JP2823204B2 - Soft magnetic alloy - Google Patents

Soft magnetic alloy

Info

Publication number
JP2823204B2
JP2823204B2 JP63118334A JP11833488A JP2823204B2 JP 2823204 B2 JP2823204 B2 JP 2823204B2 JP 63118334 A JP63118334 A JP 63118334A JP 11833488 A JP11833488 A JP 11833488A JP 2823204 B2 JP2823204 B2 JP 2823204B2
Authority
JP
Japan
Prior art keywords
alloy
magnetic
soft magnetic
present
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63118334A
Other languages
Japanese (ja)
Other versions
JPH01290746A (en
Inventor
孝雄 沢
正巳 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14734093&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2823204(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63118334A priority Critical patent/JP2823204B2/en
Publication of JPH01290746A publication Critical patent/JPH01290746A/en
Application granted granted Critical
Publication of JP2823204B2 publication Critical patent/JP2823204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、軟磁性合金に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a soft magnetic alloy.

(従来技術) 従来から、スイッチングレギュレータなど高周波で使
用する磁心としては、パーマロイ、フェライトなどの結
晶質材料が用いられれている。
(Prior Art) Conventionally, crystalline materials such as permalloy and ferrite have been used for magnetic cores used at high frequencies such as switching regulators.

しかしながら、パーマロイは比抵抗が小さいので高周
波での鉄損が大きくなる。また、フェライトは高周波で
の損失は小さいが、磁束密度もせいぜい5000Gと小さ
く、そのため大きな動作磁束密度での使用時にあっては
飽和に近くなり、その結果鉄損が増大する。近時、スイ
ッチングレギュレータに使用される電源トランス、平滑
チョークコイル、コモンコードチョークコイルなど高周
波で使用されるトランスにおいては、形状の小形化が望
まれているが、その場合、動作磁束密度の増大が必要と
なるため、フェライトの鉄損増大は実用上大きな問題と
なる。
However, since permalloy has a low specific resistance, iron loss at a high frequency increases. Ferrite has a small loss at high frequencies, but also has a small magnetic flux density of at most 5000 G. Therefore, when used at a large operating magnetic flux density, it is close to saturation, and as a result, iron loss increases. In recent years, power transformers used for switching regulators, smoothing choke coils, common code choke coils, and other transformers used at high frequencies have been desired to be smaller in size. Because of the necessity, an increase in iron loss of ferrite is a serious problem in practical use.

このため、結晶構造を持たない非晶質磁性合金が、高
透磁率、低保磁力など優れた軟質磁気特性を示すので最
近注目を集めて一部実用化されている。これらの非晶質
磁性合金は、Fe、Co、Niなどを基本とし、これに非晶質
化元素(メタロイド)としてP、C、B、Si、Al、Geな
どを包含するものである。
For this reason, amorphous magnetic alloys having no crystal structure have recently been attracting attention and have been put to practical use because they exhibit excellent soft magnetic properties such as high magnetic permeability and low coercive force. These amorphous magnetic alloys are based on Fe, Co, Ni, etc., and include P, C, B, Si, Al, Ge, etc. as an amorphizing element (metalloid).

しかしながら、これら非晶性質磁性合金の全てが高周
波領域で鉄損が小さいというわけではない。例えば、Fe
基非晶質合金は、安価であり50〜60Hzの低周波領域では
ケイ素鋼の約1/4という非常に小さい鉄損を示すが、10
〜50Hzという高周波領域にあっては著しく大きな鉄損を
示し、とてもスイッチングレギュレータ等の高周波領域
での使用に適合するものではない。これを改善するため
に、Feの一部をNb、Mo、Cr等の非磁性金属で置換するこ
とにより低磁歪化し、低鉄損、高透磁率を図っている
が、例えば樹脂モールド時の樹脂の硬化収縮等による磁
気特性の劣化も比較的大きく、高周波領域で用いられる
軟磁性材料としては、充分な特性を得られるに至ってい
ない。
However, not all of these amorphous magnetic alloys have low iron loss in the high frequency range. For example, Fe
The base amorphous alloy is inexpensive and exhibits a very small iron loss of about 1/4 of silicon steel in the low frequency range of 50 to 60 Hz, but 10
In the high frequency range of ~ 50Hz, it shows a remarkably large iron loss and is not very suitable for use in a high frequency range such as a switching regulator. In order to improve this, low magnetostriction, low iron loss and high magnetic permeability are achieved by replacing a part of Fe with a nonmagnetic metal such as Nb, Mo, Cr, etc. Deterioration of magnetic properties due to curing shrinkage and the like is relatively large, and sufficient properties have not yet been obtained as a soft magnetic material used in a high frequency range.

一方、Co基非晶質合金は、高周波領域で低鉄損、高角
形比が得られるため可飽和リアクトルになどの電子機器
用磁性部品に実用化されるが、コストが比較的高いもの
である。
On the other hand, Co-based amorphous alloys can be used for magnetic components for electronic devices such as saturable reactors because of their low iron loss and high squareness in the high frequency range, but their cost is relatively high. .

(発明が解決しようとする課題) 以上に述べたように、Fe基非晶質合金は安価な軟磁性
材料でありながら、磁歪が比較的大きく、Co基非晶質合
金に比べ鉄損、透磁率とも劣っており、高周波領域にお
ける用途には問題があった。一方Co基非晶質合金は磁気
特性は良好であるものの、素材の値段が高いため工業上
有利ではなかった。
(Problems to be Solved by the Invention) As described above, an Fe-based amorphous alloy is an inexpensive soft magnetic material, but has relatively large magnetostriction, and has iron loss and permeability that are lower than those of a Co-based amorphous alloy. The magnetic susceptibility is also inferior, and there is a problem in applications in the high frequency range. On the other hand, although the Co-based amorphous alloy has good magnetic properties, it is not industrially advantageous due to the high price of the material.

したがって本発明は、上記問題点に鑑み、高周波領域
において高飽和磁束密度で優れた軟磁気特性を有する軟
磁性合金を提供することを目的とする。
Therefore, an object of the present invention is to provide a soft magnetic alloy having a high saturation magnetic flux density and excellent soft magnetic characteristics in a high frequency region in view of the above problems.

[発明の概要] (課題を解決するための手段と作用) 上記目的を達成するために本願発明者らは合金組性お
よび組織について種々検討を重ねた結果、まず第1の合
金として (Fe1-a-b-cMaCobM'c100-dYd M′:周期律表IV a、V a、VI a族元素またはMn,Ni,A
lから選ばれる少なくとも1種以上 Y :Si,B,P,Cから選ばれる少なくとも1種以上 0.005≦a≦0.05 0.01≦b≦0.7 0≦c≦0.1 15≦d≦28 (原子%) で表わされ、微細結晶粒を有する合金、および第2の合
金として、 (Fe1-a-b-cMaCobM′100-dYd M :Ag,Au,Zn,Sn,Pb,Sb,Biから選ばれる少なくとも
1種以上 M′:周期律表IV a、V a、VI a族元素またはMn,Ni,A
lから選ばれる少なくとも1種以上 Y :Si,B,P,Cから選ばれる少なくとも1種以上 0.005≦a≦0.05 0.01≦b≦0.7 0≦c≦0.1 15≦d≦28 (原子%) で表わされ、微細結晶粒を有する合金が、軟磁性材料と
して優れた特性を有することを初めて見い出し、本発明
に至ったものである。
[Summary of the Invention] (Means and Actions for Solving the Problems) In order to achieve the above object, the inventors of the present invention have conducted various studies on the alloy composition and structure, and as a result, (Fe 1 -abc M a Co b M ' c ) 100-d Y d M': Group IVa, Va, VIa element of the periodic table or Mn, Ni, A
Y: at least one selected from Si, B, P, C 0.005 ≦ a ≦ 0.05 0.01 ≦ b ≦ 0.7 0 ≦ c ≦ 0.1 15 ≦ d ≦ 28 (atomic%) is I, an alloy having fine crystal grains, and as a second alloy, (Fe 1-abc M a Co b M 'c) 100-d Y d M: Ag, Au, Zn, Sn, Pb, Sb, Bi At least one selected from the group consisting of M ': Group IVa, Va, VIa element of the periodic table or Mn, Ni, A
Y: at least one selected from Si, B, P, C 0.005 ≦ a ≦ 0.05 0.01 ≦ b ≦ 0.7 0 ≦ c ≦ 0.1 15 ≦ d ≦ 28 (atomic%) The inventors have found for the first time that an alloy having fine crystal grains has excellent properties as a soft magnetic material, and have reached the present invention.

本発明は上記組成を有する合金中に特に微細結晶粒を
有することを特徴とする。
The present invention is characterized in that the alloy having the above composition has particularly fine crystal grains.

特に微細結晶粒は、合金中に面積比で30%以上存在す
ることが好ましく、さらには前記微細結晶粒中に50〜30
0Åの結晶粒が80%以上存在することが好ましい。
In particular, the fine crystal grains are preferably present in the alloy in an area ratio of 30% or more, and more preferably 50 to 30% in the fine crystal grains.
Preferably, 0% of the crystal grains are present in an amount of 80% or more.

以下に、本発明合金の組成限定理由および微細結晶粒
の限定理由について説明する。
The reasons for limiting the composition of the alloy of the present invention and the reasons for limiting the fine crystal grains will be described below.

まず組成限定理由について説明する。 First, the reasons for limiting the composition will be described.

CuあるいはMは耐食性を高め、結晶粒の粗大化を防ぐ
と共に、鉄損、透磁率など軟磁気特性を改善するのに有
効な元素であるが、その量があまり少ないと添加の効果
が得られず、逆にあまり多いと磁気特性の劣化を生じる
ために、その範囲を0.005〜0.05とした。好ましくは0.0
1〜0.04である。
Cu or M is an element effective in improving corrosion resistance and preventing coarsening of crystal grains and improving soft magnetic properties such as iron loss and magnetic permeability, but if the amount is too small, the effect of addition can be obtained. On the contrary, if the amount is too large, the magnetic characteristics are deteriorated. Therefore, the range is set to 0.005 to 0.05. Preferably 0.0
1 to 0.04.

M′は結晶粒径の均一化に有効であると共に、磁歪お
よび磁気異方性を低減させ軟磁気特性の改善、および温
度変化に対する磁気特性の改善に有効な元素であるが、
その量があまり多いとキュリー温度が低くなると共に飽
和磁束密度が低くなるため、その量を0〜0.1とした。
好ましくは0.02〜0.1、さらに好ましくは0.02〜0.07で
ある。ここでM′における各添加元素は上記効果と共に
さらにそれぞれ、IV a族元素は最適磁気特性を得るため
の熱処理条件の範囲の拡大、V a族元素およびMnは耐脆
化性の向上および切断等の加工性の向上、VI a族元素は
耐食性の向上および表面性状の向上、Alは結晶粒の微細
化と共に磁気異方性の低減に有効であり、これにより磁
歪、軟磁気特性の改善、等の効果を有している。
M ′ is an element that is effective for uniformizing the crystal grain size, and is effective for reducing magnetostriction and magnetic anisotropy to improve soft magnetic properties and magnetic properties against temperature change.
If the amount is too large, the Curie temperature decreases and the saturation magnetic flux density decreases, so the amount was set to 0 to 0.1.
Preferably it is 0.02-0.1, More preferably, it is 0.02-0.07. Here, each additive element in M ′ further has the above-mentioned effects, and the group IVa element further expands the range of heat treatment conditions for obtaining optimum magnetic characteristics, and the group Va element and Mn improve the embrittlement resistance and cut. Group VIa elements are effective in improving corrosion resistance and surface properties, and Al is effective in reducing crystal anisotropy and reducing magnetic anisotropy, thereby improving magnetostriction and soft magnetic properties. The effect is as follows.

Coは低磁歪化、高飽和磁束密度化に有効な元素である
が、その量があまり少ないと添加の効果が得られず、逆
にあまり多いと飽和磁束密度が低減するため、その量を
0.01〜0.7とした。
Co is an element effective for lowering the magnetostriction and increasing the saturation magnetic flux density.However, if the amount is too small, the effect of addition cannot be obtained.If the amount is too large, the saturation magnetic flux density decreases.
0.01 to 0.7.

特に磁歪の低減を重視する場合は0.01〜0.1が好まし
く、高飽和磁束密度化を重視する場合は0.3〜0.7が好ま
しいが、0.1〜0.3でも優れた軟磁気特性が得られる。
Particularly, when importance is attached to reduction of magnetostriction, 0.01 to 0.1 is preferable, and when importance is attached to high saturation magnetic flux density, 0.3 to 0.7 is preferable. However, excellent soft magnetic characteristics can be obtained with 0.1 to 0.3.

なおCuまたはM,M′Coの複合添加により磁気特性の温
度変化に対する改善が図れる。
It should be noted that the addition of Cu or M, M'Co can improve the magnetic properties with respect to temperature changes.

Yは製造時における合金の非結晶化または直接微細結
晶を析出させるのに有効な元素であり、その量があまり
少ないと製造時における超急冷の効果が得られにくく上
記状態が得られず、逆にあまり多いと飽和磁束密度が低
くなり上記状態が得られにくく、優れた磁気特性が得ら
れなくなるため、その量を15〜28原子%とした。好まし
くは18〜26原子%である。特に(Bi,C)/(B.P)の比
は1以上が好ましい。
Y is an element effective for non-crystallization or direct precipitation of fine crystals of the alloy at the time of production. If the amount is too large, the saturation magnetic flux density becomes low and the above-mentioned state is hardly obtained, and excellent magnetic properties cannot be obtained. Therefore, the amount is set to 15 to 28 atomic%. Preferably it is 18 to 26 atomic%. In particular, the ratio of (Bi, C) / (BP) is preferably 1 or more.

上記本発明の軟磁性合金は、例えば液体急冷法によ
り、非晶質合金薄帯を得た後、または、アトマイズ法な
どにより急冷粉末を得た後、前記非晶質合金の結晶化温
度に対し−50〜+120℃、好ましくは−30〜+100℃の温
度で1分〜10時間、好ましくは10分〜5時間の熱処理を
行い、意図する微細結晶を析出させる方法、あるいは液
体急冷法の急冷速度を制御して微細結晶粒を析出させる
方法等により得ることが可能となる。
The soft magnetic alloy of the present invention is, for example, by a liquid quenching method, after obtaining an amorphous alloy ribbon, or after obtaining a quenched powder by an atomizing method, etc., with respect to the crystallization temperature of the amorphous alloy A method of performing heat treatment at a temperature of −50 to + 120 ° C., preferably −30 to + 100 ° C. for 1 minute to 10 hours, preferably 10 minutes to 5 hours to precipitate an intended fine crystal, or a quenching rate of a liquid quenching method Can be obtained by, for example, a method of precipitating fine crystal grains by controlling the temperature.

次に本発明の軟磁合金の微細結晶粒について述べる。 Next, the fine crystal grains of the soft magnetic alloy of the present invention will be described.

本発明の合金中において、あまり微細結晶粒が少ない
と、すなわち非晶質相があまり多いと鉄損が大きく、透
磁率が低く、磁歪が大きく、樹脂モールドによる磁気特
性の劣化が増大するため、合金中の微細結晶粒は面積比
で30%以上存在することが好ましい。
In the alloy of the present invention, if there are too few fine crystal grains, that is, if there are too many amorphous phases, the iron loss is large, the magnetic permeability is low, the magnetostriction is large, and the deterioration of the magnetic properties due to the resin mold increases, The fine crystal grains in the alloy preferably exist in an area ratio of 30% or more.

さらに上記微細結晶粒中においても結晶粒径があまり
小さいと磁気特性の改善が図れず、逆にあまり大きいと
磁気特性の劣化が発生するため、上記微細結晶粒中にお
いても、結晶粒径50〜300Åの結晶が80%以上存在する
ことが好ましい。
Further, even in the fine crystal grains, if the crystal grain size is too small, the magnetic properties cannot be improved.On the contrary, if the crystal grain size is too large, the magnetic properties deteriorate. Preferably, 80% or more of crystals of 300 ° are present.

本発明の軟磁性合金は高周波での軟磁気特性に優れて
いるため、例えば磁気ヘッド、薄膜ヘッド、大電力用を
含む高周波トランス、可飽和リアクトル、コモンモード
チョークコイル、ノーマルモードチョークコイル、高電
圧パルス用ノイズフィルタ、レーザ電源等に用いられる
磁気スイッチなど高周波で用いられる磁心、電源センサ
ー、方位センサー、セキュリティセンサー等の各種セン
サー用の磁性材料等磁性部品の合金として優れた特性を
示している。
Since the soft magnetic alloy of the present invention has excellent soft magnetic characteristics at high frequencies, for example, magnetic heads, thin film heads, high frequency transformers including those for high power, saturable reactors, common mode choke coils, normal mode choke coils, high voltage It shows excellent characteristics as an alloy of magnetic parts such as magnetic cores used at high frequencies such as a noise switch for a pulse, a magnetic switch used for a laser power supply and the like, a magnetic material for various sensors such as a power supply sensor, a direction sensor, and a security sensor.

(実施例) 下記第1表に示す本願の第1の発明の組成の合金およ
び第2表に示す本願の第2の発明の組成の合金より単ロ
ール法により厚さ約21μmの非晶質合金薄帯を得た。そ
の後得られた非晶質合金薄帯を巻回し、外径18mm、内径
12mm、高さ4.5mmのトロイダル状磁心に成形し、各試料
の結晶化温度(昇温速度10deg/minで測定)より約50℃
高い温度で約40分間熱処理し測定に供した。
(Example) An amorphous alloy having a thickness of about 21 μm from the alloy of the composition of the first invention of the present invention shown in Table 1 and the alloy of the second invention of the present invention shown in Table 2 by a single roll method. I got a ribbon. Thereafter, the obtained amorphous alloy ribbon was wound, and the outer diameter was 18 mm, and the inner diameter was 18 mm.
Formed into a 12mm, 4.5mm high toroidal magnetic core, about 50 ° C from the crystallization temperature of each sample (measured at a heating rate of 10deg / min)
The sample was heat-treated at a high temperature for about 40 minutes and used for measurement.

また比較として前記巻回後の磁心に各試料の結晶化温
度(昇温速度10deg/minで測定)より約70℃低い温度で
約40分間熱処理した非晶質状態の磁心を作成した。
For comparison, an amorphous state magnetic core was prepared by heat-treating the core after winding at a temperature lower by about 70 ° C. than the crystallization temperature of each sample (measured at a heating rate of 10 deg / min) for about 40 minutes.

得られた磁心を構成する薄帯中の微細結晶粒の割合と
その中での50〜300Åの微細結晶粒の割合をそれぞれA,B
(%)として併せて第1表および第2表に示す。
The percentage of fine crystal grains in the ribbon constituting the obtained magnetic core and the percentage of fine crystal grains of
(%) Are shown in Tables 1 and 2.

さらに本発明の微細結晶が存在する磁心と比較例の微
細結晶粒が存在しない磁心についてそれぞれ5個用い、
B=3KG,f=50KHzでの熱処理後の鉄損、磁歪1KHz2mOeで
の透磁率、飽和磁化を併せて第1表および第2表に示
す。
Further, five magnetic cores in which the fine crystals of the present invention exist and five magnetic cores in which the fine crystal grains of the comparative example do not exist were used,
Tables 1 and 2 show the iron loss after heat treatment at B = 3KG, f = 50KHz, permeability at 1KHz2mOe, and saturation magnetization.

上記第1表および第2表により明らかなように、本願
発明の合金は微細結晶を設けることにより、同組成の非
晶性質合金薄帯よりなる磁心または他の合金組成の磁心
に比べ鉄損が低く、低磁歪で高透磁率であり、高周波に
おいて優れた軟磁気特性を示している。
As is clear from the above Tables 1 and 2, the alloy of the present invention is provided with fine crystals, so that iron loss is smaller than that of a magnetic core made of an amorphous alloy ribbon having the same composition or a magnetic core of another alloy composition. It is low, has low magnetostriction, has high magnetic permeability, and exhibits excellent soft magnetic properties at high frequencies.

また、これらの磁心をエポキシ系樹脂により含浸硬化
を行ったところ、本発明の微細結晶粒を有する磁心の鉄
損の増大はいずれも5%以下であり、良好な磁気特性を
保持しているが、比較として示した合金および非晶質合
金薄帯を用いた磁心の鉄損の増大は3倍程度となり、本
発明との差が一層顕著となった。
When these magnetic cores were impregnated and cured with an epoxy resin, the core of the present invention having fine crystal grains had an increase in iron loss of 5% or less in each case, and maintained good magnetic properties. The increase in iron loss of the magnetic core using the alloy and the amorphous alloy ribbon shown as a comparison was about three times, and the difference from the present invention became more remarkable.

[発明の効果] 本発明の合金は、所望の合金組成において、微細結晶
粒を設けることにより、高周波領域において高飽和磁束
密度で優れた軟磁気特性を有するFe基軟磁性合金を提供
することが可能となる。
[Effects of the Invention] The alloy of the present invention can provide a Fe-based soft magnetic alloy having a high saturation magnetic flux density and excellent soft magnetic properties in a high frequency region by providing fine crystal grains in a desired alloy composition. It becomes possible.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(Fe1-a-b-cCuaCobM′100-dYd M′:周期律表IV a、V a、VI a族元素またはMn、Ni、A
lから選ばれる少なくとも1種以上 Y:Si、B、P、Cから選ばれる少なくとも1種以上 0.005≦a≦0.05 0.14≦b≦0.7 0≦c≦28 15≦d≦28 (原子%) で表わされ、微細結晶を有し、該微細結晶が合金中に面
積比で30%以上存在し、その中で結晶粒径50〜300Åの
結晶が80%以上存在することを特徴とする高飽和磁束密
度で優れた軟磁気特性を有する軟磁性合金。
[Claim 1] (Fe 1-abc Cu a Co b M 'c) 100-d Y d M': periodic table IV a, V a, VI a group element or Mn, Ni, A
l: at least one selected from Y: at least one selected from Si, B, P, C: 0.005 ≦ a ≦ 0.05 0.14 ≦ b ≦ 0.7 0 ≦ c ≦ 28 15 ≦ d ≦ 28 (atomic%) A high saturation magnetic flux characterized by having fine crystals, wherein the fine crystals are present in the alloy in an area ratio of 30% or more, and in which crystals having a crystal grain size of 50 to 300 mm are present in an amount of 80% or more. Soft magnetic alloy with excellent soft magnetic properties in density.
【請求項2】一般式 (Fe1-a-b-cMaCobM′100-dYd M:Ag、Au、Zn、Sn、Pb、Sb、Biから選ばれる少なくとも
1種以上 M′:周期律表IV a、V a、VI a族元素またはMn、Ni、A
lから選ばれる少なくとも1種以上 Y:Si、B、P、Cから選ばれる少なくとも1種以上 0.005≦a≦0.05 0.14≦b≦0.7 0≦c≦28 15≦d≦28 (原子%) で表わされ、微細結晶を有し、該微細結晶が合金中に面
積比で30%以上存在し、その中で結晶粒径50〜300Åの
結晶が80%以上存在することを特徴とする高飽和磁束密
度で優れた軟磁気特性を有する軟磁性合金。
2. The formula (Fe 1 -abc M a Co b M ′ c ) 100-d Y d M: at least one kind selected from Ag, Au, Zn, Sn, Pb, Sb and Bi M ′: Periodic table IVa, Va, VIa group element or Mn, Ni, A
l: at least one selected from Y: at least one selected from Si, B, P, C: 0.005 ≦ a ≦ 0.05 0.14 ≦ b ≦ 0.7 0 ≦ c ≦ 28 15 ≦ d ≦ 28 (atomic%) A high saturation magnetic flux characterized by having fine crystals, wherein the fine crystals are present in the alloy in an area ratio of 30% or more, and in which crystals having a crystal grain size of 50 to 300 mm are present in an amount of 80% or more. Soft magnetic alloy with excellent soft magnetic properties in density.
JP63118334A 1988-05-17 1988-05-17 Soft magnetic alloy Expired - Lifetime JP2823204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63118334A JP2823204B2 (en) 1988-05-17 1988-05-17 Soft magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63118334A JP2823204B2 (en) 1988-05-17 1988-05-17 Soft magnetic alloy

Publications (2)

Publication Number Publication Date
JPH01290746A JPH01290746A (en) 1989-11-22
JP2823204B2 true JP2823204B2 (en) 1998-11-11

Family

ID=14734093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63118334A Expired - Lifetime JP2823204B2 (en) 1988-05-17 1988-05-17 Soft magnetic alloy

Country Status (1)

Country Link
JP (1) JP2823204B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222445A (en) * 1988-07-08 1990-01-25 Nippon Steel Corp Alloy having superfine crystalline structure and its manufacture
US5639566A (en) * 1990-09-28 1997-06-17 Kabushiki Kaisha Toshiba Magnetic core
EP0503081B1 (en) 1990-09-28 1996-06-12 Kabushiki Kaisha Toshiba Magnetic core
JP5316920B2 (en) 2007-03-16 2013-10-16 日立金属株式会社 Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2713364B2 (en) * 1988-05-11 1998-02-16 日立金属株式会社 Ultra-microcrystalline soft magnetic alloy with excellent heat resistance

Also Published As

Publication number Publication date
JPH01290746A (en) 1989-11-22

Similar Documents

Publication Publication Date Title
US4881989A (en) Fe-base soft magnetic alloy and method of producing same
US5340413A (en) Fe-NI based soft magnetic alloys having nanocrystalline structure
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
JPH044393B2 (en)
JPH01242755A (en) Fe-based magnetic alloy
US5019190A (en) Fe-based soft magnetic alloy
JP2894561B2 (en) Soft magnetic alloy
JP3068156B2 (en) Soft magnetic alloy
JP2823203B2 (en) Fe-based soft magnetic alloy
US5192375A (en) Fe-based soft magnetic alloy
KR920007579B1 (en) Soft magnetic materials
US5225006A (en) Fe-based soft magnetic alloy
JP2823204B2 (en) Soft magnetic alloy
JP2778697B2 (en) Fe-based soft magnetic alloy
JP2848667B2 (en) Method for manufacturing ultra-thin soft magnetic alloy ribbon
JPH05255820A (en) Fe base alloy having iso-permeability and its manufacture, and fe base magnetic core using the same
JP2919886B2 (en) Fe-based soft magnetic alloy
US4834814A (en) Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability
JP2713980B2 (en) Fe-based soft magnetic alloy
JP2704157B2 (en) Magnetic parts
JP2777161B2 (en) Fe-based soft magnetic alloy
JP2760539B2 (en) Fe-based soft magnetic alloy
JP3251126B2 (en) Fe-based soft magnetic alloy
JPH01290745A (en) Fe-base soft-magnetic alloy
JP3032260B2 (en) Fe-based soft magnetic alloy and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070904

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10