JPH0645128A - Magnetic core comprising ultra-fine crystalline alloy excellent in dc-superimposed characteristic and manufacturing method thereof, and choke coil and transformer using the core - Google Patents

Magnetic core comprising ultra-fine crystalline alloy excellent in dc-superimposed characteristic and manufacturing method thereof, and choke coil and transformer using the core

Info

Publication number
JPH0645128A
JPH0645128A JP4199662A JP19966292A JPH0645128A JP H0645128 A JPH0645128 A JP H0645128A JP 4199662 A JP4199662 A JP 4199662A JP 19966292 A JP19966292 A JP 19966292A JP H0645128 A JPH0645128 A JP H0645128A
Authority
JP
Japan
Prior art keywords
magnetic core
less
flux density
alloy
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4199662A
Other languages
Japanese (ja)
Other versions
JP3287481B2 (en
Inventor
Katsuto Yoshizawa
克仁 吉沢
Yoshio Bizen
嘉雄 備前
Shunsuke Arakawa
俊介 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP19966292A priority Critical patent/JP3287481B2/en
Publication of JPH0645128A publication Critical patent/JPH0645128A/en
Application granted granted Critical
Publication of JP3287481B2 publication Critical patent/JP3287481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Abstract

PURPOSE:To obtain the title magnetic core having excellent DC-superimposed characteristics at low magnetic core loss by making use of ultra-fine crystalline alloy having crystalline particles in specific particle diameter and residual flux density. CONSTITUTION:Within the title choke coil, transformer, an ultra-fine crystalline alloy wherein at least 50% of the structure thereof is held by crystalline particles in particle diameter not exceeding 500Angstrom as well as residual flux density not exceeding 7000G and the density at 10Oe not exceeding 7000G is used as the title magnetic core. This magnetic core displays the characteristics thereof fit for a transformer or normal mode choke when the residual flux density and the flux density at 10Oe does not exceed 7000G. Besides, it recommended that the mean particle diameter does not exceed 300Angstrom . It is also required that the ratio of crystalline particles exceeds 50% of the structure and if it does not exceed 50%, the magnetostriction is intensified to start humming in audio-frequency. Through these procedures, the title ultra-fine crystalline alloy having excellent DC-superimposed characteristics at low magnetic core loss can be obtained thereby enabling the effect on a choke coil and transformer using the same to be notably enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波トランス、ノ−
マルモードチョークコイル等に用いられる直流重畳特性
に優れた高周波磁気特性に優れる超微細結晶粒組織を有
する合金を用いた磁心およびその製法並びにこれを用い
たチョ−クコイル、トランスに関する。
BACKGROUND OF THE INVENTION The present invention relates to a high frequency transformer and a node.
The present invention relates to a magnetic core using an alloy having an ultrafine grain structure excellent in high-frequency magnetic characteristics excellent in DC superposition characteristics used in a malmode choke coil, a manufacturing method thereof, a choke coil and a transformer using the same.

【0002】[0002]

【従来の技術】高周波トランスや平滑チョ−クやノイズ
フィルタ用ノーマルモードチョーク等に用いられる磁心
材料としては、直流重畳特性に優れた材料が、磁気的飽
和による回路部品の破損がおきにくく、動作磁束密度を
大きくできる点や直流が重畳した状態で高い増分透磁率
が得られる点等から好まれている。高周波トランスにお
いては磁心が磁気的に飽和すると回路素子が破壊するた
めカットコアなどを用いる場合が多い。また、カットコ
アは巻線が容易であるためこの点からも好まれている。
通常このような用途に適する特性とするために、金属材
料の場合はギャップを形成したり、圧粉磁心とすること
によりB−H曲線の傾斜を小さくし直流重畳特性を改善
する方法が行われている。直流重畳特性は、直流重畳磁
界HDCに対する増分透磁率μ△の依存性であり、μ△が
DCに対してできる限り高いことが望ましい。ノ−マル
モ−ドチョ−ク用としては10Oe以上のHDCに対しても
十分高いμ△が必要となる。上記用途に適する材料とし
ては、珪素鋼、Fe基アモルファス合金等の高飽和磁束
密度材料や高周波磁気特性に優れたフェライトやパ−マ
ロイ圧粉磁心等が用いられている。
2. Description of the Related Art As a magnetic core material used for a high frequency transformer, a smooth choke, a normal mode choke for a noise filter, etc., a material having excellent DC superposition characteristics is used because it is less likely to damage circuit components due to magnetic saturation. It is preferred because it can increase the magnetic flux density and can obtain high incremental magnetic permeability in the state where DC is superposed. In a high frequency transformer, a circuit element is destroyed when the magnetic core is magnetically saturated, so that a cut core is often used. The cut core is also preferred because of its ease of winding.
Usually, in order to obtain characteristics suitable for such applications, a method is used in which a gap is formed in the case of a metal material or a powder magnetic core is used to reduce the slope of the BH curve to improve the DC superposition characteristics. ing. The DC superposition characteristic is a dependency of the incremental magnetic permeability μΔ on the DC superposition magnetic field H DC , and it is desirable that μΔ is as high as possible with respect to H DC . Roh - Malmö - Docho - it is necessary to sufficiently high μ △ even for more H DC 10Oe as a click. As materials suitable for the above applications, high saturation magnetic flux density materials such as silicon steel and Fe-based amorphous alloys, and ferrites and permalloy powder magnetic cores having excellent high frequency magnetic characteristics are used.

