JPH0885821A - Production of nano-crystal alloy with high magnetic permeability - Google Patents

Production of nano-crystal alloy with high magnetic permeability

Info

Publication number
JPH0885821A
JPH0885821A JP7182806A JP18280695A JPH0885821A JP H0885821 A JPH0885821 A JP H0885821A JP 7182806 A JP7182806 A JP 7182806A JP 18280695 A JP18280695 A JP 18280695A JP H0885821 A JPH0885821 A JP H0885821A
Authority
JP
Japan
Prior art keywords
temperature
alloy
heat treatment
producing
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7182806A
Other languages
Japanese (ja)
Other versions
JP3856245B2 (en
Inventor
Katsuto Yoshizawa
克仁 吉沢
Yoshio Bizen
嘉雄 備前
Susumu Nakajima
晋 中島
Shunsuke Arakawa
俊介 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP18280695A priority Critical patent/JP3856245B2/en
Publication of JPH0885821A publication Critical patent/JPH0885821A/en
Application granted granted Critical
Publication of JP3856245B2 publication Critical patent/JP3856245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To produce a nano-crystal alloy having remarkably high relative initial permeability by rapidly solidifying a molten Fe-base alloy of specific composition, applying heat treatment to the resulting amorphous body under specific temp. conditions, and forming a microcrystalline structure. CONSTITUTION: A molten Fe-base alloy, having a composition represented by general formula (Fe1-a Ma )100- X- Y- Z-b-c-d AXM'YM"ZXb Sic Bd (where M means Co and/or Ni, A means Cu and/or Au, M' means one or more elements among Ti, V, Zr, Nb, Mo, Hf, Ta, and W, M" means one or more kinds among Cr, Mn, Sn, Zn, Ag, In, platinum group metals, Mg, Ca, Sr, Y, rare earth elements, N, O, and S, and 0<=a<=0.1, 0.1<=X<=3, 1<=Y<=10, 0<=Z<=10, 0<=b<=10, 11<=c<=17, and 3<=d<=10, by atomic %, are satisfied, respectively) is used. This molten alloy is rapidly solidified, and the resulting amorphous alloy is heated to a temp. not lower than the crystallization temp., held at the temp. for <5min, and cooled down to room temp. while regulating the cooling rate to >=20 deg.C/min until at least 400οC is reached. By this method, the nano-crystal alloy containing microcrystalline grains of <=30nm average crystalline grain size can be stably produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス、チョ−クコ
イル等の各種磁性部品に用いられる特に高い透磁率を示
すナノ結晶合金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a nanocrystalline alloy having a particularly high magnetic permeability used in various magnetic parts such as transformers and choke coils.

【0002】[0002]

【従来の技術】ノイズフィルタやパルストランス等に用
いられる磁心材料としては、フェライトやアモルファス
合金等の高周波特性に優れた高透磁率材料が使用され
る。ノイズフィルタ(ラインフィルタ)に用いられるコ
モンモ−ドチョ−ク用磁心材料としては高透磁率特性を
示すだけでなく雷や大型のインバ−タ装置等から発生す
る高電圧パルス状ノイズによる機器の誤動作を防止する
ために、パルス減衰特性に優れるものが要求されてい
る。このような要求に対して、従来のフェライト材料で
は飽和磁束密度が低く磁気的に飽和しやすいため小型磁
心では十分な性能が得られない問題がある。したがっ
て、従来のフェライト材料を用い十分な性能を得るため
には磁心を大型にする必要があった。
2. Description of the Related Art As a magnetic core material used for a noise filter, a pulse transformer, etc., a high magnetic permeability material such as ferrite or amorphous alloy having excellent high frequency characteristics is used. Not only does the magnetic core material for common mode chokes used for noise filters (line filters) exhibit high permeability characteristics, but it also prevents malfunction of equipment due to high voltage pulse noise generated from lightning or large inverter devices. In order to prevent this, one having excellent pulse attenuation characteristics is required. In order to meet such demands, the conventional ferrite material has a low saturation magnetic flux density and is easily magnetically saturated, so that there is a problem that sufficient performance cannot be obtained with a small magnetic core. Therefore, it has been necessary to use a conventional ferrite material to increase the size of the magnetic core in order to obtain sufficient performance.

【0003】また、Fe基アモルファス合金は飽和磁束密
度が高く、高電圧パルス性ノイズに対してはフェライト
よりも優れた減衰特性を示すが、透磁率がCo基アモルフ
ァス合金より低く、低電圧レベルのノイズに対する減衰
量が十分でない欠点がある。また、磁歪が著しく大きい
ために周波数によっては磁歪振動による共振が生じ特性
が変化する問題や、可聴周波数成分がある電流がコイル
に流れる場合には磁心にうなりが生ずる問題がある。
Further, the Fe-based amorphous alloy has a high saturation magnetic flux density and exhibits superior attenuation characteristics to high-voltage pulse noise than ferrite, but has a lower magnetic permeability than the Co-based amorphous alloy and has a low voltage level. There is a drawback that the amount of attenuation with respect to noise is not sufficient. Further, since the magnetostriction is extremely large, there is a problem that resonance occurs due to the magnetostrictive vibration depending on the frequency and the characteristics change, and a problem that the magnetic core beats when a current having an audible frequency component flows through the coil.

【0004】一方、Co基アモルファス合金は高透磁率で
あるため、低電圧レベルのノイズに対する減衰量が大き
く優れているが、飽和磁束密度が1T以下と低くFe基アモ
ルファス合金に比べて高電圧パルスに対する減衰特性が
劣っている。また、高透磁率のCo基アモルファス合金は
経時変化が特に大きく、周囲温度が高い環境では特性劣
化が大きく信頼性の点でも問題がある。
On the other hand, the Co-based amorphous alloy has a high magnetic permeability and thus is greatly excellent in the amount of attenuation with respect to noise at a low voltage level, but has a saturation magnetic flux density of 1 T or less and a high voltage pulse as compared with the Fe-based amorphous alloy. Is inferior in the attenuation characteristic. In addition, a Co-based amorphous alloy having a high magnetic permeability has a large change over time, and in a high ambient temperature environment, the characteristics are greatly deteriorated and there is a problem in reliability.

【0005】また、ISDN(統合サービス・ディジタル網
〈Integrated Services DigitalNetwork〉)インタ−フ
ェイス用パルストランスに使用される磁心材料としては
高透磁率で温度特性に優れていることが要求される。IS
DN用の用途では特に20kHz付近の透磁率が高いことが重
要である。また、使用目的によっては、角形比が低くフ
ラットなB-Hル−プを示すものが必要とされる。比初透
磁率は100000未満のものしか得られず、比初透磁率が10
0000以上のものは実現が困難であった。
Further, a magnetic core material used for a pulse transformer for an ISDN (Integrated Services Digital Network) interface is required to have high magnetic permeability and excellent temperature characteristics. IS
Especially for DN applications, it is important to have high magnetic permeability around 20kHz. Further, depending on the purpose of use, a BH loop having a low squareness ratio and a flat BH loop is required. The initial magnetic permeability was less than 100,000, and the relative magnetic permeability was 10 or less.
Those over 0000 were difficult to realize.

【0006】しかし、ISDNインタ−フェイスに用いられ
るパルストランスは近年カード型インタ−フェイスへの
使用が検討され小型化薄型化が要求されるようになって
きており、20kHzで20mH以上のインダクタンスの規格を
このような小型薄型の形状で満足するためには更に透磁
率の高い材料が必要になってきている。また、波形を忠
実に伝送するためには、角形比が低くB-Hル−プがフラ
ットな恒透磁率性に優れた材料も望まれている。
However, in recent years, pulse transformers used in ISDN interfaces have been considered for use in card-type interfaces and are required to be smaller and thinner. In order to satisfy such a small and thin shape, a material having a higher magnetic permeability is required. Further, in order to faithfully transmit a waveform, a material having a low squareness ratio and a flat BH loop and excellent magnetic permeability is also desired.

【0007】しかし、フェライトやFe基アモルファス合
金では透磁率が低くこのような要求に答えるのは困難で
ある。また、フェライトは温度特性が劣っており、特に
室温以下で透磁率が急激に低下するという問題もある。
Co基のアモルファス合金は透磁率が高いものが得易い
が、周囲温度が高い場合には経時変化が大きく、しかも
価格が高い問題があり、汎用として用いるのには限界が
ある。
However, ferrite and Fe-based amorphous alloys have low magnetic permeability, and it is difficult to meet such requirements. Further, ferrite has inferior temperature characteristics, and there is also a problem that the magnetic permeability sharply decreases especially at room temperature or lower.
It is easy to obtain a Co-based amorphous alloy having a high magnetic permeability, but when the ambient temperature is high, there is a problem that the change over time is large and the cost is high, and there is a limit to its general use.

【0008】また、漏電警報器をはじめとする電流セン
サ、磁気センサ等においても小型高感度の観点から透磁
率の更に高い材料が要求されている。また、線形な出力
を実現する観点からは低角形比でB−Hル−プがフラッ
トな形で恒透磁率性に優れかつ透磁率が高い材料も要求
されている。
Further, in current sensors such as leakage alarms, magnetic sensors, etc., materials having higher magnetic permeability are required from the viewpoint of small size and high sensitivity. Further, from the viewpoint of realizing linear output, a material having a low squareness ratio, a flat BH loop shape, excellent magnetic permeability and high magnetic permeability is also required.

【0009】ナノ結晶合金は優れた軟磁気特性を示すた
め、コモンモ−ドチョ−クコイル、高周波トランス、漏
電警報器、パルストランス等の磁心に使用されている。
代表的組成系は特公平4-4393や特開平1ー242755に記載の
合金系等が知られている。これらのナノ結晶合金は、通
常液相や気相から急冷し非晶質合金とした後、これを熱
処理により微結晶化することにより作製されている。液
相から急冷する方法としては単ロ−ル法、双ロ−ル法、
遠心急冷法、回転液中紡糸法、アトマイズ法やキャビテ
ーション法等が知られている。また、気相から急冷する
方法としては、スパッタ法、蒸着法、イオンプレ−ティ
ング法等が知られている。ナノ結晶合金はこれらの方法
により作製した非晶質合金を微結晶化したもので、非晶
質合金にみられるような熱的不安定性がほとんどなく、
高飽和磁束密度、低磁歪で優れた軟磁気特性を示すこと
が知られている。更にナノ結晶合金は経時変化が小さ
く、温度特性にも優れていることが知られている。
Since the nanocrystalline alloy exhibits excellent soft magnetic characteristics, it is used in magnetic cores of common mode choke coils, high frequency transformers, earth leakage alarms, pulse transformers and the like.
As a typical composition system, the alloy system described in Japanese Patent Publication No. 4393/1992 and JP-A-1-242755 is known. These nanocrystalline alloys are usually produced by rapidly cooling from a liquid phase or a vapor phase to form an amorphous alloy, and then microcrystallizing the amorphous alloy by heat treatment. As a method of quenching from the liquid phase, a single roll method, a twin roll method,
Centrifugal quenching method, rotating submerged spinning method, atomizing method, cavitation method and the like are known. Further, as a method of quenching from the gas phase, a sputtering method, a vapor deposition method, an ion plating method and the like are known. A nanocrystalline alloy is a microcrystal of an amorphous alloy produced by these methods, and has almost no thermal instability as seen in amorphous alloys.
It is known to exhibit excellent soft magnetic characteristics with high saturation magnetic flux density and low magnetostriction. Furthermore, it is known that the nanocrystalline alloy has a small change over time and is excellent in temperature characteristics.

【0010】また、特公平4ー4393に記載されているよう
なFe基の微結晶合金(ナノ結晶合金)が高透磁率低磁心
損失特性を示し、これらの用途に適していることが開示
されている。
Further, it is disclosed that a Fe-based microcrystalline alloy (nanocrystalline alloy) as described in JP-B-4-4393 exhibits high permeability and low core loss characteristics and is suitable for these applications. ing.

【0011】[0011]

【発明が解決しようとする課題】ノイズフィルタに用い
られるコモンモ−ドチョ−ク用磁心やISDN用パルストラ
ンス等では、高い比透磁率が要求される。特公平4-4393
にはナノ結晶合金の熱処理として5分以上24時間以下保
持することが記載されている。しかし、従来の方法で熱
処理し製造したナノ結晶合金では100000を越えるような
著しく高い透磁率の実現は困難であった。本発明の目的
は比初透磁率の著しく高いナノ結晶合金の製造方法を提
供することである。
A high relative permeability is required for a common mode choke magnetic core used for a noise filter, an ISDN pulse transformer, and the like. Japanese Patent Examination 4-4393
Describes that the heat treatment of the nanocrystalline alloy is maintained for 5 minutes or more and 24 hours or less. However, it was difficult to realize a remarkably high magnetic permeability exceeding 100,000 with the nanocrystalline alloy produced by heat treatment by the conventional method. An object of the present invention is to provide a method for producing a nanocrystalline alloy having a remarkably high relative magnetic permeability.

【0012】[0012]

【課題を解決するための手段】上記問題点を解決するた
めに本発明者らは、 一般式:(Fe1-aMa100-x-y-z-b-c-dAxM'yM''zXbSicBd
(原子%) 式中MはCo,Niから選ばれた少なくとも1種の元素を、Aは
Cu,Auから選ばれた少なくとも1種の元素、M'はTi,V,Zr,
Nb,Mo,Hf,TaおよびWから選ばれた少なくとも1種の元
素、M''はCr,Mn,Sn,Zn,Ag,In,白金属元素,Mg,Ca,Sr,Y,
希土類元素,N,OおよびSから選ばれた少なくとも1種の元
素、XはC,Ge,Ga,AlおよびPから選ばれた少なくとも1種
の元素を示し、a,x,y,z,b,cおよびdはそれぞれ0≦a≦0.
1、0.1≦x≦3、1≦y≦10、0≦z≦10、0≦b≦10、11≦c
≦17、3≦d≦10を満足する数で表される組成であり、平
均結晶粒径が30nm以下である結晶粒が組織の少なくとも
一部を占めるナノ結晶合金を得るのに結晶化温度より低
い温度から、結晶化温度以上に昇温または昇温後一定温
度に保持する時間を5分未満とし400゜Cまでの冷却速度を
20゜C/min以上とすることにより、磁場処理等を行わなく
とも比初透磁率が100000以上である特性を得ることが可
能であることを見い出し本発明に想到した。
Means for Solving the Problems The present inventors to solve the above problems, the general formula: (Fe 1-a M a ) 100-xyzbcd A x M 'y M''z X b Si c B d
(Atomic%) In the formula, M is at least one element selected from Co and Ni, and A is
At least one element selected from Cu, Au, M'is Ti, V, Zr,
Nb, Mo, Hf, at least one element selected from Ta and W, M '' is Cr, Mn, Sn, Zn, Ag, In, white metal element, Mg, Ca, Sr, Y,
Rare earth element, at least one element selected from N, O and S, X represents at least one element selected from C, Ge, Ga, Al and P, a, x, y, z, b , c and d are 0 ≦ a ≦ 0.
1, 0.1 ≦ x ≦ 3, 1 ≦ y ≦ 10, 0 ≦ z ≦ 10, 0 ≦ b ≦ 10, 11 ≦ c
≦ 17, a composition represented by a number satisfying 3 ≦ d ≦ 10, the average crystal grain size is 30 nm or less than the crystallization temperature to obtain a nanocrystalline alloy occupying at least a part of the structure From a low temperature to a temperature above the crystallization temperature, or after the temperature has been raised, hold the temperature at a constant temperature for less than 5 minutes, and set a cooling rate up to 400 ° C.
The inventors have found that by setting the temperature to 20 ° C./min or more, it is possible to obtain the characteristic that the relative initial magnetic permeability is 100000 or more without performing magnetic field treatment, etc.

【0013】前述の結晶は主にSiを含むbccFe相であ
り、規則格子を含む場合もある。また、Si以外の元素た
とえばB,Al,Ge,Zr等を固溶している場合もある。前記結
晶相以外の残部は主にアモルファス相であるが、実質的
に結晶相だけからなる合金も本発明に含まれる。
The above-mentioned crystal is a bccFe phase mainly containing Si and may include a regular lattice. In addition, elements other than Si, such as B, Al, Ge, and Zr, may be solid-dissolved. The balance other than the crystalline phase is mainly an amorphous phase, but an alloy consisting essentially of the crystalline phase is also included in the present invention.

【0014】比初透磁率は直流B-Hル−プの初磁化曲線
から求められるものであるが、周波数が高くなるに伴い
比初透磁率(実効比透磁率)は一定もしくは低下して行
く。このため、たとえば、50Hzから1kHz程度の周波数で
の比初透磁率μir(実効比透磁率μe)が100000を越え
ていれば本発明には当然のことながら含まれる。このと
きの測定励磁レベルは通常0.05A・m-1以下である。
The relative initial permeability is obtained from the initial magnetization curve of the DC BH loop, but the relative initial permeability (effective relative permeability) becomes constant or decreases as the frequency increases. Therefore, for example, if the relative initial magnetic permeability μ ir (effective relative magnetic permeability μ e ) at a frequency of about 50 Hz to 1 kHz exceeds 100000, it is naturally included in the present invention. The measured excitation level at this time is usually 0.05 A · m −1 or less.

【0015】本発明合金は、前記組成のアモルファス合
金を単ロ−ル法等の超急冷法により作製後、これを磁心
の形状に加工し、ある条件範囲内で熱処理を行い平均粒
径30nm以下の微結晶を形成することにより作製する。
The alloy of the present invention has an average grain size of 30 nm or less after the amorphous alloy having the above composition is produced by the ultra-quenching method such as the single roll method, processed into the shape of the magnetic core, and heat-treated within a certain condition range. It is produced by forming fine crystals of.

【0016】具体的には、結晶化温度より低い温度から
結晶化温度以上に昇温または一定温度に5分未満保持
後、少なくとも400゜Cまでは20゜C/min以上の冷却速度に
なるようにしながら室温まで冷却する熱処理により前記
高透磁率ナノ結晶合金を製造することが可能となる。従
来、特性のばらつき等を考慮すると保持時間は5分以上
と考えられていたが、100000を越えるような高透磁率を
実現するためには5分未満の熱処理時間が望ましいこと
が判明した。更に、鋭意検討を進めた結果ばらつきにつ
いても昇温速度をコントロ−ルすることにより5分以上
保持した場合と同等にすることが可能であることが分か
った。好ましい昇温速度は0.2〜30℃/minで、
より好ましい昇温速度は1〜10℃/minである。
More specifically, the temperature is raised from the temperature lower than the crystallization temperature to the temperature higher than the crystallization temperature or kept at a constant temperature for less than 5 minutes, and the cooling rate is 20 ° C / min or more up to at least 400 ° C. The high permeability nanocrystalline alloy can be manufactured by the heat treatment of cooling to room temperature. Conventionally, the holding time was considered to be 5 minutes or more in consideration of variations in characteristics, but it has been found that a heat treatment time of less than 5 minutes is desirable in order to realize a high magnetic permeability exceeding 100000. Furthermore, it was found that, as a result of intensive study, the variation can be made equal to that obtained when the temperature rising rate is controlled for 5 minutes or more. A preferable temperature rising rate is 0.2 to 30 ° C./min,
A more preferable temperature rising rate is 1 to 10 ° C./min.

【0017】結晶化は昇温中にかなり進行するため保持
時間をのばすことは結晶化を進め特性を向上する点では
あまり重要でないことが判明した。むしろ、結晶化後長
時間保持することは保持中に本来不要な誘導磁気異方性
が生じ初透磁率を低下する方向に働いていることが分っ
た。
It has been found that extending the holding time is not so important in terms of promoting crystallization and improving the characteristics, since crystallization progresses considerably during temperature rise. Rather, it has been found that holding for a long time after crystallization causes an originally unnecessary induced magnetic anisotropy during holding and acts in the direction of decreasing the initial magnetic permeability.

【0018】本熱処理において、少なくとも400゜Cまで
は20゜C/min以上の冷却速度になるようにしながら室温ま
で冷却することが重要である。20゜C/min未満の冷却速度
では、不要な誘導磁気異方性が生じ高い比初透磁率が得
られない。より好ましい冷却速度の範囲は30〜400
℃/minである。
In this heat treatment, it is important to cool to room temperature while maintaining a cooling rate of 20 ° C / min or more up to at least 400 ° C. At a cooling rate of less than 20 ° C / min, unnecessary induced magnetic anisotropy occurs and high specific permeability cannot be obtained. More preferable cooling rate range is 30 to 400.
C / min.

【0019】また、結晶化のための熱処理において昇温
または一定温度に保持する時間が5分未満である第1の
熱処理工程の後、500゜C以下の前記温度よりも低い温度
まで冷却し磁場を印加しながら一定時間保持する第2の
熱処理工程後、室温まで冷却するあるいは、結晶化温度
以上まで昇温後0から5分保持し室温付近まで冷却する第
1の結晶化のための熱処理後に500゜C以下の前記第1の熱
処理よりも低い温度で少なくとも一部の期間磁場を印加
し第2の熱処理を行なうことによっても前記高透磁率ナ
ノ結晶合金を製造することが可能となる。第2の熱処理
は250℃以上で行なうと好ましい。
In the heat treatment for crystallization, after the first heat treatment step in which the temperature is raised or kept at a constant temperature for less than 5 minutes, the magnetic field is cooled to a temperature lower than 500 ° C. lower than the above temperature. After the second heat treatment step of holding for a certain period of time while applying, the temperature is cooled to room temperature, or the temperature is raised to the crystallization temperature or higher and then held for 0 to 5 minutes and cooled to near room temperature
The high permeability nanocrystalline alloy can also be obtained by applying a magnetic field for at least part of a temperature lower than the first heat treatment at 500 ° C. or lower after the heat treatment for crystallization of 1, and performing the second heat treatment. It becomes possible to manufacture. The second heat treatment is preferably performed at 250 ° C. or higher.

【0020】この場合、低角形比でかつ高い透磁率を示
すナノ結晶合金が実現できる。この理由は結晶化温度以
上に昇温後保持する時間が従来の熱処理よりも短く、磁
区構造に関連する場所によりいろいろな方向が容易軸と
なるような誘導磁気異方性が生じにくいため、低い温度
で磁場中熱処理を行った場合に異方性の分散が小さくな
り、低角形比で高透磁率が実現されていると考えられ
る。
In this case, a nanocrystalline alloy having a low squareness ratio and a high magnetic permeability can be realized. The reason for this is that the holding time after elevating the temperature above the crystallization temperature is shorter than in the conventional heat treatment, and induced magnetic anisotropy in which various directions are easy axes depending on the location related to the magnetic domain structure is less likely to occur, so it is low. It is considered that when annealed in a magnetic field at a temperature, anisotropy dispersion is reduced, and high permeability is realized with a low squareness ratio.

【0021】更に、この場合は透磁率の周波数特性も改
善され、高い周波数においては磁場中熱処理しない場合
よりも透磁率が向上する。磁場を印加する時間は透磁率
との関係で決定されるが高透磁率を得る観点からは2時
間以内、より好ましくは1時間以内、特に望ましくは30
分以内が好ましい。
Further, in this case, the frequency characteristic of magnetic permeability is also improved, and the magnetic permeability is improved at a high frequency as compared with the case where no heat treatment is performed in a magnetic field. The time for applying the magnetic field is determined in relation to the magnetic permeability, but from the viewpoint of obtaining high magnetic permeability, it is within 2 hours, more preferably within 1 hour, and particularly preferably 30
Within minutes is preferable.

【0022】前記組成をはずれた合金ではこれらの熱処
理方法を適用しても比初透磁率が100000以上であるナノ
結晶合金を製造することは困難である。磁場を印加する
方向は合金薄帯の幅方向あるいは厚さ方向から多少ずれ
ていても良いが特に合金薄帯の幅方向あるいは厚さ方向
である場合に低角形比で高い透磁率が得易い。磁心の場
合は磁心の高さ方向あるいは径方向に相当する。印加す
る磁場の強さは実用的な形状では通常80kA・m-1以上であ
る。磁場は合金が飽和する程度印加する必要がある。印
加磁場が大きい程合金の飽和が確実となり好ましいが、
合金が完全に飽和する磁界であればそれ以上強い磁界を
印加する必要はない。
It is difficult to produce a nanocrystalline alloy having a relative initial magnetic permeability of 100,000 or more even if these heat treatment methods are applied to alloys having a deviated composition. The direction of applying the magnetic field may be slightly deviated from the width direction or the thickness direction of the alloy ribbon, but particularly in the width direction or the thickness direction of the alloy ribbon, it is easy to obtain a high magnetic permeability with a low squareness ratio. In the case of a magnetic core, it corresponds to the height direction or the radial direction of the magnetic core. The strength of the applied magnetic field is usually 80 kA · m −1 or more in a practical shape. The magnetic field should be applied to the extent that the alloy is saturated. The larger the applied magnetic field, the more reliable the alloy becomes, which is preferable.
If the magnetic field is such that the alloy is completely saturated, it is not necessary to apply a stronger magnetic field.

【0023】合金の板厚は通常2μmから50μm程度であ
るが15μm以下の薄帯である場合は特に透磁率や磁心損
失の周波数特性に優れた特性が実現できる。この場合、
特にコモンモ−ドチョ−ク等ノイズフィルタ用のコアや
高周波トランス用コア等に好適である。
The plate thickness of the alloy is usually about 2 μm to 50 μm, but when it is a thin band of 15 μm or less, excellent characteristics can be realized particularly in frequency characteristics such as magnetic permeability and magnetic core loss. in this case,
In particular, it is suitable for a core for a noise filter such as a common mode choke and a core for a high frequency transformer.

【0024】前記熱処理は窒素、アルゴン、ヘリウムか
ら選ばれた少なくとも1種のガス雰囲気中で行うと特に
軟磁気特性の劣化が小さく望ましい。雰囲気ガス中には
一般的に酸素が含まれているが、酸素量は透磁率に悪影
響を及ぼすため少ない方が望ましく、酸素量は1%以下、
より好ましくは0.1%以下、特に望ましくは0.01%以下で
ある。雰囲気ガスは炉内で移動するようにすることが大
型の磁心や多数の磁心を処理する場合に有効である
It is desirable that the heat treatment is carried out in an atmosphere of at least one gas selected from nitrogen, argon and helium, since the soft magnetic characteristics are not particularly deteriorated. Oxygen is generally contained in the atmosphere gas, but it is desirable that the amount of oxygen is small because it adversely affects the magnetic permeability, and the amount of oxygen is 1% or less,
It is more preferably 0.1% or less, and particularly preferably 0.01% or less. It is effective to move the atmosphere gas in the furnace when processing a large magnetic core or a large number of magnetic cores.

【0025】本発明合金および磁心は必要に応じてSi
O2、MgO、Al2O3等を主体とする粉末あるいは膜で合金薄
帯表面の少なくとも片面を被覆し、化成処理やアノ−ド
分極処理により表面を処理し、表面に絶縁層を形成し層
間絶縁を行う場合がある。これは特に高周波における渦
電流の影響を低減し、透磁率や磁心損失を改善する効果
がある。層間絶縁は表面状態が良好でかつ広幅の薄帯か
ら構成された磁心の場合に特に効果が著しい。
The alloys and magnetic cores of the present invention may contain Si if necessary.
At least one surface of the alloy ribbon surface is coated with a powder or film mainly containing O 2 , MgO, Al 2 O 3, etc., and the surface is treated by chemical conversion treatment or anodic polarization treatment to form an insulating layer on the surface. Interlayer insulation may be performed. This is particularly effective in reducing the effect of eddy currents at high frequencies and improving magnetic permeability and core loss. The interlayer insulation is particularly effective in the case of a magnetic core having a good surface condition and composed of a wide ribbon.

