe-based nonocrystalline alloy and electronic component using the smae
CN109402454B (en) * 2018-11-13 2021-11-09 江西理工大学 CoVGa-based Heusler alloy for realizing magnetic field driven metamagnetic reverse martensitic phase transformation
CN111270106A (en) * 2020-01-20 2020-06-12 华南理工大学 Heat treatment method suitable for strengthening selective laser melting forming of CoCrWMo alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197650A (en) * 1989-12-25 1991-08-29 Daido Steel Co Ltd Fe-base high transmissible magnetic alloy
JP2004218037A (en) * 2003-01-17 2004-08-05 Hitachi Metals Ltd High saturation magnetic flux density low core loss magnetic alloy, and magnetic component obtained by using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197650A (en) * 1989-12-25 1991-08-29 Daido Steel Co Ltd Fe-base high transmissible magnetic alloy
JP2004218037A (en) * 2003-01-17 2004-08-05 Hitachi Metals Ltd High saturation magnetic flux density low core loss magnetic alloy, and magnetic component obtained by using the same

Also Published As

Publication number Publication date
JP2006241569A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JP4547671B2 (en) High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
US6648990B2 (en) Co-based magnetic alloy and magnetic members made of the same
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5339192B2 (en) Amorphous alloy ribbon, nanocrystalline soft magnetic alloy, magnetic core, and method for producing nanocrystalline soft magnetic alloy
JP2573606B2 (en) Magnetic core and manufacturing method thereof
JP5429613B2 (en) Nanocrystalline soft magnetic alloys and magnetic cores
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP2010189761A (en) Soft magnetic alloy thin strip, method for producing same, and magnetic component having soft magnetic alloy thin strip
JP2008196006A (en) Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY THIN STRIP, METHOD FOR PRODUCING Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AND MAGNETIC COMPONENT
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JP2710938B2 (en) High saturation magnetic flux density soft magnetic alloy
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
JPH0885821A (en) Production of nano-crystal alloy with high magnetic permeability
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JP2000119825A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JP4003166B2 (en) Co-based magnetic alloy and magnetic component using the same
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JPH108224A (en) High saturation magnetic flux density and high perrmiability magnetic alloy, and magnetic core using the alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100611

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100624

R150 Certificate of patent or registration of utility model

Ref document number: 4547671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees