JPH04272104A - Manufacture of ferrous soft magnetic alloy green compact and ferrous soft magnetic alloy powder - Google Patents

Manufacture of ferrous soft magnetic alloy green compact and ferrous soft magnetic alloy powder

Info

Publication number
JPH04272104A
JPH04272104A JP3022793A JP2279391A JPH04272104A JP H04272104 A JPH04272104 A JP H04272104A JP 3022793 A JP3022793 A JP 3022793A JP 2279391 A JP2279391 A JP 2279391A JP H04272104 A JPH04272104 A JP H04272104A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic alloy
alloy
magnetic
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3022793A
Other languages
Japanese (ja)
Inventor
Seisaku Suzuki
清策 鈴木
Teruhiro Makino
彰宏 牧野
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP3022793A priority Critical patent/JPH04272104A/en
Publication of JPH04272104A publication Critical patent/JPH04272104A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To permit the manufacture of a magnetic product combining high saturation magnetic flux density and high megnatic permeability and provided with high mechanical properties and heat stability and thus to easily obtain a megnetic product of high performance even with a complicated shape in a magnetic head core, a transformer, a choke coil or the like. CONSTITUTION:This is high saturation megnetic flux density ferrous alloy powder and ferrous soft magnetic alloy powder having a compsn. shown by the following formulas 1, 2, 3 and 4, i.e., (formula 1):(Fe1-a Coa)b BX Ty T'z (formula 2): Fe b Bx Ty T'z, (formula 3):(Fe1-a Coa)b Bx Ty and (formula 4): Fe b Bx Ty; where in the above each formula, T denotes one or >= two kinds of elements selected from a group constituted of Ti, Zr, Hf, V, Nb, Ta, Mo and W and furthermore contains either Zr or Hf or both, and T<1> denotes one or >= two kinds of elements selected from a group constituted of Cu, Ag, Au, Ni, Pd and Pt as well as, by atomic%, a<=0.05, b<=92, x=0.5 to 16, y=4 to 10 amd z<=4.5 are satisfied.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、磁気ヘッド、トラン
ス、チョークコイルの製造などに用いられるFe系軟磁
性合金圧粉体とFe系軟磁性合金粉末の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-based soft magnetic alloy compact and a method for producing the Fe-based soft magnetic alloy powder used for manufacturing magnetic heads, transformers, choke coils, etc.

【0002】0002

【従来の技術】磁気ヘッド、トランス 、チョークコイ
ル等に用いられる軟磁性合金において一般的に要求され
る諸特性は以下の通りである。
2. Description of the Related Art The following properties are generally required for soft magnetic alloys used in magnetic heads, transformers, choke coils, etc.

【0003】■飽和磁束密度が高いこと。■透磁率が高
いこと。■低保磁力であること。■薄い形状が得やすい
こと。
[0003] ■ High saturation magnetic flux density. ■High magnetic permeability. ■Have low coercive force. ■It is easy to obtain a thin shape.

【0004】また、磁気ヘッドに対しては、前記■〜■
に記載の特性の他に耐摩耗性の観点から以下の特性が要
求される。
[0004] Also, for magnetic heads, the above
In addition to the properties described above, the following properties are required from the viewpoint of wear resistance.

【0005】■硬度が高いこと。■High hardness.

【0006】従って軟磁性合金あるいは磁気ヘッドを製
造する場合、これらの観点から種々の合金系において材
料研究がなされている。
[0006] Therefore, when manufacturing soft magnetic alloys or magnetic heads, material research is being conducted on various alloy systems from these viewpoints.

【0007】従来、前述の用途に対しては、センダスト
、パーマロイ、けい素鋼等の結晶質合金が用いられ、最
近ではFe基およびCo基の非晶質合金も使用されるよ
うになってきている。
Conventionally, crystalline alloys such as sendust, permalloy, and silicon steel have been used for the above-mentioned applications, and recently, Fe-based and Co-based amorphous alloys have also been used. There is.

【0008】[0008]

【発明が解決しようとする課題】しかるに磁気ヘッドの
場合、高記録密度化に伴う磁気記録媒体の高保磁力化に
対応するため、より好適な高性能磁気ヘッド用の磁性材
料が望まれている。またトランス、チョークコイルの場
合は、電子機器の小型化に伴い、より一層の小型化が必
要であるため、より高性能の磁性材料が望まれている。
However, in the case of magnetic heads, a more suitable magnetic material for high-performance magnetic heads is desired in order to cope with the increase in coercive force of magnetic recording media accompanying the increase in recording density. Further, in the case of transformers and choke coils, as electronic devices become smaller, further miniaturization is required, and therefore, magnetic materials with higher performance are desired.

【0009】ところが、前記のセンダストは、軟磁気特
性には優れるものの、飽和磁束密度が約11KGと低い
欠点があり、パーマロイも同様に、軟磁気特性に優れる
合金組成においては、飽和磁束密度が約8KGと低い欠
点があり、けい素鋼は飽和磁束密度は高いものの軟磁気
特性に劣る欠点がある。
However, although Sendust has excellent soft magnetic properties, it has the disadvantage of a low saturation magnetic flux density of about 11 KG, and permalloy similarly has an alloy composition with excellent soft magnetic properties that has a saturation magnetic flux density of about 11 KG. It has the disadvantage of being as low as 8KG, and although silicon steel has a high saturation magnetic flux density, it has the disadvantage of poor soft magnetic properties.

【0010】一方、非晶質合金において、Co基合金は
軟磁気特性に優れるものの飽和磁束密度が10KG程度
と不十分である。また、Fe基合金は飽和磁束密度が高
く、15KGあるいはそれ以上のものが得られるが、軟
磁気特性が不十分である。また、非晶質合金の熱安定性
は十分ではなく、未だ未解決の面がある。
On the other hand, among amorphous alloys, Co-based alloys have excellent soft magnetic properties, but have an insufficient saturation magnetic flux density of about 10 KG. Further, although Fe-based alloys have a high saturation magnetic flux density of 15 KG or more, they have insufficient soft magnetic properties. Furthermore, the thermal stability of amorphous alloys is not sufficient, and there are still unresolved issues.

【0011】前述のごとく高飽和磁束密度と優れた軟磁
気特性を兼備することは難しい。
As mentioned above, it is difficult to have both high saturation magnetic flux density and excellent soft magnetic properties.

【0012】ところで、前記非晶質合金は、通常、急冷
法により薄帯の状態で得られ、この薄帯を打ち抜いたり
、積層して磁気ヘッドの磁心などを製造しているが、磁
気ヘッドやチョークコイルなどの内でも形状が複雑なも
のにおいては、前記非晶質合金の薄帯からは製造できな
い場合がある。このような場合は、非晶質合金の粉末を
作製し、バインダとともに圧密し、圧粉体とすることに
より磁気ヘッドやチョークコイルを得る方法が行なわれ
ている。
By the way, the above-mentioned amorphous alloy is usually obtained in the form of a thin strip by a rapid cooling method, and the thin strip is punched out or laminated to manufacture the magnetic core of a magnetic head. Choke coils and the like that have complicated shapes may not be manufactured from the amorphous alloy ribbon. In such cases, a method is used in which magnetic heads and choke coils are obtained by producing amorphous alloy powder and compacting it together with a binder to form a green compact.

【0013】しかしながら従来の非晶質合金には、前記
したような問題があるので、当然のことながら非晶質合
金を粉末化したものにおいても前記のような問題がある
ことが明らかである。
However, since conventional amorphous alloys have the above-mentioned problems, it is obvious that powdered amorphous alloys also have the above-mentioned problems.

【0014】そこで本発明者らは、先に、前記の従来合
金と非晶質合金の課題を解決した高飽和磁束密度Fe系
軟磁性合金を特願平2ー108308号明細書において
平成2年4月24日付けで特許出願している。
[0014] Therefore, the present inventors previously proposed a high saturation magnetic flux density Fe-based soft magnetic alloy, which solved the problems of the conventional alloys and amorphous alloys, in Japanese Patent Application No. 108308/1990 in 1990. A patent application was filed on April 24th.

【0015】この特許出願に係る合金の他の1つは、次
式で示される組成からなることを特徴とする高飽和磁束
密度合金であった。
Another alloy related to this patent application was a high saturation magnetic flux density alloy characterized by having a composition represented by the following formula.

【0016】(Fe1−a Co a)b Bx Ty
T’z
(Fe1-a Co a)b Bx Ty
T'z

【0017】但しTはTi,Zr,Hf,V,N
b,Ta,Mo,Wからなる群から選ばれた1種又は2
種以上の元素であり、且つZr,Hfのいずれか、又は
両方を含み、T’はCu,Ag,Au,Ni,Pd,P
tからなる群から選ばれた1種又は2種以上の元素であ
り、a≦0.05、b≦92原子%、x=0.5〜16
原子%、y=4〜10原子%、z=4.5原子%以下で
ある。
[0017] However, T is Ti, Zr, Hf, V, N
One or two selected from the group consisting of b, Ta, Mo, and W
is an element or more, and contains either or both of Zr and Hf, and T' is Cu, Ag, Au, Ni, Pd, P
One or more elements selected from the group consisting of t, a≦0.05, b≦92 atomic%, x=0.5 to 16
% by atom, y=4 to 10 atomic%, and z=4.5 atomic% or less.

【0018】また、前記特許出願に係る合金の他の1つ
は、次式で示される組成からなることを特徴とする高飽
和磁束密度合金であった。
[0018] Another alloy according to the patent application is a high saturation magnetic flux density alloy characterized by having a composition represented by the following formula.

【0019】Fe b Bx Ty T’z[0019]Fe b Bx Ty T’z

【0020
】但しTはTi,Zr,Hf,V,Nb,Ta,Mo,
Wからなる群から選ばれた1種又は2種以上の元素であ
り、且つZr,Hfのいずれか、又は両方を含み、T’
はCu,Ag,Au,Ni,Pd,Ptからなる群から
選ばれた1種又は2種以上の元素であり、    b≦
92原子%、x=0.5〜16原子%、y=4〜10原
子%、z=4.5原子%以下である。
0020
] However, T is Ti, Zr, Hf, V, Nb, Ta, Mo,
It is one or more elements selected from the group consisting of W, and contains either or both of Zr and Hf, and T'
is one or more elements selected from the group consisting of Cu, Ag, Au, Ni, Pd, and Pt, and b≦
92 atom %, x = 0.5 to 16 atom %, y = 4 to 10 atom %, and z = 4.5 atom % or less.

【0021】更に本発明者らは、前記合金の発展型の合
金として、先に、以下に示す組成の合金について特許出
願を行っている。
Furthermore, the present inventors have previously filed a patent application for an alloy having the composition shown below as an advanced alloy of the above-mentioned alloy.

【0022】この特許出願に係る合金の1つは、次式で
示される組成からなることを特徴とする高飽和磁束密度
合金であった。
One of the alloys related to this patent application was a high saturation magnetic flux density alloy characterized by having a composition represented by the following formula.

【0023】(Fea Co a)b Bx Ty(Fea Co a) b Bx Ty

【0
024】但しTはTi,Zr,Hf,V,Nb,Ta,
Mo,Wからなる群から選ばれた1種又は2種以上の元
素であり、且つ、Zr,Hfのいずれか、又は両方を含
み、a≦0.05、b≦92原子%、x=0.5〜16
原子%、y=4〜10原子%である。
0
[024] However, T is Ti, Zr, Hf, V, Nb, Ta,
One or more elements selected from the group consisting of Mo and W, and contains either or both of Zr and Hf, a≦0.05, b≦92 atomic%, x=0 .5-16
% by atom, and y=4 to 10 atomic%.

【0025】また、前記特許出願に係る合金の他の1つ
は、次式で示される組成からなることを特徴とする高飽
和磁束密度合金であった。
[0025] Another alloy according to the patent application is a high saturation magnetic flux density alloy characterized by having a composition represented by the following formula.

【0026】Fe b Bx Ty[0026]Fe b Bx Ty

【0027】但しTはTi,Zr,Hf,V,Nb,T
a,Mo,Wからなる群から選ばれた1種又は2種以上
の元素であり、且つ、Zr,Hfのいずれか、又は両方
を含み、b≦92原子%、x=0.5〜16原子%、y
=4〜10原子%である。
[0027] However, T is Ti, Zr, Hf, V, Nb, T
is one or more elements selected from the group consisting of a, Mo, and W, and contains either or both of Zr and Hf, b≦92 atomic %, x = 0.5 to 16 Atomic %, y
=4 to 10 at%.

【0028】以上のように本発明者らは、前記各組成の
種々のFe系軟磁性合金を開発したわけであるが、前記
組成の合金について研究を重ねた結果、これを粉末化し
ても良好な磁気特性がえられることが判明したので本願
発明に到達した。
As described above, the present inventors have developed various Fe-based soft magnetic alloys having the above-mentioned compositions, and as a result of repeated research on the alloys having the above-mentioned compositions, it has been found that these alloys can be made into powder without any problem. It has been found that magnetic properties can be obtained, and the present invention has been achieved.

【0029】本発明は前記課題を解決するためになされ
たもので、高飽和磁束密度と高透磁率を兼備し、高い機
械特性と高い熱安定性を併せ持つ軟磁性合金圧粉体およ
び軟磁性合金粉末の製造方法を提供することを目的とす
る。
The present invention has been made to solve the above problems, and provides a soft magnetic alloy compact and a soft magnetic alloy that have both high saturation magnetic flux density and high magnetic permeability, as well as high mechanical properties and high thermal stability. The purpose of the present invention is to provide a method for producing powder.

【0030】[0030]

【課題を解決するための手段】請求項1に記載した発明
は前記課題を解決するために、次式で示される組成を有
する高飽和磁束密度Fe系軟磁性合金粉末を圧密してな
るものである。
[Means for Solving the Problems] In order to solve the above problems, the invention as set forth in claim 1 is made by consolidating a high saturation magnetic flux density Fe-based soft magnetic alloy powder having a composition represented by the following formula. be.

【0031】(Fe1−a Co a)b Bx Ty
T’z
(Fe1-a Co a)b Bx Ty
T'z

【0032】但しTはTi,Zr,Hf,V,N
b,Ta,Mo,Wからなる群から選ばれた1種又は2
種以上の元素であり、且つZr,Hfのいずれか、又は
両方を含み、T’はCu,Ag,Au,Ni,Pd,P
tからなる群から選ばれた1種又は2種以上の元素であ
り、a≦0.05、b≦92原子%、x=0.5〜16
原子%、y=4〜10原子%、z=4.5原子%以下で
ある。
[0032] However, T is Ti, Zr, Hf, V, N
One or two selected from the group consisting of b, Ta, Mo, and W
is an element or more, and contains either or both of Zr and Hf, and T' is Cu, Ag, Au, Ni, Pd, P
One or more elements selected from the group consisting of t, a≦0.05, b≦92 atomic%, x=0.5 to 16
% by atom, y=4 to 10 atomic%, and z=4.5 atomic% or less.

【0033】請求項2に記載した発明は前記課題を解決
するために、次式で示される組成を有する高飽和磁束密
度Fe系軟磁性合金粉末を圧密してなるものである。
In order to solve the above-mentioned problem, the invention as set forth in claim 2 is obtained by consolidating a high saturation magnetic flux density Fe-based soft magnetic alloy powder having a composition represented by the following formula.

【0034】Fe b Bx Ty T’z[0034]Fe b Bx Ty T’z

【0035
】但しTはTi,Zr,Hf,V,Nb,Ta,Mo,
Wからなる群から選ばれた1種又は2種以上の元素であ
り、且つ、Zr,Hfのいずれか、又は両方を含み、T
’はCu,Ag,Au,Ni,Pd,Ptからなる群か
ら選ばれた1種又は2種以上の元素であり、b≦92原
子%、x=0.5〜16原子%、y=4〜10原子%、
z=4.5原子%以下である。
0035
] However, T is Ti, Zr, Hf, V, Nb, Ta, Mo,
is one or more elements selected from the group consisting of W, and contains either or both of Zr and Hf;
' is one or more elements selected from the group consisting of Cu, Ag, Au, Ni, Pd, and Pt, b≦92 atomic%, x=0.5 to 16 atomic%, y=4 ~10 atomic%,
z=4.5 atomic % or less.

【0036】請求項3に記載した発明は前記課題を解決
するために、次式で示される組成を有する高飽和磁束密
度Fe系軟磁性合金粉末を圧密してなるものである。
In order to solve the above-mentioned problem, the invention as set forth in claim 3 is obtained by consolidating a high saturation magnetic flux density Fe-based soft magnetic alloy powder having a composition represented by the following formula.

【0037】(Fe1−a Co a)b Bx Ty
(Fe1-a Co a)b Bx Ty

【0038】但しTはTi,Zr,Hf,V,Nb,T
a,Mo,Wからなる群から選ばれた1種又は2種以上
の元素であり、且つ、Zr,Hfのいずれか、又は両方
を含み、a≦0.05、b≦92原子%、x=0.5〜
16原子%、y=4〜10原子%である。
[0038] However, T is Ti, Zr, Hf, V, Nb, T
is one or more elements selected from the group consisting of a, Mo, and W, and contains either or both of Zr and Hf, a≦0.05, b≦92 atomic %, x =0.5~
16 atom%, y=4 to 10 atom%.

【0039】請求項4に記載した発明は前記課題を解決
するために、次式で示される組成を有する高飽和磁束密
度Fe系軟磁性合金粉末を圧密してなるものである。
In order to solve the above-mentioned problem, the invention as set forth in claim 4 is obtained by consolidating a high saturation magnetic flux density Fe-based soft magnetic alloy powder having a composition represented by the following formula.

【0040】(Fe1−a Co a)b Bx Ty
(Fe1-a Co a)b Bx Ty

【0041】但しTはTi,Zr,Hf,V,Nb,T
a,Mo,Wからなる群から選ばれた1種又は2種以上
の元素であり、且つ、Zr,Hfのいずれか、又は両方
を含み、a≦0.05、b≦92原子%、x=0.5〜
16原子%、y=4〜10原子%である。
[0041] However, T is Ti, Zr, Hf, V, Nb, T
is one or more elements selected from the group consisting of a, Mo, and W, and contains either or both of Zr and Hf, a≦0.05, b≦92 atomic %, x =0.5~
16 atom%, y=4 to 10 atom%.

【0042】請求項5に記載した発明は前記課題を解決
するために、請求項1,2,3または4に記載の高飽和
磁束密度Fe系軟磁性合金粉末を製造する際に、請求項
1,2,3または4に記載の組成を有する高飽和磁束密
度Fe系軟磁性合金を結晶化温度以上の温度に加熱して
脆化させ、粉砕するものである。
[0042] In order to solve the above-mentioned problem, the invention described in claim 5, when producing the high saturation magnetic flux density Fe-based soft magnetic alloy powder according to claim 1, 2, 3, or 4, The high saturation magnetic flux density Fe-based soft magnetic alloy having the composition described in , 2, 3 or 4 is heated to a temperature equal to or higher than the crystallization temperature to make it brittle and then pulverized.

【0043】[0043]

【作用】特定の組成の軟磁性合金粉末を用いて圧粉体を
形成するので、高飽和磁束密度と高透磁率を兼ね備え、
かつ、高い機械特性と熱安定性を併せ持つFe系軟磁性
合金の圧粉体を得ることができる。
[Action] Since the compact is formed using soft magnetic alloy powder with a specific composition, it has both high saturation magnetic flux density and high magnetic permeability.
Moreover, it is possible to obtain a green compact of a Fe-based soft magnetic alloy that has both high mechanical properties and thermal stability.

【0044】また、前記特定の組成の軟磁性合金は結晶
化温度以上に加熱することで脆くなることが本発明者ら
の研究で判明しているのでこの状態で粉砕することで容
易に粉末化することができる。
[0044] Furthermore, it has been found through research by the present inventors that the soft magnetic alloy having the above-mentioned specific composition becomes brittle when heated above the crystallization temperature. can do.

【0045】以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

【0046】本発明に係る高飽和磁束密度Fe系軟磁性
合金粉末を得るには、先に本発明者らが特許出願してい
る組成の軟磁性合金の溶湯からアトマイズ法などによっ
て急冷して粉末化する工程と、前記工程で得られたもの
を加熱し微細な結晶粒を析出させる熱処理工程とによっ
て通常得ることが出来る。なお、前記軟磁性合金粉末を
製造する場合、先に本発明者らが特許出願している合金
を作製し、この合金を結晶化温度以上に加熱し、脆化さ
せた後に粉砕して得ることもできる。
In order to obtain the high saturation magnetic flux density Fe-based soft magnetic alloy powder according to the present invention, a molten metal of a soft magnetic alloy having the composition for which the present inventors have previously applied for a patent is rapidly cooled by an atomization method or the like to form a powder. It can usually be obtained by a step of oxidation and a heat treatment step of heating the product obtained in the above step to precipitate fine crystal grains. In addition, when producing the above-mentioned soft magnetic alloy powder, the alloy for which the present inventors have applied for a patent is first produced, and this alloy is heated to a temperature higher than the crystallization temperature to make it brittle, and then pulverized. You can also do it.

【0047】ここで例えば、アトマイズ法によって磁性
合金粉末を得るには、前記組成の合金材料を高周波溶解
炉などを用いてルツボ内にて金属溶湯とし、ルツボ底部
に設けられた溶湯噴出用ノズルを通して流下、落下させ
る。そして、噴出用ノズルから落下する溶湯流に対して
、例えば円形状に配置された多孔の噴霧化ノズルにより
、窒素ガスを所定の圧力で吹き付けて溶湯流を粉末化す
ることにより得ることができる。
For example, in order to obtain a magnetic alloy powder by the atomization method, an alloy material having the above composition is made into a molten metal in a crucible using a high-frequency melting furnace, and the molten metal is passed through a nozzle for spouting the molten metal provided at the bottom of the crucible. to flow down, to fall. It can be obtained by spraying nitrogen gas at a predetermined pressure onto the molten metal stream falling from the spouting nozzle using, for example, a circularly arranged multi-hole atomization nozzle to pulverize the molten metal stream.

【0048】また、前記組成のFe系軟磁性合金は、結
晶化温度以上に加熱することで脆くなることが本発明者
らの研究で判明しているので、この特性を利用して粉末
化することもできる。前記組成の合金を結晶化温度以上
、好ましくは、550〜650℃の温度範囲に加熱して
脆化させ、この状態で粉砕し、粒径を揃えることにより
粉末化することもできる。
[0048] Furthermore, the inventors' research has revealed that the Fe-based soft magnetic alloy with the above composition becomes brittle when heated above the crystallization temperature, so this property can be used to make it into powder. You can also do that. It is also possible to pulverize an alloy having the above composition by heating it to a temperature above the crystallization temperature, preferably in the temperature range of 550 to 650° C. to embrittle it, and crush it in this state to make the particle size uniform.

【0049】本発明の合金粉末において、非晶質相を得
やすくするためには、非晶質形成能の高いZr、Hfの
いずれかを含む必要がある。またZr、Hfはその一部
を他の4A〜6A族元素のうち、Ti,V,Nb,Ta
,Mo,Wと置換することが出来る。ここで  Crを
含めなかったのは、Crが他の元素に比べ非晶質形成能
が劣っているからであるが、Zr,Hfを適量添加した
ならば、更にCrを添加しても良いのは勿論である。
In order to easily obtain an amorphous phase in the alloy powder of the present invention, it is necessary to contain either Zr or Hf, which has a high ability to form an amorphous phase. In addition, Zr and Hf partially contain Ti, V, Nb, Ta among other group 4A to 6A elements.
, Mo, and W. The reason why Cr was not included here is that Cr has an inferior ability to form an amorphous state compared to other elements, but if appropriate amounts of Zr and Hf have been added, Cr may also be added. Of course.

【0050】Bには本発明合金の非晶質形成能を高める
効果、および前記熱処理工程において磁気特性に悪影響
を及ぼす化合物相の生成を抑制する効果があると考えら
れ、このためB添加は必須である。Bと同様にA1,S
i,C,P等も非晶質形成元素として一般に用いられて
おり、これらの元素を添加した場合も本発明と同一とみ
なすことができる。
B is considered to have the effect of enhancing the amorphous formation ability of the alloy of the present invention and the effect of suppressing the formation of compound phases that adversely affect the magnetic properties in the heat treatment process, and therefore the addition of B is essential. It is. Similar to B, A1, S
i, C, P, etc. are also generally used as amorphous forming elements, and the addition of these elements can be considered to be the same as the present invention.

【0051】本発明においては、Cu,Niおよびこれ
らと同族元素のうちから選ばれた少なくとも1種又は2
種以上の元素の添加量が0.2原子%より少ないと前記
の熱処理工程により優れた軟磁気特性を得ることができ
ないことから、0.2原子%以上とするのが好ましく、
またこれらの元素の中でもCuは特に好適である。
In the present invention, at least one or two selected from Cu, Ni, and their homologous elements
If the amount of addition of the above elements is less than 0.2 atomic %, excellent soft magnetic properties cannot be obtained by the heat treatment process, so it is preferably 0.2 atomic % or more.
Moreover, among these elements, Cu is particularly suitable.

【0052】なお、図8に示すグラフから明らかなよう
に、Fe系軟磁性合金はその熱処理の際の冷却速度が1
00℃/分以上であれば良好な透磁率が得られるので、
上記元素の添加量は0.2原子%以下であってもよい。
As is clear from the graph shown in FIG. 8, the Fe-based soft magnetic alloy has a cooling rate of 1 during heat treatment.
Good magnetic permeability can be obtained at temperatures above 00°C/min.
The amount of the above elements added may be 0.2 atomic % or less.

【0053】Cu,Ni等の添加により、軟磁気特性が
著しく改善される機構については明らかではないが、結
晶化温度を示差熱分析法により測定したところ、Cu,
Ni等を添加した合金の結晶化温度は、添加しない合金
に比べてやや低い温度であると認められた。これは前記
元素の添加により非晶質相が不均一となり、その結果、
非晶質相の安定性が低下したことに起因すると考えられ
る。 また不均一な非晶質相が結晶化する場合、部分的に結晶
化しやすい領域が多数でき不均一核生成するため、得ら
れる組織が微細結晶粒組織となると考えられる。
Although the mechanism by which the soft magnetic properties are significantly improved by the addition of Cu, Ni, etc. is not clear, when the crystallization temperature was measured by differential thermal analysis, it was found that the addition of Cu, Ni, etc.
The crystallization temperature of alloys to which Ni and the like were added was found to be slightly lower than that of alloys to which no Ni was added. This is because the amorphous phase becomes non-uniform due to the addition of the above elements, and as a result,
This is thought to be due to a decrease in the stability of the amorphous phase. Furthermore, when a non-uniform amorphous phase crystallizes, many regions where crystallization is likely to occur are formed locally, resulting in non-uniform nucleation, so that the resulting structure is considered to be a fine grain structure.

【0054】また特にFeに対する固溶度が著しく低い
元素であるCuの場合、相分離傾向があるため、加熱に
よりミクロな組成ゆらぎが生じ、非晶質相が不均一とな
る傾向がより顕著になると考えられ、組織の微細化に寄
与するものと考えられる。
[0054] Furthermore, especially in the case of Cu, which is an element with extremely low solid solubility in Fe, there is a tendency for phase separation, so heating causes microscopic fluctuations in composition, and the tendency for the amorphous phase to become non-uniform becomes more pronounced. It is thought that this contributes to the refinement of the structure.

【0055】以上の観点からCu及びその同族元素、N
iおよびPd,Pt以外の元素でも結晶化温度を低下さ
せる元素には同様の効果が期待できる。またCuのよう
にFeに対する固溶限が小さい元素にも同様の効果が期
待できる。
From the above point of view, Cu and its homologous elements, N
Similar effects can be expected for elements other than i, Pd, and Pt that lower the crystallization temperature. Further, similar effects can be expected with elements such as Cu, which have a small solid solubility limit with respect to Fe.

【0056】以上、本発明の高飽和磁束密度Fe系軟磁
性合金に含まれる合金元素の限定理由を説明したが、こ
れらの元素以外でも耐食性を改善するために、Cr,R
uその他の白金族元素を添加することも可能であり、ま
た、必要に応じて、Y,希土類元素,Zn,Cd,Ga
,In,Ge,Sn,Pb,As,Sb,Bi,Se,
Te,Li,Be,Mg,Ca,Sr,Ba等の元素を
添加することで磁歪を調整することもできる。その他、
H,N,O,S等の不可避的不純物については所望の特
性が劣化しない程度に含有していても本発明の高飽和磁
束密度Fe系軟磁性合金の組成と同一とみなすことがで
きるのは勿論である。
The reasons for limiting the alloying elements contained in the high saturation magnetic flux density Fe-based soft magnetic alloy of the present invention have been explained above, but in order to improve corrosion resistance with elements other than these, Cr, R
u It is also possible to add other platinum group elements, and if necessary, Y, rare earth elements, Zn, Cd, Ga
, In, Ge, Sn, Pb, As, Sb, Bi, Se,
Magnetostriction can also be adjusted by adding elements such as Te, Li, Be, Mg, Ca, Sr, and Ba. others,
Regarding unavoidable impurities such as H, N, O, and S, even if they are contained to the extent that the desired characteristics are not deteriorated, the composition can be considered to be the same as the composition of the high saturation magnetic flux density Fe-based soft magnetic alloy of the present invention. Of course.

【0057】本発明合金におけるFe,Co量のbは、
92原子%以下である。これは、後述するように、bが
92原子%を越えると高い透磁率が得られないためであ
るが、飽和磁束密度10kG以上を得るためには、bが
75原子%以上であることがより好ましい。
The amount b of Fe and Co in the alloy of the present invention is:
It is 92 atomic % or less. This is because, as will be explained later, high magnetic permeability cannot be obtained if b exceeds 92 at.%, but in order to obtain a saturation magnetic flux density of 10 kG or more, it is better for b to be at least 75 at.%. preferable.

【0058】次に前記組成の合金を実際に製造し、得ら
れた軟磁性合金の磁気特性を測定した結果を示す。
Next, the results of actually manufacturing an alloy having the above composition and measuring the magnetic properties of the obtained soft magnetic alloy will be shown.

【0059】以下の例に示す各合金は片ロール液体急冷
法により作成した。すなわち、1つの回転している鋼製
ロール上におかれたノズルより溶融金属をアルゴンガス
の圧力により前記ロール上に噴出させ、急冷して薄帯を
得る。以上のように作成した薄帯の幅は約15mmであ
り、厚さは約20〜40μmであった。
The alloys shown in the following examples were prepared by the single roll liquid quenching method. That is, from a nozzle placed on one rotating steel roll, molten metal is jetted onto the roll under the pressure of argon gas, and is rapidly cooled to obtain a ribbon. The width of the ribbon produced as described above was about 15 mm, and the thickness was about 20 to 40 μm.

【0060】透磁率は、薄帯を加工し、外径10mm、
内径5mmのリング状とし、これを積み重ねたものに巻
線し、インダクタンス法により測定した。この透磁率(
μ)の測定条件は10mOe,1KHzとした。
Magnetic permeability was determined by processing a thin ribbon, with an outer diameter of 10 mm,
A ring shape with an inner diameter of 5 mm was formed, and the rings were stacked and wound, and measured by the inductance method. This permeability (
The measurement conditions for μ) were 10 mOe and 1 KHz.

【0061】まず、本発明合金の磁気特性および構造に
およぼす熱処理の効果について本発明合金の一つである
Fe86Zr7B6Cu1合金を例にとって以下に説明
する。なお、昇温速度毎分10℃の示差熱分析により求
めたFe86Zr7B6Cu1合金の結晶化開始温度は
503℃であった。
First, the effect of heat treatment on the magnetic properties and structure of the alloy of the present invention will be explained below using Fe86Zr7B6Cu1 alloy, which is one of the alloys of the present invention, as an example. The crystallization start temperature of the Fe86Zr7B6Cu1 alloy was determined to be 503°C by differential thermal analysis at a heating rate of 10°C per minute.

【0062】図1は、Fe86Zr7B6Cu1合金の
実効透磁率に及ぼす焼純(各温度で1時間保持後水焼入
れ)の効果を示す。
FIG. 1 shows the effect of sintering (water quenching after holding at each temperature for 1 hour) on the effective magnetic permeability of Fe86Zr7B6Cu1 alloy.

【0063】図1より急冷状態(RQ)における本合金
の実効透磁率は、Fe基非晶質合金程度の低い値を示す
が、500〜620℃の焼鈍により、急冷状態の10倍
程度の高い値に増加している。ここで600℃熱処理後
の厚さ約20μmの試料について透磁率の周波数依存を
調べたところ1KHzで32000、10KHzで25
600、更に100KHzで8330と、高い測定周波
数においても優れた軟磁気特性を示した。また、透磁率
に及ぼす冷却速度の影響を調べたところ、600℃で1
時間保持後、水焼入れにより急冷した本合金の実効透磁
率32000に対し、空冷した場合、その値は1800
0となり、熱処理後の冷却速度も重要であり、100℃
/分以上の冷却速度で急冷することが好ましい。
As shown in FIG. 1, the effective magnetic permeability of this alloy in the rapidly cooled state (RQ) is as low as that of Fe-based amorphous alloys, but by annealing at 500 to 620°C, it becomes about 10 times higher than in the rapidly cooled state. The value has increased. Here, we investigated the frequency dependence of magnetic permeability for a sample with a thickness of approximately 20 μm after heat treatment at 600°C, and found that it was 32,000 at 1 KHz and 25 at 10 KHz.
It showed excellent soft magnetic properties even at high measurement frequencies, such as 600 KHz and 8330 KHz at 100 KHz. In addition, when we investigated the effect of cooling rate on magnetic permeability, we found that at 600℃
The effective magnetic permeability of this alloy is 32,000 when quenched by water quenching after holding for a time, but when air-cooled, the value is 1,800.
The cooling rate after heat treatment is also important;
It is preferable to perform rapid cooling at a cooling rate of 1/min or more.

【0064】よって本合金の磁気特性は最適な熱処理条
件を適当に選ぶことにより調整することができ、また磁
場中焼鈍などにより磁気特性を改善することもできる。
Therefore, the magnetic properties of the present alloy can be adjusted by appropriately selecting the optimum heat treatment conditions, and the magnetic properties can also be improved by annealing in a magnetic field.

【0065】また、Fe86Zr7B6Cu1合金の熱
処理前後の構造の変化をX線回折法により調べ、熱処理
後の組織を透過電子顕微鏡を用いて観察し、結果をそれ
ぞれ図2と図3に示す。
Furthermore, changes in the structure of the Fe86Zr7B6Cu1 alloy before and after heat treatment were investigated by X-ray diffraction, and the structure after heat treatment was observed using a transmission electron microscope. The results are shown in FIGS. 2 and 3, respectively.

【0066】図2より、急冷状態では非晶質に特有のハ
ローな回折図形が、熱処理後には体心立方晶に独特の回
折図形がそれぞれ認められ、本合金の構造が熱処理によ
り、非晶質から体心立方晶へと変化したことがわかる。 そして図3より、熱処理後の組織が、粒径約100オン
グストローム程度の微結晶から成ることがわかる。また
、Fe86Zr7B6Cu1合金について熱処理前後の
硬さの変化を調べたところ、ビッカース硬さで急冷状態
の740DPNから650℃熱処理後には1390DP
Nと従来材料にない高い値まで増加し、磁気ヘッド用材
料に好適であることも判明した。
From FIG. 2, a halo diffraction pattern characteristic of amorphous crystals is observed in the rapidly cooled state, and a diffraction pattern unique to body-centered cubic crystals is observed after heat treatment. It can be seen that the crystal has changed from a body-centered cubic crystal to a body-centered cubic crystal. FIG. 3 shows that the structure after heat treatment consists of microcrystals with a grain size of about 100 angstroms. In addition, when we investigated the change in hardness of Fe86Zr7B6Cu1 alloy before and after heat treatment, we found that the Vickers hardness ranged from 740DPN in the rapidly cooled state to 1390DPN after heat treatment at 650℃.
It was also found that the material increased N to a high value not found in conventional materials, making it suitable for use as a material for magnetic heads.

【0067】以上のごとく前記組成の合金は、前述の組
成を有する非晶質合金を熱処理により結晶化させ、超微
細結晶粒を主とする組織を得ることにより、高飽和磁束
密度でかつ軟磁気特性に優れ、更に高い硬さと高い熱安
定性を有する優れた特性を得ることができる。
As described above, the alloy having the above composition is produced by crystallizing the amorphous alloy having the above composition by heat treatment to obtain a structure consisting mainly of ultrafine crystal grains, and thereby exhibiting high saturation magnetic flux density and soft magnetic properties. It is possible to obtain excellent properties such as high hardness and high thermal stability.

【0068】次に前記の如く得られた合金を粉末化する
場合について説明する。
Next, the case where the alloy obtained as described above is powdered will be explained.

【0069】前記の合金は急冷状態で非晶質相組織とな
るため、延性に富み、そのままの状態では粉砕して粉末
化することは難しい。よって、前記の如く得られた合金
を500℃以上に加熱して脆化させた状態でボールミル
やアトライターなどの粉砕装置により粉砕する。この操
作によって粒径1〜100μm程度の軟磁性合金粉末を
得ることができる。
The above-mentioned alloy becomes an amorphous phase structure in a rapidly cooled state, so it is highly ductile, and it is difficult to crush it into powder in that state. Therefore, the alloy obtained as described above is heated to 500° C. or higher to make it brittle and then pulverized using a pulverizing device such as a ball mill or an attritor. By this operation, a soft magnetic alloy powder with a particle size of about 1 to 100 μm can be obtained.

【0070】次にこの軟磁性合金粉末を用いて磁気ヘッ
ドコアを製造する場合について説明する。
Next, the case of manufacturing a magnetic head core using this soft magnetic alloy powder will be explained.

【0071】まず、図4に示すように、プレス装置Pの
上型PUと下型PLとによって、軟磁性合金粉末Aを所
定形状のコアBに一次成形する。この一次成形コアBは
、次に図5に示す加圧カプセル10内に圧力媒体粉末C
とともに封入される。図面では、維持成形コアBを1つ
のみ描いているが、実際には多数の一次成形コアBが同
時に加圧カプセル10内に封入される。
First, as shown in FIG. 4, soft magnetic alloy powder A is primarily formed into a core B having a predetermined shape by the upper die PU and lower die PL of the press device P. This primary molded core B is then placed in a pressure medium powder C in a pressurized capsule 10 shown in FIG.
It will be enclosed with. In the drawing, only one maintenance molding core B is depicted, but in reality, a large number of primary molding cores B are enclosed within the pressurized capsule 10 at the same time.

【0072】加圧カプセル10は、有底筒状の本体11
と、この本体11の上部に被せる蓋体12とからなり、
蓋体12には脱気パイプ13が開口している。この加圧
カプセル10内には、蓋体12を外した状態にいて、本
体11内に一次成形コアBと圧力媒体粉末Cが充填され
る。次いで、本体11の上部内面に一次成形コアBおよ
び圧力媒体粉末Cが通過しないメッシュ板14を被せて
、本体11と蓋体12を溶接し、本体11と蓋体12間
の隙間をなくす。そして脱気パイプ13を潰して、内部
に一次成形コアBおよび圧力媒体粉末Cを封入した密閉
されたワーク30(加圧カプセル10)を完成する。
The pressurized capsule 10 has a cylindrical body 11 with a bottom.
and a lid 12 that covers the top of the main body 11,
A deaeration pipe 13 is opened in the lid body 12. Inside the pressurized capsule 10, the primary molded core B and the pressure medium powder C are filled into the main body 11 with the lid 12 removed. Next, the upper inner surface of the main body 11 is covered with a mesh plate 14 through which the primary forming core B and the pressure medium powder C do not pass, and the main body 11 and the lid 12 are welded to eliminate the gap between the main body 11 and the lid 12. Then, the degassing pipe 13 is crushed to complete a sealed workpiece 30 (pressure capsule 10) in which the primary molded core B and the pressure medium powder C are sealed.

【0073】なお脱気する際には、加圧カプセル10を
加熱炉Fに入れ、焼く500℃〜900℃前後の温度を
加える。これはガス抜きをより完全にするための加熱で
、この種の脱気では常套的に行なわれる。
[0073] When degassing, the pressurized capsule 10 is placed in a heating furnace F, and a baking temperature of about 500°C to 900°C is applied. This is heating to make degassing more complete, and is customary in this type of degassing.

【0074】圧力媒体粉末Cは、軟磁性合金粉末A( 
一次成形コアB)と化学反応しない材料から選定して用
いる。ここで一次成形コアBが前記組成のFe系軟磁性
合金粉末であるので、ZrO2粉末を用いると良い。こ
の他、MgO粉末を用いても良い。
Pressure medium powder C is soft magnetic alloy powder A (
Select and use materials that do not chemically react with the primary molded core B). Here, since the primary molded core B is a Fe-based soft magnetic alloy powder having the above composition, it is preferable to use ZrO2 powder. In addition, MgO powder may be used.

【0075】図6は、このワーク30を高温高圧下で処
理する熱間熱間静水圧プレス20の概念図で、高圧円筒
21の上下が上蓋22とした蓋23で開閉および閉塞可
能となっている。上蓋22には高圧ガス導入管24が開
口している。高圧円筒21内には、ワーク30の支持台
25と、ヒータ26とが位置しており、高圧円筒21と
ヒータ26の間には、断熱層27が設けられている。
FIG. 6 is a conceptual diagram of the hot isostatic press 20 that processes the workpiece 30 under high temperature and high pressure.The upper and lower parts of the high-pressure cylinder 21 can be opened, closed, and closed by a lid 23 with an upper lid 22. There is. A high-pressure gas introduction pipe 24 is opened in the upper lid 22 . A support stand 25 for the workpiece 30 and a heater 26 are located inside the high-pressure cylinder 21 , and a heat insulating layer 27 is provided between the high-pressure cylinder 21 and the heater 26 .

【0076】ワーク30は、この熱間静水圧プレスの支
持台25上に載置され、ヒータ26によって高温に熱せ
られると同時に、導入管24から導入される圧力媒体と
しての高圧ガスにより、等方性の圧力を受ける。その結
果、ワーク30(カプセル10)は全体が圧縮変形され
る。この圧縮変形の過程において、加圧カプセル10内
の一次成形コアBは、圧力媒体粉末Cを介して等方圧力
を受ける。また、ヒータ26による熱も、圧力媒体粉末
Cを介して受けるために、一次成形コアBが急激に加熱
されることがなく、急激加熱に起因する一次成形コアB
の割れや変形を生じることがない。即ち、一次成形コア
Bは均等に圧縮され、内部の気泡が除かれて最終的に焼
結され、磁気ヘッドコアDが完成する。この磁気ヘッド
コアDは、一次成形コアBに比して縮むため、縮み代を
考慮して一次成形コアBの形状を決定しておく。
The workpiece 30 is placed on the support stand 25 of this hot isostatic press, heated to a high temperature by the heater 26, and at the same time is isostatically heated by the high pressure gas as a pressure medium introduced from the introduction pipe 24. Under sexual pressure. As a result, the entire workpiece 30 (capsule 10) is compressed and deformed. During this compression deformation process, the primary molded core B within the pressurized capsule 10 is subjected to isostatic pressure via the pressure medium powder C. Further, since the heat from the heater 26 is also received via the pressure medium powder C, the primary molded core B is not heated rapidly, and the primary molded core B due to sudden heating is not heated.
No cracking or deformation occurs. That is, the primary molded core B is uniformly compressed, internal air bubbles are removed, and finally sintered to complete the magnetic head core D. Since this magnetic head core D shrinks compared to the primary molded core B, the shape of the primary molded core B is determined in consideration of the shrinkage margin.

【0077】以上のようにして圧縮変形されたワーク3
0は、熱間静水圧プレスから取り出して後、図7に示す
ようにその本体11および蓋体12を壊して、内部の完
成された磁気ヘッドコアDを取り出す。磁気ヘッドコア
Dはプレス装置Pによって予め所定の形状に加工されて
いるために、磁気ヘッドコアとしてそのまま使用するこ
とができる。
Workpiece 3 compressed and deformed as described above
0 is taken out from the hot isostatic press, its main body 11 and lid 12 are broken as shown in FIG. 7, and the completed magnetic head core D inside is taken out. Since the magnetic head core D has been previously processed into a predetermined shape by the press device P, it can be used as a magnetic head core as it is.

【0078】また、以上の熱間静水圧プレスにおいて、
一次成形コアBは、これと化学反応しない圧力媒体粉末
Cで覆われるため、完成された磁気ヘッドコアDに、性
質の変化を生じるおそれはない。
[0078] Furthermore, in the above hot isostatic press,
Since the primary molded core B is covered with the pressure medium powder C which does not chemically react with the primary molded core B, there is no fear that the properties of the completed magnetic head core D will change.

【0079】なお、以上の説明においては、磁気ヘッド
コアDを製造する場合について説明したが、プレス装置
Pの型の形状を適宜変更することで、磁気ヘッドコアに
限らず、変圧器、電動機、チョークコイルなどの磁心の
製造方法として広く利用できることは勿論である。
In the above explanation, the case of manufacturing the magnetic head core D has been explained, but by appropriately changing the shape of the mold of the press device P, it is possible to manufacture not only magnetic head cores but also transformers, electric motors, and choke coils. It goes without saying that this method can be widely used as a method for manufacturing magnetic cores such as magnetic cores.

【0080】次に、図4ないし図7を基に先に説明した
方法によって磁気ヘッドコアを製造し、この磁気ヘッド
コアの磁気性能を測定した。
Next, a magnetic head core was manufactured by the method described above with reference to FIGS. 4 to 7, and the magnetic performance of this magnetic head core was measured.

【0081】Fe系軟磁性合金粉末として、F90Zr
7B2Cu1なる組成の合金を結晶化温度以上に加熱し
て粉砕することにより得たものを用いた。
[0081] As the Fe-based soft magnetic alloy powder, F90Zr
An alloy obtained by heating and pulverizing an alloy having a composition of 7B2Cu1 above the crystallization temperature was used.

【0082】この軟磁性合金粉末をプレス装置によって
磁気ヘッドコア状になるように一次成形した。次にこの
一次成形品に、真空を含む不活性ガス雰囲気中において
500〜600℃で予備焼結を行った。次いでこの一次
成形品を温度600℃、圧力5000気圧、焼結時間1
時間に設定して熱間静水圧プレスを行った。
[0082] This soft magnetic alloy powder was primarily formed into the shape of a magnetic head core using a press machine. Next, this primary molded product was subjected to preliminary sintering at 500 to 600°C in an inert gas atmosphere including vacuum. Next, this primary molded product was sintered at a temperature of 600°C, a pressure of 5000 atm, and a time of 1.
Hot isostatic pressing was carried out at a certain time.

【0083】得られた磁気ヘッドコアの透磁率μe(1
KHz)は、18000、保磁力は0.03Oe、飽和
磁束密度は16.7kGを示し、優れた磁気特性を発揮
することを 確認できた。
The magnetic permeability μe(1
KHz) was 18,000, coercive force was 0.03 Oe, and saturation magnetic flux density was 16.7 kG, confirming that it exhibited excellent magnetic properties.

【0084】[0084]

【発明の効果】以上説明したように本発明は、特定の組
成の軟磁性合金粉末を圧密するので、高飽和磁束密度と
高透磁率を併せ持ち、高い機械特性と熱安定性を備えた
優れた磁気製品を製造できる効果がある。従って、磁気
ヘッドコア、トランス、チョークコイルなどにおいて、
形状が複雑な磁気製品であっても高性能なものを容易に
得ることができる効果がある。
[Effects of the Invention] As explained above, the present invention consolidates soft magnetic alloy powder with a specific composition, so it has both high saturation magnetic flux density and high magnetic permeability, and has excellent mechanical properties and thermal stability. It is effective in manufacturing magnetic products. Therefore, in magnetic head cores, transformers, choke coils, etc.
This has the effect of making it possible to easily obtain high-performance magnetic products even if the shape is complex.

【0085】また、前記特定の組成の軟磁性合金が結晶
化温度以上で脆くなることを利用して粉砕して粉末化す
るならば、高飽和磁束密度と高透磁率を併せ持ち、高い
機械特性と熱安定性を備えた優れた圧粉体からなる磁気
製品を製造できる軟磁性合金粉末を容易に得ることがで
きる効果がある。
In addition, if the soft magnetic alloy with the specific composition becomes brittle at temperatures above the crystallization temperature and is crushed into powder, it will have both high saturation magnetic flux density and high magnetic permeability, and will have high mechanical properties. This has the effect of making it possible to easily obtain a soft magnetic alloy powder that can be used to manufacture magnetic products made of green compacts with excellent thermal stability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】Fe系軟磁性合金の一例の透磁率と熱処理温度
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between magnetic permeability and heat treatment temperature of an example of a Fe-based soft magnetic alloy.

【図2】前記合金の熱処理前後の構造変化を示すX線回
折図形を示すグラフである。
FIG. 2 is a graph showing an X-ray diffraction pattern showing structural changes of the alloy before and after heat treatment.

【図3】前記合金の熱処理後の組織を示す顕微鏡写真の
模式図である。
FIG. 3 is a schematic diagram of a micrograph showing the structure of the alloy after heat treatment.

【図4】プレス装置により軟磁性合金粉末から一次成形
コアを形成する模様を示す模式図である。
FIG. 4 is a schematic diagram showing how a primary molded core is formed from soft magnetic alloy powder using a press device.

【図5】図5中(A)ないし(C)は一次成形コアを加
圧カプセル内に入れる様子を示す断面図である。
FIG. 5 (A) to (C) in FIG. 5 are cross-sectional views showing how the primary molded core is placed in a pressurized capsule.

【図6】図5の加圧カプセルを高温下で加圧する熱間静
水圧プレスの概念図である。
FIG. 6 is a conceptual diagram of a hot isostatic press that presses the pressurized capsule of FIG. 5 at high temperature.

【図7】加圧カプセル内から磁気ヘッドコアを取り出す
状態を示す模式図である。
FIG. 7 is a schematic diagram showing a state in which the magnetic head core is taken out from inside the pressurized capsule.

【図8】Fe系軟磁性合金の熱処理の際の冷却速度と透
磁率の関係を示すグラフである。
FIG. 8 is a graph showing the relationship between cooling rate and magnetic permeability during heat treatment of a Fe-based soft magnetic alloy.

【符号の説明】[Explanation of symbols]

A  軟磁性合金粉末 B  一次成形コア C  圧力媒体粉末 D  磁気ヘッドコア 10  圧力カプセル 11  本体 12  蓋体 13  脱気パイプ 20  熱間静水圧プレス 21  高圧円筒 24  高圧ガス導入管 26  ヒータ 30  ワーク(加圧カプセル) A Soft magnetic alloy powder B Primary molded core C Pressure medium powder D Magnetic head core 10 Pressure capsule 11 Main body 12 Lid body 13 Deaeration pipe 20 Hot isostatic press 21 High pressure cylinder 24 High pressure gas introduction pipe 26 Heater 30 Work (pressure capsule)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  次式で示される組成を有する高飽和磁
束密度Fe系軟磁性合金粉末を圧密してなることを特徴
とするFe系軟磁性合金圧粉体。 (Fe1−a Co a)b Bx Ty T’z但し
TはTi,Zr,Hf,V,Nb,Ta,Mo,Wから
なる群から選ばれた1種又は2種以上の元素であり、且
つ、Zr,Hfのいずれか、又は両方を含み、T’はC
u,Ag,Au,Ni,Pd,Ptからなる群から選ば
れた1種又は2種以上の元素であり、 a≦0.05、   b≦92原子%、x=0.5〜1
6原子%、y=4〜10原子%、z=4.5原子%以下
である。
1. An Fe-based soft magnetic alloy green compact, characterized in that it is made by compacting a high saturation magnetic flux density Fe-based soft magnetic alloy powder having a composition represented by the following formula. (Fe1-a Co a) b Bx Ty T'z where T is one or more elements selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mo, and W, and , Zr, Hf, or both, and T' is C
One or more elements selected from the group consisting of u, Ag, Au, Ni, Pd, and Pt, a≦0.05, b≦92 atomic%, x=0.5-1
6 atom%, y=4 to 10 atom%, and z=4.5 atom% or less.
【請求項2】  次式で示される組成を有する高飽和磁
束密度Fe系軟磁性合金粉末を圧密してなることを特徴
とするFe系軟磁性合金圧粉体。 Fe b Bx Ty T’z 但しTはTi,Zr,Hf,V,Nb,Ta,Mo,W
からなる群から選ばれた1種又は2種以上の元素であり
、且つZr,Hfのいずれか、又は両方を含み、T’は
Cu,Ag,Au,Ni,Pd,Ptからなる群から選
ばれた1種又は2種以上の元素であり、 b≦92原子%、    x=0.5〜16原子%、y
=4〜10原子%、z=4.5原子%以下である。
2. An Fe-based soft magnetic alloy green compact, characterized in that it is made by compacting a high saturation magnetic flux density Fe-based soft magnetic alloy powder having a composition represented by the following formula. Fe b Bx Ty T'z However, T is Ti, Zr, Hf, V, Nb, Ta, Mo, W
is one or more elements selected from the group consisting of, and contains either or both of Zr and Hf, and T' is selected from the group consisting of Cu, Ag, Au, Ni, Pd, and Pt. b≦92 at%, x=0.5 to 16 at%, y
=4 to 10 at%, z=4.5 at% or less.
【請求項3】  次式で示される組成を有する高飽和磁
束密度Fe系軟磁性合金粉末を圧密してなることを特徴
とするFe系軟磁性合金圧粉体。 (Fe1−a Co a)b Bx Ty但しTはTi
,Zr,Hf,V,Nb,Ta,Mo,Wからなる群か
ら選ばれた1種又は2種以上の元素であり、且つ、Zr
,Hfのいずれか、又は両方を含み、 a≦0.05、    b≦92原子%、x=0.5〜
16原子%、 y=4〜10原子%である。
3. An Fe-based soft magnetic alloy green compact, characterized in that it is made by compacting a high saturation magnetic flux density Fe-based soft magnetic alloy powder having a composition represented by the following formula. (Fe1-a Co a) b Bx Ty where T is Ti
, Zr, Hf, V, Nb, Ta, Mo, and W, and Zr
, Hf, or both, a≦0.05, b≦92 atomic%, x=0.5~
16 atom%, y=4 to 10 atom%.
【請求項4】  次式で示される組成を有する高飽和磁
束密度Fe系軟磁性合金粉末を圧密してなることを特徴
とするFe系軟磁性合金圧粉体。 Fe b Bx Ty 但しTはTi,Zr,Hf,V,Nb,Ta,Mo,W
からなる群から選ばれた1種又は2種以上の元素であり
、且つ、Zr,Hfのいずれか、又は両方を含み、 b≦92原子%、    x=0.5〜16原子%、y
=4〜10原子%である。
4. An Fe-based soft magnetic alloy green compact, characterized in that it is made by compacting a high saturation magnetic flux density Fe-based soft magnetic alloy powder having a composition represented by the following formula. Fe b Bx Ty where T is Ti, Zr, Hf, V, Nb, Ta, Mo, W
one or more elements selected from the group consisting of, and contains either or both of Zr and Hf, b≦92 at%, x=0.5 to 16 at%, y
=4 to 10 at%.
【請求項5】  請求項1,2,3または4に記載の高
飽和磁束密度Fe系軟磁性合金粉末を製造する際に、請
求項1,2,3または4に記載の組成を有する高飽和磁
束密度Fe系軟磁性合金を結晶化温度以上の温度に加熱
して脆化させ、粉砕することを特徴とするFe系軟磁性
合金粉末の製造方法。
5. When producing the high saturation magnetic flux density Fe-based soft magnetic alloy powder according to claim 1, 2, 3 or 4, highly saturated powder having the composition according to claim 1, 2, 3 or 4 is used. A method for producing a Fe-based soft magnetic alloy powder, which comprises heating a magnetic flux density Fe-based soft magnetic alloy to a temperature equal to or higher than its crystallization temperature to embrittle it and then pulverizing it.
JP3022793A 1990-09-13 1991-01-23 Manufacture of ferrous soft magnetic alloy green compact and ferrous soft magnetic alloy powder Pending JPH04272104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3022793A JPH04272104A (en) 1990-09-13 1991-01-23 Manufacture of ferrous soft magnetic alloy green compact and ferrous soft magnetic alloy powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-243590 1990-09-13
JP24359090 1990-09-13
JP3022793A JPH04272104A (en) 1990-09-13 1991-01-23 Manufacture of ferrous soft magnetic alloy green compact and ferrous soft magnetic alloy powder

Publications (1)

Publication Number Publication Date
JPH04272104A true JPH04272104A (en) 1992-09-28

Family

ID=26360066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3022793A Pending JPH04272104A (en) 1990-09-13 1991-01-23 Manufacture of ferrous soft magnetic alloy green compact and ferrous soft magnetic alloy powder

Country Status (1)

Country Link
JP (1) JPH04272104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066056A1 (en) * 2019-09-30 2021-04-08 Tdk株式会社 Soft magnetic alloy and magnetic component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479342A (en) * 1986-12-15 1989-03-24 Hitachi Metals Ltd Fe-base soft magnetic alloy and its production
JPH01242755A (en) * 1988-03-23 1989-09-27 Hitachi Metals Ltd Fe-based magnetic alloy
JPH01294847A (en) * 1988-05-23 1989-11-28 Toshiba Corp Soft-magnetic alloy
JPH02125801A (en) * 1988-11-01 1990-05-14 Hitachi Metals Ltd Flat-state fe base soft magnetic alloy fine powder and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479342A (en) * 1986-12-15 1989-03-24 Hitachi Metals Ltd Fe-base soft magnetic alloy and its production
JPH01242755A (en) * 1988-03-23 1989-09-27 Hitachi Metals Ltd Fe-based magnetic alloy
JPH01294847A (en) * 1988-05-23 1989-11-28 Toshiba Corp Soft-magnetic alloy
JPH02125801A (en) * 1988-11-01 1990-05-14 Hitachi Metals Ltd Flat-state fe base soft magnetic alloy fine powder and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066056A1 (en) * 2019-09-30 2021-04-08 Tdk株式会社 Soft magnetic alloy and magnetic component

Similar Documents

Publication Publication Date Title
EP0455113B1 (en) Fe based soft magnetic alloy, magnetic material containing same, and magnetic apparatus using the magnetic materials
JP4310480B2 (en) Amorphous alloy composition
US7622011B2 (en) Spherical particles of Fe base metallic glass alloy, Fe base sintered alloy soft magnetic material in bulk form produced by sintering the same, and method for their production
JP5305126B2 (en) Soft magnetic powder, method of manufacturing a dust core, dust core, and magnetic component
JP6088192B2 (en) Manufacturing method of dust core
JP2713363B2 (en) Fe-based soft magnetic alloy compact and manufacturing method thereof
US5509975A (en) Soft magnetic bulky alloy and method of manufacturing the same
KR102214392B1 (en) Soft magnetic alloy and magnetic device
JP2016104900A (en) Metallic soft magnetic alloy, magnetic core, and production method of the same
JPH0851010A (en) Green compact of soft magnetic alloy, production method thereof and coating powder therefor
JP2868121B2 (en) Method for producing Fe-based magnetic alloy core
JPH05335129A (en) Fe-based soft magnetic alloy particle and manufacturing method thereof
JP2812573B2 (en) Magnetic head
JPH04272104A (en) Manufacture of ferrous soft magnetic alloy green compact and ferrous soft magnetic alloy powder
JP2925349B2 (en) Fe-based soft magnetic alloy core
JPH04289152A (en) Manufacture of ferrous soft magnetic alloy green compact and ferrous soft magnetic alloy powder
JP3534218B2 (en) Method for producing Fe-based soft magnetic metallic glass sintered body
US5976273A (en) Hard magnetic material
JPH04289503A (en) Magnetic head
JPH04213804A (en) Fe-group soft magnetic alloy core
JP2740692B2 (en) Mold
JP3532392B2 (en) Bulk core
JPH08337839A (en) Soft magnetic alloy compacted body and its production
JP2731454B2 (en) Force sensor
JPH1173608A (en) Inductive head

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990323