【0026】[0026]

【作用】本発明では、結晶化温度以上に昇温後の保持時
間を短くすることにより本来透磁率向上の目的には必要
としない無磁場熱処理中に生ずる場所により大きさや方
向が異なる誘導磁気異方性を小さくでき高透磁率を実現
できるという効果がある。更に、低い温度で磁場中熱処
理を適用し、誘導磁気異方性を一方向に付与することに
より、無磁場熱処理中に生ずる誘導磁気異方性が原因と
なる異方性の分散が小さくできるため、低角形比でフラ
ットな形状のB-Hル−プを示しかつ高透磁率を示す特性
を実現できるという効果がある。
In the present invention, by shortening the holding time after the temperature is raised above the crystallization temperature, the induced magnetic anisotropy whose size and direction are different depending on the location generated during the heat treatment without magnetic field, which is not originally necessary for the purpose of improving the magnetic permeability. This has the effect of reducing the directionality and achieving high magnetic permeability. Furthermore, by applying heat treatment in a magnetic field at a low temperature and imparting induced magnetic anisotropy in one direction, it is possible to reduce the anisotropy dispersion caused by the induced magnetic anisotropy that occurs during heat treatment without a magnetic field. In addition, it is possible to realize a flat BH loop with a low squareness ratio and a high magnetic permeability.

【0027】[0027]

【実施例】以下本発明を実施例にしたがって説明するが
本発明はこれらに限定されるものではない。 (実施例1)原子%でCu 1%, Nb 3.2%, Si 15.4%, B 6.6
%残部実質的にFeからなる合金溶湯を単ロ−ル法により
急冷し、幅6.5mm厚さ18μmのアモルファス合金を得た。
このアモルファス合金を外径20mm、内径10mmに巻回し、
トロイダル磁心を作製した。この合金の結晶化温度Tx
測定したところ506゜Cであった。作製した磁心をアルゴ
ン雰囲気、450゜Cに保った熱処理炉に挿入し、図1に示
す熱処理パタ−ンで熱処理を行い合金A、B、Cを作製し
た。合金Aはta=0分、合金Bはta=2分、合金Cはta=4分
とした。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. (Example 1) Cu 1%, Nb 3.2%, Si 15.4%, B 6.6 in atomic%
The remaining molten alloy consisting essentially of Fe was quenched by a single roll method to obtain an amorphous alloy with a width of 6.5 mm and a thickness of 18 μm.
This amorphous alloy is wound around an outer diameter of 20 mm and an inner diameter of 10 mm,
A toroidal magnetic core was produced. The crystallization temperature T x of this alloy was measured and found to be 506 ° C. The produced magnetic core was inserted into a heat treatment furnace kept at 450 ° C in an argon atmosphere, and heat-treated in the heat treatment pattern shown in Fig. 1 to produce alloys A, B and C. Alloy A is t a = 0 min, the alloy B is t a = 2 min, alloy C was t a = 4 min.

【0028】比較のために550゜Cで5分、15分、30分、60
分保持し熱処理を行った合金D、E、F、Gの磁気特性も検
討した。得られた磁気特性を表1に示す。ここで、800A
・m-1の磁界を印加した場合の磁束密度はB800、残留磁束
密度はBrである。
For comparison, at 550 ° C for 5 minutes, 15 minutes, 30 minutes, 60
The magnetic properties of alloys D, E, F, and G that were held for minutes and heat treated were also examined. Table 1 shows the obtained magnetic characteristics. Where 800A
・ When a magnetic field of m -1 is applied, the magnetic flux density is B 800 and the residual magnetic flux density is B r .

【0029】[0029]

【表1】 [Table 1]

【0030】表から分るように本発明に係わる熱処理を
行った合金A、B、Cでは比初透磁率μirが100000以上の
特性が得られる。一方、550゜Cで5分以上保持した従来の
熱処理を行った合金DからGは比初透磁率μirは100000未
満の値しか示さなかった。図2に従来例の合金Dの直流
B-Hル−プの例を示す。 本発明合金Aは、従来の合金D
に比べて保磁力が小さい。本来不要な誘導磁気異方性が
本発明合金の方が小さく、磁区の固着の程度が小さいた
めに本発明熱処理を適用した本発明合金の方が高い透磁
率が得られているものと考えられる。 一方、本発明に
係わる組成外の合金(Febal.Cu1Nb3Si10B9)を比較例とし
て、本発明と同じ熱処理を行った場合の磁気特性も表1
に示す。この場合同じ熱処理を行っても発明合金のよう
な100000を越える高い比初透磁率は得られなかった。
As can be seen from the table, the alloys A, B and C which have been subjected to the heat treatment according to the present invention have characteristics that the specific initial magnetic permeability μ ir is 100000 or more. On the other hand, alloys D to G which had been subjected to the conventional heat treatment at 550 ° C for 5 minutes or more showed specific initial magnetic permeability µ ir of less than 100000. Fig. 2 shows DC of alloy D of the conventional example.
An example of a BH loop is shown. Inventive alloy A is conventional alloy D
Coercive force is smaller than It is considered that since the alloy of the present invention originally has an unnecessary induced magnetic anisotropy and the degree of magnetic domain fixation is small, the alloy of the present invention to which the heat treatment of the present invention is applied has a higher magnetic permeability. . On the other hand, the magnetic properties of the alloy (Fe bal. Cu 1 Nb 3 Si 10 B 9 ) having a composition other than the composition according to the present invention as a comparative example and subjected to the same heat treatment as in the present invention are also shown in Table 1.
Shown in In this case, even if the same heat treatment was performed, a high specific initial magnetic permeability exceeding 100,000 like the invention alloy could not be obtained.

【0031】(実施例2)原子%でCu 1%, Nb 3%, Si 1
3.8%, B 8.5%残部実質的にFeからなる合金溶湯を減圧雰
囲気のヘリウムガス中で単ロ−ル法により急冷し、幅5m
mで厚さ6μmのアモルファス合金を作製した。次にこの
アモルファス合金薄帯表面をSiO2により被覆した。この
アモルファス合金薄帯を外径19mm、内径15mmに巻回し、
トロイダル磁心を作製した。この合金の結晶化温度Tx
測定したところ523゜Cであった。次にこの合金を図3に
示す熱処理パタ−ンで熱処理した。昇温速度は1.5゜C/mi
nとし、550゜Cまで昇温し、保持時間は零とし、400゜Cま
での平均冷却速度S2を変えた。得られた結果を表2に示
す。
(Example 2) Cu 1%, Nb 3%, Si 1 in atomic%
3.8%, B 8.5% balance The alloy melt consisting essentially of Fe was rapidly cooled in a helium gas atmosphere under reduced pressure by the single roll method, and the width was 5 m.
An amorphous alloy with a thickness of 6 μm was prepared. Next, the surface of this amorphous alloy ribbon was covered with SiO 2 . This amorphous alloy ribbon is wound around an outer diameter of 19 mm and an inner diameter of 15 mm,
A toroidal magnetic core was produced. The crystallization temperature T x of this alloy was measured and found to be 523 ° C. Next, this alloy was heat-treated by the heat treatment pattern shown in FIG. Temperature rising rate is 1.5 ° C / mi
n, the temperature was raised to 550 ° C, the holding time was zero, and the average cooling rate S 2 up to 400 ° C was changed. The obtained results are shown in Table 2.

【0032】[0032]

【表2】 [Table 2]

【0033】S2が20゜C/min以上の場合に100000を越える
高い比初透磁率が得られた。一方20゜C/min未満では1000
00未満の値しか得られなかった。
When S 2 was 20 ° C./min or more, a high specific initial magnetic permeability exceeding 100000 was obtained. On the other hand, 1000 at less than 20 ° C / min
Only values less than 00 were obtained.

【0034】(実施例3)表3に示す組成の合金溶湯を
単ロ−ル法により急冷し、幅12.5mm厚さ18μmのアモル
ファス合金薄帯を得た。次にこの合金薄帯を外径20mm内
径14mmに巻回し、トロイダル巻磁心を作製した。次に図
4に示す熱処理パタ−ンで熱処理を行った。熱処理後の
合金の角形比Br・B800 -1および比初透磁率μirを測定し
た。測定した結果を表3に示す。
Example 3 A molten alloy having the composition shown in Table 3 was rapidly cooled by a single roll method to obtain an amorphous alloy ribbon having a width of 12.5 mm and a thickness of 18 μm. Next, this alloy ribbon was wound around an outer diameter of 20 mm and an inner diameter of 14 mm to prepare a toroidal wound magnetic core. Next, heat treatment was performed using the heat treatment pattern shown in FIG. The squareness ratio B r · B 800 −1 and the relative initial permeability μ ir of the heat-treated alloy were measured. Table 3 shows the measured results.

【0035】[0035]

【表3】 [Table 3]

【0036】本発明に係わる組成範囲の合金において、
比初透磁率100000以上が得られる。また、角形比も30%
以下となった。しかし、本発明に関わる組成範囲以外の
合金は高い磁気特性は得られなかった。この理由は本発
明範囲外では磁場中熱処理により大きな異方性がつくこ
とや磁歪が大きくなることが関連していると思われる。
In the alloy having the composition range according to the present invention,
A relative magnetic permeability of 100,000 or more can be obtained. Also, the squareness ratio is 30%
It was as follows. However, alloys outside the composition range related to the present invention could not obtain high magnetic properties. It is considered that the reason for this is that, outside the scope of the present invention, large anisotropy and large magnetostriction are caused by heat treatment in a magnetic field.

【0037】(実施例4)原子%でCu 1%, Nb 2.5%, Cr
0.2%, Si 14.8%, B 7.5%, Sn 0.05%残部実質的にFeから
なる合金溶湯を単ロ−ル法により急冷し、幅10mm厚さ18
μmのアモルファス合金薄帯を得た。この合金の結晶化
温度は490゜Cであった。このアモルファス合金を外径30m
m、内径20mmに巻回し、トロイダル磁心を作製した。次
に図5(a)(b)(c)に示す熱処理パタ−ンで熱処理を行っ
た。それぞれの熱処理パタ−ンで行った場合のこの合金
Cの角形比、比初透磁率を表4に示す。比較のため本発
明合金の範囲外の組成の合金(原子%でCu 1%, Nb 2.5%,
Si 10%, B 11%)(合金D)の磁気特性も示す。
(Example 4) Cu 1%, Nb 2.5%, Cr in atomic%
0.2%, Si 14.8%, B 7.5%, Sn 0.05% The balance is made by quenching the alloy melt consisting essentially of Fe by the single roll method, and width 10 mm and thickness 18
An amorphous alloy ribbon of μm was obtained. The crystallization temperature of this alloy was 490 ° C. This amorphous alloy has an outer diameter of 30 m
The toroidal magnetic core was produced by winding the m-shaped steel sheet with an inner diameter of 20 mm. Next, heat treatment was performed using the heat treatment patterns shown in FIGS. 5 (a) (b) (c). This alloy when performed with each heat treatment pattern
Table 4 shows the squareness ratio and relative magnetic permeability of C. For comparison, alloys having compositions outside the range of the alloy of the present invention (Cu 1% at atomic%, Nb 2.5%,
The magnetic properties of Si 10%, B 11%) (alloy D) are also shown.

【0038】本発明合金の組成では本熱処理が有効であ
り、100000を越える高い比初透磁率が実現されるが、本
発明合金の組成範囲外では100000を越える比初透磁率は
得られない。
The present heat treatment is effective for the composition of the alloy of the present invention, and a high specific initial magnetic permeability exceeding 100000 is realized, but a specific initial magnetic permeability exceeding 100000 cannot be obtained outside the composition range of the alloy of the present invention.

【0039】[0039]

【表4】 [Table 4]

【0040】(実施例5)表5に示す組成の合金溶湯単
ロ−ル法により急冷し、幅12.5mm厚さ18μmのアモルフ
ァス合金薄帯を得た。次にこの合金薄帯を外径20mm内径
14mmに巻回し、トロイダル巻磁心を作製した。次に図6
に示す熱処理パタ−ンで熱処理を行った。熱処理後の合
金の角形比Br・B800 -1、比初透磁率μirおよび100kHz,
0.2Tにおける磁心損失Pcを測定した。測定した結果を表
5に示す。
Example 5 A molten alloy having the composition shown in Table 5 was rapidly cooled by a single roll method to obtain an amorphous alloy ribbon having a width of 12.5 mm and a thickness of 18 μm. Next, use this alloy ribbon with an outer diameter of 20 mm
The toroidal wound magnetic core was wound around 14 mm. Next in FIG.
The heat treatment was performed by the heat treatment pattern shown in. Squareness ratio of heat-treated alloy B r · B 800 -1 , specific initial permeability μ ir and 100 kHz,
The core loss P c at 0.2 T was measured. Table 5 shows the measured results.

【0041】[0041]

【表5】 [Table 5]

【0042】本発明合金の組成範囲において、比初透磁
率100000以上が得られる。この理由は本発明範囲外では
磁場中熱処理により大きな異方性がつくことや磁歪が大
きくなることが関連していると思われる。本発明の熱処
理からはずれる500゜Cを越える保持温度Taで磁場中熱処
理した場合は100000を越える比初透磁率は得られず、本
発明の熱処理と組み合わせることにより初めてこのよう
な低角形比で高い比初透磁率が実現された。また、磁心
損失Pcも300kW・m-3以下と低く、磁心損失が低いことが
重要である各種トランスやチョ−クコイル等の用途にも
適する。
In the composition range of the alloy of the present invention, a specific initial magnetic permeability of 100,000 or more is obtained. It is considered that the reason for this is that, outside the scope of the present invention, large anisotropy and large magnetostriction are caused by heat treatment in a magnetic field. When a heat treatment in a magnetic field at a holding temperature T a exceeding 500 ° C, which deviates from the heat treatment of the present invention, a specific initial magnetic permeability exceeding 100000 cannot be obtained, and it is only when such a low squareness ratio is obtained by combining with the heat treatment of the present invention. A high relative magnetic permeability has been realized. Moreover, the magnetic core loss P c is as low as 300 kW · m −3 or less, and it is suitable for various transformers, choke coils, and the like where low magnetic core loss is important.

【0043】[0043]

【発明の効果】本発明によれば、著しく高い比初透磁率
を示すナノ結晶合金の製造方法を提供することができる
ためその効果は著しいものがある。
EFFECTS OF THE INVENTION According to the present invention, a method for producing a nanocrystalline alloy exhibiting a remarkably high relative initial magnetic permeability can be provided, so that the effect is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる熱処理パタ−ンを示した図であ
る。
FIG. 1 is a diagram showing a heat treatment pattern according to the present invention.

【図2】本発明に係わる合金の直流B-Hル−プの一例を
示した図である。
FIG. 2 is a diagram showing an example of a DC BH loop of an alloy according to the present invention.

【図3】本発明に係わる熱処理パタ−ンを示した図であ
る。
FIG. 3 is a view showing a heat treatment pattern according to the present invention.

【図4】本発明に係わる熱処理パタ−ンを示した図であ
る。
FIG. 4 is a view showing a heat treatment pattern according to the present invention.

【図5】本発明に係わる熱処理パタ−ンを示した図であ
る。
FIG. 5 is a view showing a heat treatment pattern according to the present invention.

【図6】本発明に係わる熱処理パタ−ンを示した図であ
る。
FIG. 6 is a view showing a heat treatment pattern according to the present invention.

フロントページの続き (72)発明者 荒川 俊介 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社磁性材料研究所内Front page continuation (72) Inventor Shunsuke Arakawa 5200 Mikageri, Kumagaya, Saitama Hitachi Metals Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一般式:(Fe1-aMa100-x-y-z-b-c-dAx
M'yM''zXbSicBd(原子%)式中MはCo,Niから選ばれた少な
くとも1種の元素を、AはCu,Auから選ばれた少なくとも1
種の元素、M'はTi,V,Zr,Nb,Mo,Hf,TaおよびWから選ばれ
た少なくとも1種の元素、M''はCr,Mn,Sn,Zn,Ag,In,白金
属元素,Mg,Ca,Sr,Y,希土類元素,N,OおよびSから選ばれ
た少なくとも1種の元素、XはC,Ge,Ga,AlおよびPから選
ばれた少なくとも1種の元素を示し、a,x,y,z,b,cおよび
dはそれぞれ0≦a≦0.1、0.1≦x≦3、1≦y≦10、0≦z≦1
0、0≦b≦10、11≦c≦17、3≦d≦10を満足する数で表さ
れる組成であるアモルファス合金を熱処理により微結晶
化するナノ結晶合金の製造方法において、結晶化温度よ
り低い温度から結晶化温度以上に昇温後、少なくとも40
0゜Cまでは20゜C/min以上の冷却速度になるようにして室
温まで冷却することを特徴とする高透磁率ナノ結晶合金
の製造方法。
1. A general formula: (Fe 1-a M a ) 100-xyzbcd A x
M'y M '' z X b Si c B d (atomic%) In the formula, M is at least one element selected from Co and Ni, and A is at least 1 selected from Cu and Au.
Element, M'is at least one element selected from Ti, V, Zr, Nb, Mo, Hf, Ta and W, M '' is Cr, Mn, Sn, Zn, Ag, In, white metal Element, Mg, Ca, Sr, Y, at least one element selected from rare earth elements, N, O and S, X represents at least one element selected from C, Ge, Ga, Al and P , A, x, y, z, b, c and
d is 0 ≦ a ≦ 0.1, 0.1 ≦ x ≦ 3, 1 ≦ y ≦ 10, 0 ≦ z ≦ 1
0, 0 ≤ b ≤ 10, 11 ≤ c ≤ 17, 3 ≤ d ≤ 10 In the method for producing a nanocrystalline alloy that crystallizes an amorphous alloy by heat treatment, the crystallization temperature After raising the temperature from a lower temperature to above the crystallization temperature, at least 40
A method for producing a high-permeability nanocrystalline alloy, which comprises cooling to room temperature at a cooling rate of 20 ° C / min or more up to 0 ° C.
【請求項2】 請求項1に記載のナノ結晶合金の製造方
法において、結晶化温度より低い温度から結晶化温度以
上に昇温した後一定温度に5分未満保持後、少なくとも4
00゜Cまでは20゜C/min以上の冷却速度になるようにして室
温まで冷却することを特徴とする高透磁率ナノ結晶合金
の製造方法。
2. The method for producing a nanocrystalline alloy according to claim 1, wherein after the temperature is raised from a temperature lower than the crystallization temperature to the crystallization temperature or more and then kept at a constant temperature for less than 5 minutes, at least 4
A method for producing a high-permeability nanocrystalline alloy, which comprises cooling to room temperature at a cooling rate of 20 ° C / min or more up to 00 ° C.
【請求項3】 結晶化温度以上に昇温後または一定温度
に一定期間保持後に室温付近まで冷却する第1の結晶化
のための熱処理後に500゜C以下の前記第1の熱処理の保持
温度よりも低い温度に磁場を印加しながら一定期間保持
し第2の熱処理を行なうことを特徴とする請求項1また
は請求項2に記載の高透磁率ナノ結晶合金の製造方法。
3. A holding temperature of the first heat treatment of 500 ° C. or lower after the heat treatment for the first crystallization, which is performed after the temperature is raised to the crystallization temperature or higher or after being kept at a constant temperature for a certain period and then cooled to around room temperature. The method for producing a high-permeability nanocrystalline alloy according to claim 1 or 2, wherein the second heat treatment is carried out by applying a magnetic field at a low temperature for a certain period of time and holding the same.
【請求項4】 一般式:(Fe1-aMa100-x-y-z-b-c-dAx
M'yM''zXbSicBd(原子%)式中MはCo,Niから選ばれた少な
くとも1種の元素を、AはCu,Auから選ばれた少なくとも1
種の元素、M'はTi,V,Zr,Nb,Mo,Hf,TaおよびWから選ばれ
た少なくとも1種の元素、M''はCr,Mn,Sn,Zn,Ag,In,白金
属元素,Mg,Ca,Sr,Y,希土類元素,N,OおよびSから選ばれ
た少なくとも1種の元素、XはC,Ge,Ga,AlおよびPから選
ばれた少なくとも1種の元素を示し、a,x,y,z,b,cおよび
dはそれぞれ0≦a≦0.1、0.1≦x≦3、1≦y≦10、0≦z
≦10、0≦b≦10、11≦c≦17、3≦d≦10を満足する数で
表される組成であるアモルファス合金を熱処理により微
結晶化するナノ結晶合金の製造方法において、結晶化温
度以上に昇温する第1の熱処理工程の後、500゜C以下の温
度まで冷却した後磁場を印加しながら一定時間保持する
第2の熱処理工程後、室温まで冷却することを特徴とす
る高透磁率ナノ結晶合金の製造方法。
4. The general formula: (Fe 1-a M a ) 100-xyzbcd A x
M'y M '' z X b Si c B d (atomic%) In the formula, M is at least one element selected from Co and Ni, and A is at least 1 selected from Cu and Au.
Element, M'is at least one element selected from Ti, V, Zr, Nb, Mo, Hf, Ta and W, M '' is Cr, Mn, Sn, Zn, Ag, In, white metal Element, Mg, Ca, Sr, Y, at least one element selected from rare earth elements, N, O and S, X represents at least one element selected from C, Ge, Ga, Al and P , A, x, y, z, b, c and
d is 0 ≦ a ≦ 0.1, 0.1 ≦ x ≦ 3, 1 ≦ y ≦ 10, 0 ≦ z
In the method for producing a nanocrystalline alloy, in which an amorphous alloy having a composition represented by a number satisfying ≦ 10, 0 ≦ b ≦ 10, 11 ≦ c ≦ 17, 3 ≦ d ≦ 10 is microcrystallized by heat treatment, crystallization is performed. After the first heat treatment step of raising the temperature above the temperature, after cooling to a temperature of 500 ° C or less, after the second heat treatment step of holding for a certain time while applying a magnetic field, it is cooled to room temperature. Method for producing magnetic permeability nanocrystalline alloy.
【請求項5】 請求項4に記載のナノ結晶合金の製造方
法において、第1の熱処理工程において結晶化温度以上
に昇温後一定温度に5分未満保持後、500゜C以下の温度ま
で冷却した後、磁場を印加しながら一定時間保持する第
2の熱処理工程後、室温まで冷却することを特徴とする
高透磁率ナノ結晶合金の製造方法。
5. The method for producing a nanocrystalline alloy according to claim 4, wherein in the first heat treatment step, the temperature is raised to crystallization temperature or higher, held at a constant temperature for less than 5 minutes, and then cooled to a temperature of 500 ° C. or lower. After applying the magnetic field, hold for a certain period of time while applying a magnetic field.
A method for producing a high-permeability nanocrystalline alloy, which comprises cooling to room temperature after the heat treatment step of 2.
【請求項6】 磁場を印加する方向が合金薄帯の幅方向
あるいは厚さ方向であることを特徴とする請求項3乃至
請求項5のいずれかの項に記載のナノ結晶合金の製造方
法。
6. The method for producing a nanocrystalline alloy according to claim 3, wherein the direction in which the magnetic field is applied is the width direction or the thickness direction of the alloy ribbon.
JP18280695A 1994-07-20 1995-07-19 Method for producing high permeability nanocrystalline alloy Expired - Lifetime JP3856245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18280695A JP3856245B2 (en) 1994-07-20 1995-07-19 Method for producing high permeability nanocrystalline alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-168170 1994-07-20
JP16817094 1994-07-20
JP18280695A JP3856245B2 (en) 1994-07-20 1995-07-19 Method for producing high permeability nanocrystalline alloy