【0003】[0003]

【発明が解決しようとする課題】しかし、珪素鋼やFe
基アモルファス合金などは磁心損失が大きいため温度上
昇が大きくなる問題や効率が低下する問題がある。また
使用に際しては直流重畳特性を改善するためギャップを
形成したりカットコアにしたりする必要がある。このた
めギャップ部や接合部からの磁束の漏れにより周辺機器
に影響を与えたり漏れ磁束による渦電流のため磁心損失
が増加する問題がある。また、Fe基アモルファス合金は
磁歪が著しく大きく周波数によっては磁歪による共振が
生じ特性が変化する問題や可聴周波数帯で使用した場合
にうなりが生ずる問題がある。また磁心損失もCo基ア
モルファスやフェライトに比べると大きく発熱が大きい
問題も残されている。一方、フェライトやパーマロイ圧
粉磁心はFe系の材料に比べ直流重畳特性が十分でなく
磁心が大きくなる問題がある。また、特公平4ー4393号公
報にはFe基の微結晶合金が高透磁率低磁心損失特性を示
すことが開示されている。しかし、Fe基微結晶合金は磁
気的に飽和しやすく上記用途にはこのままでは適してい
ない。このためこれらの用途に用いる場合はギャップを
形成するのが一般的である。しかし、ギャップを形成す
ると磁心損失が増加したり漏洩磁束がギャップ部に生じ
実装した場合に周辺の部品に影響を与える場合がある。
However, silicon steel and Fe
Amorphous base alloys and the like have a large magnetic core loss, which causes a problem of a large temperature rise and a problem of reduced efficiency. In addition, it is necessary to form a gap or use a cut core in order to improve the direct current superposition characteristic during use. Therefore, there is a problem that the leakage of the magnetic flux from the gap portion or the joint portion affects the peripheral devices and the magnetic core loss increases due to the eddy current caused by the leakage magnetic flux. Further, the Fe-based amorphous alloy has remarkably large magnetostriction, and there is a problem that resonance occurs due to magnetostriction depending on the frequency and the characteristics change, and a beat occurs when used in the audible frequency band. Further, there is still a problem that the core loss is larger than that of Co-based amorphous and ferrite, and the heat generation is large. On the other hand, ferrite and permalloy powder magnetic cores have a problem that the DC superposition characteristics are not sufficient and the magnetic core becomes large as compared with Fe-based materials. Further, Japanese Patent Publication No. 44393 discloses that a Fe-based microcrystalline alloy exhibits high permeability and low core loss characteristics. However, the Fe-based microcrystalline alloy is apt to be magnetically saturated and is not suitable for the above-mentioned use as it is. Therefore, it is common to form a gap when used for these applications. However, when the gap is formed, magnetic core loss may increase or leakage magnetic flux may occur in the gap portion, which may affect peripheral components when mounted.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
めに本発明者らは粒径が500オングストローム以下の結
晶粒が組織の少なくとも50%を占めており、残留磁束密
度が7000G以下、10 Oeにおける磁束密度が7000G以下で
ある超微結晶合金からなる磁心が直流重畳特性に優れて
おりノ−マルモ−ドチョ−クや高周波トランス等に適し
ていることを見いだし本発明に想到した。本発明におい
て、残留磁束密度が7000G以下、10 Oeにおける磁束密度
が7000G以下である場合にトランスや平滑チョ−ク等の
ノ−マルモ−ドチョ−クに適する特性を示す。残留磁束
密度が7000Gを超えると磁心損失が増加し好ましくな
く、10 Oeにおける磁束密度が7000Gを超えると増分透磁
率の低下する直流重畳磁界が小さくなり好ましくない。
特に残留磁束密度が6000G以下、10 Oeにおける磁束密度
が4000G以下である場合には平滑チョ−ク等のノ−マル
モ−ドチョ−クに適する磁心が得られる。残留磁束密度
が6000G以下の場合は特に磁心損失が低くなる。結晶粒
がbcc相からなる場合に特に磁心損失が低い。また、結
晶粒がbcc相とFe-B化合物相からなる場合に増分透磁率
は1000以下とすることができ、ノーマルモ−ドチョ−ク
等の用途に特に望ましい。また、平均粒径が1000オング
ストロ−ムを超えると軟磁気特性が著しく悪くなり好ま
しくない。好ましくは300オングストロ−ム、より好ま
しくは200オングストロ−ム以下である。また、結晶粒
の割合は組織の少なくとも50%以上である必要がある。5
0%未満の場合は磁歪が大きくなり、可聴周波数ではうな
りを生ずる、高周波においては共振により特定の周波数
で透磁率や磁心損失が急激に変化し好ましくない。ま
た、磁歪の増加の影響で変形により特性が変化したり磁
心損失も大きくなり好ましくない。本発明に係わる合金
中の結晶粒は主にbcc相からなり、規則相を含む場合が
ある。結晶粒の残部は主にアモルファス相である。本発
明に係わる合金において好ましい組成は、 組成式:(Fe1-aMa)100-x-y-z-αAxSiyBzM'α(at%) (但
し、MはCo及び/またはNiであり、AはCu、Auから選ばれ
る少なくとも一種の元素、M'はMo,V,Cr,Mn及びWからな
る群から選ばれた少なくとも1種の元素であり、a,x,y,z
およびαはそれぞれ0≦a≦0.3,0≦x≦3,0≦y≦20,2≦z
≦15,0.1≦α≦10を満たす。)により表される組成、あ
るいは、 組成式:(Fe1-aMa)100-x-y-z-α-βAxSiyBzM'
αM''β(at%) (但し、MはCo及び/またはNiであり、Aは
Cu、Auから選ばれる少なくとも一種の元素、M'はMo,V,C
r,Mn及びWからなる群から選ばれた少なくとも1種の元
素、M''はNb,Ta,Ti,Zr,Hf,Al,Sn,In,Ag,Pd,Rh,Ru,Os,I
r,Ptから選ばれた少なくとも1種の元素であり、a,x,y,z
およびαはそれぞれ0≦a≦0.3,0≦x≦3,0≦y≦20,2≦z
≦15,0.1≦α≦10,0<β≦10を満たす。)により表され
る組成、あるいは、 組成式:(Fe1-aMa)100-x-y-z-α-βAxSiyBzM'αM''βX
γ(at%) (但し、MはCo及び/またはNiであり、AはCu、A
uから選ばれる少なくとも一種の元素、M'はMo,V,Cr,Mn
及びWからなる群から選ばれた少なくとも1種の元素、
M''はNb,Ta,Ti,Zr,Hf,Al,Sn,In,Ag,Pd,Rh,Ru,Os,Ir,Pt
から選ばれた少なくとも1種の元素、XはC,Ge,Ga,Pから
選ばれる少なくとも1種の元素であり、a,x,y,zおよびα
はそれぞれ、0≦a ≦0.5,0≦x≦3,0≦y≦20,2≦z≦15,
0.1≦α≦10,0<β≦10,0<γ≦10を満たす。)により
表される組成が直流重畳特性に優れかつ低磁心損失に優
れた特性が得られ好ましい。ここで、MはCo及び/また
はNiでありCo,Niの総和の組成比aが0.3を越えると高周
波特性が劣下し好ましくない。AはCuおよびAuから選ば
れる少なくとも一種の元素であり組織を微細化しbccFe
相を形成しやすくする効果を有するが3at%を越えると脆
化し実用的でなくなる。M'はMo,,V,Cr,Mn及びWからなる
群から選ばれた少なくとも1種の元素であり結晶粒成長
を抑え組織を微細化する効果および直流重畳特性を改善
する効果を有し、本発明には有効な元素である。M'の含
有量αが10%を越えると飽和磁束密度の著しい低下を示
すためαは10at%以下が望ましい。M''はNb,Ta,Ti,Zr,H
f,Al,Sn,In,Ag,Pd,Rh,Ru,Os,Ir,Ptからなる群から選ば
れた少なくとも1種の元素であり、結晶粒の微細化や磁
気特性を改善したり耐蝕性を改善する効果を有する。
M''の含有量βが10at%を越えると飽和磁束密度の著しい
低下を示すためβは10以下が望ましい。XはC,Ge,Ga,Pか
らなる群から選ばれた少なくとも1種の元素であり磁歪
を調整したり磁気特性を調整する効果を有する。Xの含
有量γが10at%を越えると著しい飽和磁束密度の低下を
招くためγは10以下が望ましい。Si及びBは磁心損失の
改善及び透磁率の改善に効果があり、Si量yは20at%以
下、B量zは2から15at%以下が望ましい。もう一つの本発
明は液体急冷法によりアモルファス合金薄帯を製造する
工程と、結晶化開始温度以上で5分以上24時間以下の温
度で組織の50%が粒径500オングストローム以下の結晶粒
となるように熱処理し、残留磁束密度が7000G以下、10O
eにおける磁束密度が7000G以下となるようにする工程か
らなる直流重畳特性に優れた前記超微結晶合金からなる
磁心の製造方法である。まず、単ロ−ル法や双ロ−ル法
等の液体急冷法により板厚3〜100μm程度のアモルファ
ス合金薄帯を作製する。次に、この合金薄帯を積層ある
いは巻回した後アルゴンガスや窒素ガス等の不活性ガス
雰囲気中あるいは大気中で結晶化開始温度以上で5分以
上24時間以下の時間保持して組織の50%が粒径500オング
ストローム以下の結晶粒、残留磁束密度が7000G以下、1
0 Oeにおける磁束密度が7000G以下となるように熱処理
を行う。熱処理温度は結晶化開始温度以上とする必要が
ある。これは、結晶化開始温度未満では実用的な時間で
熱処理を完了するのが困難となるためと、上記特性を得
るのが困難となるためである。熱処理の際の保持時間は
5分以上24時間以下が望ましい。この理由は5分未満では
合金を均一な温度とするのが困難であり十分な特性が得
られず、24時間を超えると生産性の点で好ましくないか
らである。冷却は、急冷あるいは徐冷のどちらでも良い
が通常は徐冷の方が好ましい結果が得られる。通常の冷
却速度は0.1゜C/min以下である。この際、合金薄帯表面
をSiO2やAl2O3等の酸化物で被覆し層間絶縁を行うと特
に広幅材を用いる場合においてより好ましい結果が得ら
れる。層間絶縁の方法としては、電気泳動法によりMgO
等の酸化物を付着させる方法、金属アルコキシド溶液を
表面につけこれを熱処理しSiO2等の酸化物を形成させる
方法、リン酸塩やクロム酸塩処理を行い表面に酸化物の
被覆を行う方法、CVDやPVDにより表面にAlNやTiN等の皮
膜を形成する方法等がある。また、絶縁性のポリイミド
やPET等のフィルムを薄帯間に挿入し層間絶縁を行っ
たりする方法がある。もうひとつの本発明は、前記超微
結晶合金からなる磁心に導線を巻回し構成されたチョ−
クコイルである。直流重畳特性に優れしかも磁心損失が
小さいため小型で高性能のチョ−クコイルとなる。単ロ
−ル法等により作製した前記合金薄帯を積層あるいはト
ロイダル状に巻回し、磁心を作製した後結晶化開始温度
以上の温度で熱処理し、組織の50%が粒径500オングスト
ロ−ム以下の結晶粒となるようにする。更にこの磁心を
絶縁性のコアケ−スに入れる、あるいはコ−ティングを
行った後に導線を巻回しチョ−クコイルを作製する。も
うひとつの本発明は、上記超微結晶合金からなる磁心に
少なくとも2本の導線を巻回し構成されたトランスであ
る。直流重畳特性に優れるため偏磁等により磁心が飽和
し回路が破損する可能性が小さく、わざわざギャップを
設けたり、カットコアとする必要がない。また、ギャッ
プ部がないため漏洩磁束も小さく周囲への影響が小さ
い。また磁心損失が小さくかつ動作磁束密度を大きくと
ることができる。このため、小型のトランスとなる。単
ロ−ル法等により作製した前記合金薄帯を積層あるいは
トロイダル状に巻回し、磁心を作製した後結晶化開始温
度以上の温度で熱処理し、組織の50%が粒径500オン
グストロ−ム以下の結晶粒となるようにする。更にこの
磁心を絶縁性のコアケ−スに入れる、あるいはコ−ティ
ングを行った後に少なくとも2本の導線を巻回しトラン
スを作製する。
In order to solve the above problems, the inventors of the present invention have crystal grains with a grain size of 500 angstroms or less occupying at least 50% of the structure, and a residual magnetic flux density of 7,000 G or less, 10 The inventors have found that a magnetic core made of an ultrafine crystal alloy having a magnetic flux density in Oe of 7,000 G or less is excellent in direct current superposition characteristics and is suitable for a normal mode choke, a high frequency transformer and the like, and conceived the present invention. In the present invention, when the residual magnetic flux density is 7,000 G or less and the magnetic flux density at 10 Oe is 7,000 G or less, it exhibits characteristics suitable for a normal mode choke such as a transformer or a smooth choke. When the residual magnetic flux density exceeds 7,000 G, the magnetic core loss increases, which is not preferable, and when the magnetic flux density at 10 Oe exceeds 7,000 G, the DC magnetic field in which the incremental magnetic permeability lowers becomes small, which is not preferable.
In particular, when the residual magnetic flux density is 6000 G or less and the magnetic flux density at 10 Oe is 4000 G or less, a magnetic core suitable for a normal mode choke such as a smooth choke can be obtained. When the residual magnetic flux density is 6000 G or less, the core loss is particularly low. The core loss is particularly low when the crystal grains consist of the bcc phase. Further, when the crystal grains are composed of the bcc phase and the Fe-B compound phase, the incremental magnetic permeability can be 1000 or less, which is particularly desirable for applications such as normal mode choke. On the other hand, if the average particle size exceeds 1,000 angstroms, the soft magnetic properties are significantly deteriorated, which is not preferable. It is preferably 300 angstroms, more preferably 200 angstroms or less. Further, the proportion of crystal grains needs to be at least 50% or more of the structure. Five
If it is less than 0%, the magnetostriction becomes large, causing humming at an audible frequency, and at high frequencies, the magnetic permeability and the core loss rapidly change at a specific frequency due to resonance, which is not preferable. Further, the characteristics are changed due to the deformation due to the increase of the magnetostriction and the core loss is increased, which is not preferable. The crystal grains in the alloy according to the present invention mainly consist of the bcc phase and may contain an ordered phase. The rest of the crystal grains are mainly the amorphous phase. The preferred composition of the alloy according to the present invention is: (Fe 1-a M a ) 100-xyz- αA x Si y B z M'α (at%) (where M is Co and / or Ni) , A is Cu, at least one element selected from Au, M'is at least one element selected from the group consisting of Mo, V, Cr, Mn and W, a, x, y, z
And α are 0 ≤ a ≤ 0.3, 0 ≤ x ≤ 3, 0 ≤ y ≤ 20, 2 ≤ z
It satisfies ≦ 15, 0.1 ≦ α ≦ 10. ), Or the composition formula: (Fe 1-a M a ) 100-xyz- α - βA x Si y B z M '
αM''β (at%) (where M is Co and / or Ni and A is
At least one element selected from Cu and Au, M'is Mo, V, C
at least one element selected from the group consisting of r, Mn and W, M '' is Nb, Ta, Ti, Zr, Hf, Al, Sn, In, Ag, Pd, Rh, Ru, Os, I
At least one element selected from r, Pt, a, x, y, z
And α are 0 ≤ a ≤ 0.3, 0 ≤ x ≤ 3, 0 ≤ y ≤ 20, 2 ≤ z
≦ 15,0.1 ≦ α ≦ 10,0 <β ≦ 10 is satisfied. ) Or a composition formula: (Fe 1-a M a ) 100-xyz- α - βA x Si y B z M'αM''βX
γ (at%) (where M is Co and / or Ni, A is Cu, A
At least one element selected from u, M'is Mo, V, Cr, Mn
And at least one element selected from the group consisting of W,
M '' is Nb, Ta, Ti, Zr, Hf, Al, Sn, In, Ag, Pd, Rh, Ru, Os, Ir, Pt
At least one element selected from, X is at least one element selected from C, Ge, Ga, P, a, x, y, z and α
Are 0 ≤ a ≤ 0.5, 0 ≤ x ≤ 3, 0 ≤ y ≤ 20, 2 ≤ z ≤ 15,
0.1 ≦ α ≦ 10,0 <β ≦ 10,0 <γ ≦ 10 is satisfied. The composition represented by () is preferable because it has excellent DC superposition characteristics and low core loss. Here, M is Co and / or Ni, and if the total composition ratio a of Co and Ni exceeds 0.3, the high frequency characteristics deteriorate, which is not preferable. A is at least one element selected from Cu and Au.
It has the effect of facilitating the formation of phases, but if it exceeds 3 at%, it becomes brittle and impractical. M'is Mo, V, Cr, Mn and W is at least one element selected from the group consisting of and has the effect of refining the crystal grain growth and refining the structure and the effect of improving DC superposition characteristics, It is an effective element for the present invention. When the content α of M'exceeds 10%, the saturation magnetic flux density remarkably decreases, so α is preferably 10 at% or less. M '' is Nb, Ta, Ti, Zr, H
At least one element selected from the group consisting of f, Al, Sn, In, Ag, Pd, Rh, Ru, Os, Ir, and Pt. Has the effect of improving.
When the content β of M ″ exceeds 10 at%, the saturation magnetic flux density remarkably decreases, so β is preferably 10 or less. X is at least one element selected from the group consisting of C, Ge, Ga and P and has the effect of adjusting magnetostriction and magnetic properties. When the content γ of X exceeds 10 at%, the saturation magnetic flux density is remarkably reduced, so γ is preferably 10 or less. Si and B are effective in improving the core loss and the magnetic permeability, and it is desirable that the Si amount y is 20 at% or less and the B amount z is 2 to 15 at% or less. Another aspect of the present invention is the step of producing an amorphous alloy ribbon by the liquid quenching method, and 50% of the structure becomes crystal grains with a grain size of 500 angstroms or less at a temperature of 5 minutes or more and 24 hours or less above the crystallization start temperature. Heat treatment, the residual magnetic flux density is 7000G or less, 10O
A method for producing a magnetic core made of the above ultrafine crystal alloy, which is excellent in direct current superposition characteristics, and which comprises a step of setting the magnetic flux density at e to be 7,000 G or less. First, an amorphous alloy ribbon having a plate thickness of about 3 to 100 μm is produced by a liquid quenching method such as a single roll method or a twin roll method. Next, after stacking or winding the alloy ribbon, the structure of 50 minutes or more and 24 hours or less is maintained at a crystallization start temperature or higher in an inert gas atmosphere such as argon gas or nitrogen gas or in the atmosphere. % Is a crystal grain with a grain size of 500 Å or less, residual magnetic flux density is 7,000 G or less, 1
Heat treatment is performed so that the magnetic flux density at 0 Oe is 7,000 G or less. The heat treatment temperature must be higher than the crystallization start temperature. This is because it is difficult to complete the heat treatment in a practical time below the crystallization start temperature, and it is difficult to obtain the above characteristics. Hold time during heat treatment
5 minutes or more and 24 hours or less is desirable. The reason for this is that if the time is less than 5 minutes, it is difficult to keep the alloy at a uniform temperature and sufficient characteristics cannot be obtained, and if it exceeds 24 hours, it is not preferable in terms of productivity. The cooling may be either rapid cooling or gradual cooling, but gradual cooling usually gives preferable results. The usual cooling rate is 0.1 ° C / min or less. At this time, if the surface of the alloy ribbon is covered with an oxide such as SiO 2 or Al 2 O 3 for interlayer insulation, more preferable results can be obtained especially when a wide material is used. As a method for interlayer insulation, MgO by electrophoresis method is used.
A method of attaching oxides such as, a method of forming a metal alkoxide solution on the surface and heat-treating it to form an oxide such as SiO 2 , a method of performing phosphate or chromate treatment to coat the surface with an oxide, There is a method of forming a film such as AlN or TiN on the surface by CVD or PVD. There is also a method of inserting an insulating film such as polyimide or PET between the thin strips to perform interlayer insulation. Another aspect of the present invention is a chord formed by winding a conductive wire around a magnetic core made of the ultrafine crystal alloy.
It's a cocoile. The choke coil is small in size and high in performance because it has excellent DC superposition characteristics and has a small magnetic core loss. The alloy ribbons produced by the single roll method or the like are laminated or wound in a toroidal shape, and after the magnetic core is produced, heat treatment is performed at a temperature higher than the crystallization start temperature, and 50% of the structure has a grain size of 500 angstroms or less. So that it becomes the crystal grain of. Further, this magnetic core is put into an insulating core case or coated, and then a conducting wire is wound to produce a choke coil. Another aspect of the present invention is a transformer formed by winding at least two conducting wires around a magnetic core made of the ultrafine crystal alloy. Since the direct current superimposition characteristics are excellent, there is little possibility that the magnetic core will be saturated and the circuit will be damaged due to demagnetization or the like, and it is not necessary to provide a gap or use a cut core. Further, since there is no gap, the leakage magnetic flux is small and the influence on the surroundings is small. Further, the magnetic core loss is small and the operating magnetic flux density can be large. Therefore, the transformer is small. The alloy ribbons produced by the single roll method or the like are laminated or wound in a toroidal shape, and after the magnetic core is produced, heat treatment is performed at a temperature higher than the crystallization start temperature, and 50% of the structure has a grain size of 500 angstroms or less. So that it becomes the crystal grain of. Further, this magnetic core is put in an insulating core case, or after coating, at least two conducting wires are wound to form a transformer.

【0005】[0005]

【実施例】以下本発明を実施例にしたがって説明するが
本発明はこれらに限定されるものではない。 (実施例1)単ロ−ル法により幅6.5mm、厚さ19μmのFe
bal.Cu1Mo3Si16B6アモルファス合金薄帯を作製した。次
にこの合金薄帯を、外径21.5mm内径12.0mmに巻回し610゜
Cで1時間の熱処理を無磁場中で行った。この合金の組
織を観察したところほとんどが粒径約200オングストロ
ームのbcc結晶粒になっていた。またX線回折の結果よ
り一部に化合物相が形成していた。次にこの磁心をフェ
ノ−ル樹脂性のコアケ−スに入れ直流B−Hカ−ブを測
定した。非常に残留磁束密度が低く恒透磁率性に優れた
B−Hカ−ブを示す。残留磁束密度Brは3500G、10 Oeに
おける磁束密度は3600Gである。次に直径0.7mmの導線を
20タ−ン巻きチョ−クコイルを作製し、10kHzにおける
直流重畳特性を測定した。得られた結果を図1に示す。
比較のためにギャップを形成したフェライト磁心とMoパ
−マロイ圧粉磁心の直流重畳特性を示す。本発明合金の
増分透磁率μ△は40 Oeまで150以上ありフェライトやMo
パ−マロイ圧粉磁心よりも優れている。また、従来の超
微結晶合金が重畳磁界が大きくなると急激に増分透磁率
μΔが小さくなるのに対して本発明合金からなるチョー
クはμΔが大きくノ−マルモ−ドチョ−クとして優れた
特性を示す。このため平滑チョ−クやノ−マルモ−ドの
ノイズ防止用チョ−クに適している。 次に100kHz,2kG
における磁心損失を測定した。得られた結果を表1に示
す。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. (Embodiment 1) Fe having a width of 6.5 mm and a thickness of 19 μm by a single roll method
bal. Cu 1 Mo 3 Si 16 B 6 Amorphous alloy ribbon was prepared. Next, this alloy ribbon is wound around an outer diameter of 21.5 mm and an inner diameter of 12.0 mm, and 610 °
The heat treatment was carried out at C for 1 hour in the absence of a magnetic field. Observation of the structure of this alloy revealed that most of them were bcc crystal grains with a grain size of about 200 angstroms. In addition, a compound phase was partially formed according to the result of X-ray diffraction. Next, this magnetic core was placed in a phenol resin core case and the DC BH curve was measured. The B-H curve has a very low residual magnetic flux density and an excellent constant magnetic permeability. The residual magnetic flux density B r is 3500 G, and the magnetic flux density at 10 Oe is 3600 G. Next, a conductor with a diameter of 0.7 mm
A 20-turn winding choke coil was manufactured and the DC superposition characteristics at 10 kHz were measured. The obtained results are shown in FIG.
For comparison, the DC superposition characteristics of a ferrite core with a gap and a Mo permalloy dust core are shown. The incremental magnetic permeability μΔ of the alloy of the present invention is 150 or more up to 40 Oe, and ferrite and Mo
Better than permalloy dust core. Further, in the conventional ultra-fine crystal alloy, the incremental magnetic permeability μΔ rapidly decreases when the superimposed magnetic field becomes large, whereas the choke made of the alloy of the present invention has a large μΔ and exhibits excellent characteristics as a normal mode choke. . Therefore, it is suitable as a smooth choke and a choke for preventing noise of normal mode. Next, 100kHz, 2kG
The magnetic core loss was measured. The results obtained are shown in Table 1.

【表1】 従来の直流重畳特性に優れた材料に比べ磁心損失が低く
優れていることが分かる。
[Table 1] It can be seen that the core loss is low and superior to conventional materials having excellent DC superposition characteristics.

【0006】(実施例2)単ロ−ル法により幅6.5mm、
厚さ19μmのFebal.Cu1Mo3Si16B6アモルファス合金薄帯
を作製した。次にこの合金薄帯を、外径21.5mm、内径1
2.0mmに巻回し熱処理温度を変え1時間の熱処理を無磁場
中で行った。この合金の組織を透過電子顕微鏡で観察し
結晶粒径、X線回折により形成相を調べた。次にこの磁
心をフェノ−ル樹脂性のコアケ−スに入れ直流B−Hカ
−ブを測定した。得られた結果を表2に示す。なお、形
成相がアモルファス相のみからなる合金以外すべてbc
c相が組織の50%以上を占めていた。
(Example 2) 6.5 mm wide by a single roll method,
A 19 μm thick Fe bal. Cu 1 Mo 3 Si 16 B 6 amorphous alloy ribbon was prepared. Next, this alloy ribbon was cut to an outer diameter of 21.5 mm and an inner diameter of 1
It was wound to 2.0 mm and the heat treatment temperature was changed for 1 hour to perform heat treatment in a non-magnetic field. The structure of this alloy was observed by a transmission electron microscope to examine the grain size and the forming phase by X-ray diffraction. Next, this magnetic core was placed in a phenol resin core case and the DC BH curve was measured. The results obtained are shown in Table 2. All alloys except the alloy in which the forming phase consists of the amorphous phase are bc
Phase c accounted for 50% or more of the structure.

【表2】 結晶粒が組織の少なくとも50%以上で結晶粒径が500オンク゛
ストロ-ム以下、残留磁束密度Brが7000G以下、直流重畳磁界
が10 Oeにおける磁束密度が7000G以下となるように熱処
理を行った場合に直流重畳磁界が10 Oeにおける増分透
磁率μ△が高く、磁心損失の低い特性が得られ、ノ−マ
ルモ−ドチョ−クに適する特性を示す。
[Table 2] When heat treatment is performed so that the crystal grains are at least 50% of the structure, the crystal grain size is 500 angstroms or less, the residual magnetic flux density B r is 7,000 G or less, and the magnetic flux density at a DC superimposed magnetic field of 10 Oe is 7,000 G or less. At a DC superposed magnetic field of 10 Oe, the incremental magnetic permeability μΔ is high and the core loss is low, which is suitable for the normal mode choke.

【0007】(実施例3)単ロ−ル法により幅6.5mm、
厚さ19μmの表3,4に示す組成のアモルファス合金薄帯
を作製した。次にこの合金薄帯を、外径21.5mm内径12.0
mmに巻回し610゜Cで1時間の熱処理を無磁場中で行っ
た。これらの合金の組織を透過電子顕微鏡で観察し結晶
粒径、X線回折により形成相を調べた。その結果粒径が
500オングストロ−ム以下の結晶粒が組織の少なくとも5
0%以上を占めているのが確認された。次にこの磁心をフ
ェノ−ル樹脂性のコアケ−スに入れ直流B−Hカ−ブを
測定した。得られた結果を表3,4に示す。
(Example 3) A width of 6.5 mm was measured by a single roll method.
Amorphous alloy ribbons with the composition shown in Tables 3 and 4 with a thickness of 19 μm were prepared. Next, this alloy ribbon was cut to an outer diameter of 21.5 mm and an inner diameter of 12.0.
The film was wound into a millimeter and heat-treated at 610 ° C for 1 hour in a non-magnetic field. The structures of these alloys were observed with a transmission electron microscope to examine the crystal grain size and the forming phase by X-ray diffraction. As a result, the particle size
At least 5 grains of 500 angstroms or less in the structure
It was confirmed to account for more than 0%. Next, this magnetic core was placed in a phenol resin core case and the DC BH curve was measured. The obtained results are shown in Tables 3 and 4.

【表3】 [Table 3]

【表4】 [Table 4]

【0008】(実施例4)単ロ−ル法により幅6.5mm、
厚さ19μmのFebalCu1Nb2Si11B8(at%)の組成のアモルフ
ァス合金薄帯を作製した。次にこの合金薄帯を、外径2
1.5mm、内径12.0mmに巻回し熱処理を無磁場中で行っ
た。これらの合金の組織を透過電子顕微鏡で観察し結晶
粒径、X線回折により形成相を調べた。次にこの磁心を
フェノ−ル樹脂性のコアケ−スに入れ直流B−Hカ−ブ
を測定した。得られた結果を表4に示す。Brが7000Gを超
えると磁心損失が著しく増加し好ましくないことが分か
る。またB10が7000Gを超えた場合はμ△が低く直流重畳
特性が悪く好ましくない。
(Embodiment 4) A width of 6.5 mm is measured by a single roll method.
An amorphous alloy ribbon with a composition of Fe bal Cu 1 Nb 2 Si 11 B 8 (at%) with a thickness of 19 μm was prepared. Next, use this alloy ribbon with an outer diameter of 2
It was wound to a diameter of 1.5 mm and an inner diameter of 12.0 mm and heat-treated in a magnetic field-free. The structures of these alloys were observed with a transmission electron microscope to examine the crystal grain size and the forming phase by X-ray diffraction. Next, this magnetic core was placed in a phenol resin core case and the DC BH curve was measured. The results obtained are shown in Table 4. It can be seen that when B r exceeds 7,000 G, the core loss significantly increases, which is not preferable. Further, when B 10 exceeds 7,000 G, μΔ is low and the direct current superposition characteristic is poor, which is not preferable.

【表5】 [Table 5]

【0009】(実施例5)単ロ−ル法により幅6.5mm、
厚さ19μmのFebal.Cu1W3Si15B6アモルファス合金薄帯を
作製した。次にこの合金薄帯を、外径20mm、内径12.0mm
に巻回し605゜Cで1時間の熱処理を無磁場中で行った後2゜
C/minの速度で室温まで冷却し、本発明超微結晶合金を
作製した。次にこの磁心をフェノ−ル樹脂性のコアケ−
スに入れて巻磁心を作製し、更に巻線を行いトランスを
作製した。このトランスをスイッチング電源のメイント
ランスとして実機評価を行った。比較のために従来のFe
73.5Cu1Nb3Si13.5B9超微結晶合金を用いたトランスと比
較を行った。ギャップを形成したり、カットコアとしな
い場合従来の超微結晶合金を用いたトランスでは磁心が
飽和し、半導体が故障した。これに対して本発明のトラ
ンスは温度上昇40゜Cで回路もこわれることなく安定に動
作した。
(Example 5) A width of 6.5 mm was measured by a single roll method.
A 19 μm thick Fe bal. Cu 1 W 3 Si 15 B 6 amorphous alloy ribbon was prepared. Next, use this alloy ribbon with an outer diameter of 20 mm and an inner diameter of 12.0 mm.
After being heat-treated at 605 ° C for 1 hour in a non-magnetic field
After cooling to room temperature at a rate of C / min, the ultrafine crystal alloy of the present invention was produced. Next, this magnetic core is used as a phenol resin core
It was put in a coil to prepare a wound magnetic core, which was further wound to prepare a transformer. We evaluated this transformer as the main transformer of the switching power supply. Conventional Fe for comparison
A comparison was made with a transformer using a 73.5 Cu 1 Nb 3 Si 13.5 B 9 ultrafine crystal alloy. When a gap is not formed or a cut core is not used, the transformer using the conventional ultra-fine crystal alloy saturates the magnetic core and the semiconductor fails. On the other hand, the transformer of the present invention operated stably at a temperature rise of 40 ° C without breaking the circuit.

【0010】[0010]

【発明の効果】本発明によれば、ノ−マルモ−ドのチョ
−クコイルやトランスに適する直流重畳特性に優れかつ
低損失の超微結晶合金がおよびその製法並びにこれを用
いたチョ−クコイル、トランスを提供できるためその効
果は著しいものがある。
According to the present invention, an ultra-fine crystal alloy having excellent DC superposition characteristics and low loss, suitable for a normal mode choke coil and a transformer, a method for producing the same, and a choke coil using the same are provided. Since a transformer can be provided, its effect is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる超微結晶合金の直流重畳特性の
1例を示したグラフである。
FIG. 1 is a graph showing an example of DC superimposition characteristics of an ultrafine crystal alloy according to the present invention.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 粒径が500オングストローム以下の結晶
粒が組織の少なくとも50%を占めており、残留磁束密度
が7000G以下、10 Oeにおける磁束密度が7000G以下であ
る直流重畳特性に優れた超微結晶合金からなることを特
徴とする磁心。
1. A crystal grain having a grain size of 500 Å or less occupies at least 50% of the structure, a residual magnetic flux density of 7,000 G or less, and a magnetic flux density of 10 Oe of 7,000 G or less. A magnetic core characterized by being made of a crystalline alloy.
【請求項2】 残留磁束密度が6000G以下、10 Oeにおけ
る磁束密度が4000G以下である請求項1に記載の磁心。
2. The magnetic core according to claim 1, wherein the residual magnetic flux density is 6000 G or less and the magnetic flux density at 10 Oe is 4000 G or less.
【請求項3】 結晶粒がbcc相からなる請求項1または
2に記載の磁心。
3. The magnetic core according to claim 1, wherein the crystal grains are composed of a bcc phase.
【請求項4】 結晶粒がbcc相とFe-B化合物相からなる
請求項1または2に記載の磁心。
4. The magnetic core according to claim 1, wherein the crystal grains consist of a bcc phase and a Fe—B compound phase.
【請求項5】 超微結晶合金が、組成式:(Fe1-aMa)
100-x-y-z-αAxSiyBzM'α(at%) (但し、MはCo及び/ま
たはNiであり、AはCu、Auから選ばれる少なくとも一種
の元素、M'はMo,V,Cr,Mn及びWからなる群から選ばれた
少なくとも1種の元素であり、a,x,y,zおよびαはそれぞ
れ0≦a≦0.3,0≦x≦3,0≦y≦20,2≦z≦15,0.1≦α≦10
を満たす。)により表される組成からなる請求項1乃至
4のいずれかに記載の磁心。
5. The ultrafine crystal alloy has a composition formula: (Fe 1-a M a ).
100-xyz- αA x Si y B z M'α (at%) (where M is Co and / or Ni, A is at least one element selected from Cu and Au, M'is Mo, V, Cr, Mn and at least one element selected from the group consisting of W, a, x, y, z and α are respectively 0 ≤ a ≤ 0.3, 0 ≤ x ≤ 3, 0 ≤ y ≤ 20,2 ≦ z ≦ 15, 0.1 ≦ α ≦ 10
Meet The magnetic core according to any one of claims 1 to 4, which has a composition represented by (4).
【請求項6】 超微結晶合金が、組成式:(Fe1-aMa)
100-x-y-z-α-βAxSiyBzM'αM''β(at%) (但し、MはCo
及び/またはNiであり、AはCu、Auから選ばれる少なく
とも一種の元素、M'はMo,V,Cr,Mn及びWからなる群から
選ばれた少なくとも1種の元素、M''はNb,Ta,Ti,Zr,Hf,A
l,Sn,In,Ag,Pd,Rh,Ru,Os,Ir,Ptから選ばれた少なくとも
1種の元素であり、a,x,y,zおよびαはそれぞれ0≦a≦0.
3,0≦x≦3,0≦y≦20,2≦z≦15,0.1≦α≦10,0<β≦10
を満たす。)により表される組成からなる請求項1乃至
4のいずれかに記載の磁心。
6. The ultrafine crystal alloy has a composition formula: (Fe 1-a M a ).
100-xyz- α - βA x Si y B z M'αM''β (at%) ( where, M is Co
And / or Ni, A is at least one element selected from Cu and Au, M ′ is at least one element selected from the group consisting of Mo, V, Cr, Mn and W, and M ″ is Nb. , Ta, Ti, Zr, Hf, A
At least one selected from l, Sn, In, Ag, Pd, Rh, Ru, Os, Ir, Pt
It is one kind of element, a, x, y, z and α are 0 ≦ a ≦ 0.
3,0 ≤ x ≤ 3, 0 ≤ y ≤ 20, 2 ≤ z ≤ 15, 0.1 ≤ α ≤ 10, 0 <β ≤ 10
Meet The magnetic core according to any one of claims 1 to 4, which has a composition represented by (4).
【請求項7】 超微結晶合金が、組成式:(Fe1-aMa)
100-x-y-z-α-βAxSiyBzM'αM''βXγ(at%) (但し、Mは
Co及び/またはNiであり、AはCu、Auから選ばれる少な
くとも一種の元素、M'はMo,V,Cr,Mn及びWからなる群か
ら選ばれた少なくとも1種の元素、M''はNb,Ta,Ti,Zr,H
f,Al,Sn,In,Ag,Pd,Rh,Ru,Os,Ir,Ptから選ばれた少なく
とも1種の元素、XはC,Ge,Ga,Pから選ばれる少なくとも1
種の元素であり、a,x,y,zおよびαはそれぞれ0≦a≦0.
3, 0≦x≦3,0≦y≦20,2≦z≦15,0.1≦α≦10,0<β≦1
0,0<γ≦10を満たす。)により表される組成からなる請
求項1乃至4のいずれかに記載の磁心。
7. The ultrafine crystal alloy has a composition formula: (Fe 1-a M a ).
100-xyz- α - βA x Si y B z M'αM''βXγ (at%) (However, M is
Co and / or Ni, A is at least one element selected from Cu and Au, M ′ is at least one element selected from the group consisting of Mo, V, Cr, Mn and W, and M ″ is Nb, Ta, Ti, Zr, H
f, Al, Sn, In, Ag, Pd, Rh, Ru, Os, Ir, Pt at least one element selected from, X is at least 1 selected from C, Ge, Ga, P
It is a seed element, and a, x, y, z and α are each 0 ≦ a ≦ 0.
3, 0 ≤ x ≤ 3, 0 ≤ y ≤ 20, 2 ≤ z ≤ 15, 0.1 ≤ α ≤ 10, 0 <β ≤ 1
0,0 <γ ≦ 10 is satisfied. The magnetic core according to any one of claims 1 to 4, which has a composition represented by (4).
【請求項8】 請求項1乃至7のいずれかに記載の超微
結晶合金からなる磁心に導線を巻回し構成されたチョ−
クコイル。
8. A choke constructed by winding a conductor wire around a magnetic core made of the ultrafine crystal alloy according to claim 1. Description:
Cucoir.
【請求項9】 請求項1乃至7のいずれかに記載の超微
結晶合金からなる磁心に少なくとも2本の導線を巻回し
構成されたトランス。
9. A transformer constituted by winding at least two conducting wires around a magnetic core made of the ultrafine crystal alloy according to any one of claims 1 to 7.
【請求項10】 液体急冷法によりアモルファス合金薄
帯を製造する工程と、結晶化開始温度以上で5分以上2
4時間以下の温度で組織の50%が粒径500オングストロー
ム以下の結晶粒となるように熱処理し、残留磁束密度が
7000G以下、10 Oeにおける磁束密度が7000G以下となる
ようにする工程からなる直流重畳特性に優れた請求項1
乃至7のいずれかに記載の磁心の製造方法。
10. A step of producing an amorphous alloy ribbon by a liquid quenching method, and 5 minutes or more at a crystallization start temperature or higher 2
Heat treatment is performed at a temperature of 4 hours or less so that 50% of the structure becomes crystal grains with a grain size of 500 angstroms or less.
An excellent DC superimposition characteristic comprising a step of setting the magnetic flux density at 7,000 G or less and 10 Oe at 7,000 G or less.
8. The method for manufacturing a magnetic core according to any one of 7 to 7.
JP19966292A 1992-07-27 1992-07-27 Magnetic core made of ultra-microcrystalline alloy excellent in direct current superposition characteristics, method of manufacturing the same, and choke coil and transformer using the same Expired - Lifetime JP3287481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19966292A JP3287481B2 (en) 1992-07-27 1992-07-27 Magnetic core made of ultra-microcrystalline alloy excellent in direct current superposition characteristics, method of manufacturing the same, and choke coil and transformer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19966292A JP3287481B2 (en) 1992-07-27 1992-07-27 Magnetic core made of ultra-microcrystalline alloy excellent in direct current superposition characteristics, method of manufacturing the same, and choke coil and transformer using the same

Publications (2)

Publication Number Publication Date
JPH0645128A true JPH0645128A (en) 1994-02-18
JP3287481B2 JP3287481B2 (en) 2002-06-04

Family

ID=16411549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19966292A Expired - Lifetime JP3287481B2 (en) 1992-07-27 1992-07-27 Magnetic core made of ultra-microcrystalline alloy excellent in direct current superposition characteristics, method of manufacturing the same, and choke coil and transformer using the same

Country Status (1)

Country Link
JP (1) JP3287481B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119825A (en) * 1998-10-15 2000-04-25 Hitachi Metals Ltd Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JP2004218037A (en) * 2003-01-17 2004-08-05 Hitachi Metals Ltd High saturation magnetic flux density low core loss magnetic alloy, and magnetic component obtained by using the same
JP2005142547A (en) * 2003-10-15 2005-06-02 Sumitomo Electric Ind Ltd Soft magnetic material and dust core
JP2016104900A (en) * 2014-11-25 2016-06-09 Necトーキン株式会社 Metallic soft magnetic alloy, magnetic core, and production method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119825A (en) * 1998-10-15 2000-04-25 Hitachi Metals Ltd Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JP2004218037A (en) * 2003-01-17 2004-08-05 Hitachi Metals Ltd High saturation magnetic flux density low core loss magnetic alloy, and magnetic component obtained by using the same
JP2005142547A (en) * 2003-10-15 2005-06-02 Sumitomo Electric Ind Ltd Soft magnetic material and dust core
JP2016104900A (en) * 2014-11-25 2016-06-09 Necトーキン株式会社 Metallic soft magnetic alloy, magnetic core, and production method of the same

Also Published As

Publication number Publication date
JP3287481B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
EP1237165B1 (en) Co-based magnetic alloy and magnetic members made of the same
US5896078A (en) Soft magnetic alloy thin film and plane-type magnetic device
US5611871A (en) Method of producing nanocrystalline alloy having high permeability
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JP2573606B2 (en) Magnetic core and manufacturing method thereof
TW201817897A (en) Soft magnetic alloy and magnetic device
JP4547671B2 (en) High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
JP3357386B2 (en) Soft magnetic alloy, method for producing the same, and magnetic core
JP3856245B2 (en) Method for producing high permeability nanocrystalline alloy
JP3287481B2 (en) Magnetic core made of ultra-microcrystalline alloy excellent in direct current superposition characteristics, method of manufacturing the same, and choke coil and transformer using the same
JP2713373B2 (en) Magnetic core
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JP2000119825A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JP4003166B2 (en) Co-based magnetic alloy and magnetic component using the same
JPH0570901A (en) Fe base soft magnetic alloy
JP3374981B2 (en) Nanocrystalline soft magnetic alloy and magnetic core with excellent short pulse characteristics
JP2000252111A (en) High-frequency saturable magnetic core and device using the same
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
JP3294929B2 (en) Laminated core
JP2859286B2 (en) Manufacturing method of ultra-microcrystalline magnetic alloy
JPH0794314A (en) Pulse transformer magnetic core and pulse transformer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11