Publications (2)

Publication Number Publication Date
JPH0885821A true JPH0885821A (en) 1996-04-02
JP3856245B2 JP3856245B2 (en) 2006-12-13

Family

ID=26491982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18280695A Expired - Lifetime JP3856245B2 (en) 1994-07-20 1995-07-19 Method for producing high permeability nanocrystalline alloy

Country Status (1)

Country Link
JP (1) JP3856245B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773619B2 (en) 2001-07-17 2004-08-10 Tdk Corporation Magnetic core for transformer, Mn-Zn based ferrite composition and methods of producing the same
KR100710613B1 (en) * 2005-08-04 2007-04-24 한국과학기술연구원 Fe-BASED NANO CRYSTALLINE ALLOY AND METHOD FOR MANUFACTURING THE SAME
JP2015056424A (en) * 2013-09-10 2015-03-23 Necトーキン株式会社 Method of manufacturing soft magnetic core
WO2016017578A1 (en) * 2014-07-28 2016-02-04 日立金属株式会社 Current transformer core, method for manufacturing same, and device equipped with said core
CN106755842A (en) * 2016-12-21 2017-05-31 广东工业大学 A kind of heat treatment method of iron based nano crystal material
JP2017183334A (en) * 2016-03-28 2017-10-05 日立金属株式会社 Method of heat-treating tape-wound core in magnetic field
WO2018062310A1 (en) 2016-09-29 2018-04-05 日立金属株式会社 Nanocrystal alloy magnetic core, magnetic core unit, and method for manufacturing nanocrystal alloy magnetic core
WO2018155514A1 (en) * 2017-02-22 2018-08-30 日立金属株式会社 Magnetic core unit, current transformer, and method for manufacturing same
CN109440023A (en) * 2018-12-26 2019-03-08 中国科学院宁波材料技术与工程研究所 A kind of high magnetic strength nitrogen coupling Fe-based amorphous nanocrystalline alloy and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7318218B2 (en) * 2019-01-30 2023-08-01 セイコーエプソン株式会社 Soft magnetic powders, dust cores, magnetic elements and electronic devices

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773619B2 (en) 2001-07-17 2004-08-10 Tdk Corporation Magnetic core for transformer, Mn-Zn based ferrite composition and methods of producing the same
KR100710613B1 (en) * 2005-08-04 2007-04-24 한국과학기술연구원 Fe-BASED NANO CRYSTALLINE ALLOY AND METHOD FOR MANUFACTURING THE SAME
JP2015056424A (en) * 2013-09-10 2015-03-23 Necトーキン株式会社 Method of manufacturing soft magnetic core
JPWO2016017578A1 (en) * 2014-07-28 2017-06-15 日立金属株式会社 Current transformer core, method of manufacturing the same, and apparatus including the core
WO2016017578A1 (en) * 2014-07-28 2016-02-04 日立金属株式会社 Current transformer core, method for manufacturing same, and device equipped with said core
JP2017183334A (en) * 2016-03-28 2017-10-05 日立金属株式会社 Method of heat-treating tape-wound core in magnetic field
WO2018062310A1 (en) 2016-09-29 2018-04-05 日立金属株式会社 Nanocrystal alloy magnetic core, magnetic core unit, and method for manufacturing nanocrystal alloy magnetic core
JPWO2018062310A1 (en) * 2016-09-29 2019-06-24 日立金属株式会社 Nanocrystal alloy core, magnetic core unit and method of manufacturing nanocrystal alloy core
JP2019201215A (en) * 2016-09-29 2019-11-21 日立金属株式会社 Method for manufacturing nanocrystal alloy magnetic core
JP2021002663A (en) * 2016-09-29 2021-01-07 日立金属株式会社 Method for manufacturing nanocrystal alloy magnetic core
CN106755842A (en) * 2016-12-21 2017-05-31 广东工业大学 A kind of heat treatment method of iron based nano crystal material
WO2018155514A1 (en) * 2017-02-22 2018-08-30 日立金属株式会社 Magnetic core unit, current transformer, and method for manufacturing same
JPWO2018155514A1 (en) * 2017-02-22 2020-01-23 日立金属株式会社 Magnetic core unit, current transformer, and manufacturing method thereof
CN109440023A (en) * 2018-12-26 2019-03-08 中国科学院宁波材料技术与工程研究所 A kind of high magnetic strength nitrogen coupling Fe-based amorphous nanocrystalline alloy and preparation method thereof

Also Published As

Publication number Publication date
JP3856245B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
US5611871A (en) Method of producing nanocrystalline alloy having high permeability
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
EP1237165B1 (en) Co-based magnetic alloy and magnetic members made of the same
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP2573606B2 (en) Magnetic core and manufacturing method thereof
JP4547671B2 (en) High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JP3856245B2 (en) Method for producing high permeability nanocrystalline alloy
JPH01247557A (en) Manufacture of hyperfine-crystal soft-magnetic alloy
JP2713373B2 (en) Magnetic core
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPH0867911A (en) Method for heat-treating nano-crystalline magnetic alloy
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JP4003166B2 (en) Co-based magnetic alloy and magnetic component using the same
JP2513645B2 (en) Amorphous magnetic core excellent in effective pulse magnetic permeability and manufacturing method thereof
JPH01247556A (en) Fe-base magnetic alloy excellent in iso-permeability characteristic

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050811

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

EXPY Cancellation because of completion of term