JPS61154014A - Dust core - Google Patents

Dust core

Info

Publication number
JPS61154014A
JPS61154014A JP27362584A JP27362584A JPS61154014A JP S61154014 A JPS61154014 A JP S61154014A JP 27362584 A JP27362584 A JP 27362584A JP 27362584 A JP27362584 A JP 27362584A JP S61154014 A JPS61154014 A JP S61154014A
Authority
JP
Japan
Prior art keywords
powder
magnetic
alloy powder
core
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27362584A
Other languages
Japanese (ja)
Inventor
Takao Sawa
孝雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27362584A priority Critical patent/JPS61154014A/en
Publication of JPS61154014A publication Critical patent/JPS61154014A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the dust core which can be subjected to a heat treatment after shaping shaped easily and has the excellent magnetic characteristics by using a bonding agent made of inorganic high molecules. CONSTITUTION:The compression shaped body is used as a magnetic core, which is obtained by compression shaping of magnetic powder through a solvent including inorganic high molecules under the conditions for fabrication of the powder. For the magnetic powder, iron powder, Fe-Al alloy powder, Fe-Si alloy powder, Fe-Ni alloy powder and etc. are available and more preferably, the amorphous alloy powder of small iron loss, particularly that in high frequency zone. this dust core has the excellent shaping property and especially, it can be subjected to a heat treatment so that the high permeability iron loss can be obtained and the magnetic characteristics of the magnetic powder can be sufficiently extracted.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、高周波磁心、特に交流の変圧器、電動機、チ
ョーク、ノイズフィルタなどに適した圧粉磁心に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a high-frequency magnetic core, particularly a powder magnetic core suitable for alternating current transformers, electric motors, chokes, noise filters, and the like.

[発明の技術的背景とその問題点) 従来から交流で使用する変圧器、電動機、チョーク、ノ
イズフィルタなどに用いる磁心には、Fe−8i合金、
パーマロイ、フェライトなどの抗が小さく、かつ結晶磁
気異方性が零でない為周波数の比較的高ダ領域では鉄損
が大きくなるという問題点を有している。パーマロイは
比抵抗が小さいので高周波での鉄損が大きくなるという
問題点を有している。又、フェライトは高周波での損失
は小さいが磁束密度もせいぜい5000Gと小さく、そ
の為大きな動作磁束密度での使用時にあっては、飽和に
近くなり、その結果鉄損が増大するという問題点を有し
ている。近年、スイッチングレギュレータに使用される
電源トランス等の高周波が使用されるトランスにおいて
は、形状の小形化が望まれているが、その場合は、動作
磁束密度の増大が必要となるため、フェライトの鉄損増
大は実用上大きな問題となる。
[Technical background of the invention and its problems] Fe-8i alloy,
Permalloy, ferrite, etc. have a small resistance, and their magnetocrystalline anisotropy is not zero, so they have the problem of large iron loss in a relatively high frequency range. Since permalloy has a low resistivity, it has the problem of high iron loss at high frequencies. Furthermore, although ferrite has a small loss at high frequencies, its magnetic flux density is also small, at most 5000G, so when used at high operating magnetic flux densities, it approaches saturation, resulting in an increase in iron loss. are doing. In recent years, there has been a desire to reduce the size of transformers that use high frequencies, such as power transformers used in switching regulators, but in this case, it is necessary to increase the operating magnetic flux density, so ferrite iron Increased losses pose a major problem in practice.

高周波における鉄損を小さくしたり、透磁率の粉末を作
製し、それを絶縁層を介して固めたものであり、絶縁層
としては有機物が使用されている。
It is made by producing powder with magnetic permeability and reducing iron loss at high frequencies, and solidifying it through an insulating layer, and an organic material is used as the insulating layer.

これらの磁心は主としてチョークやノイズフィルタとし
て・使用されている。
These magnetic cores are mainly used as chokes and noise filters.

しかしながら、上記磁性粉末から成る圧粉体は透磁率が
小さくそのため充分なインダクタンスを得るためには巻
線の数を増ヤざなければならず、従って小形化しにくい
という欠点がおった。
However, the powder compact made of the magnetic powder described above has a low magnetic permeability, so in order to obtain a sufficient inductance, the number of windings must be increased, and therefore it is difficult to miniaturize.

一方、結晶構造を持たない非晶質磁性合金は、高透磁率
、低保磁力等の優れた軟質磁気特性を示すので、最近注
目を集めている。これらの非晶質磁性合金は鉄(Fe)
 、コバルト(Go>、ニッケル(N r >等を基本
とし、これに非晶質化元素(メタロイド)として、リン
(P)、炭素(C)、ホウ素(B)、ケイ素(S i 
) 、アルミニウム(Ai’)、ゲルマニウム(Ge)
等を含有せしめたものである。
On the other hand, amorphous magnetic alloys that do not have a crystalline structure have recently attracted attention because they exhibit excellent soft magnetic properties such as high magnetic permeability and low coercive force. These amorphous magnetic alloys are iron (Fe)
, cobalt (Go>, nickel (Nr>), etc., as well as phosphorus (P), carbon (C), boron (B), silicon (Si) as amorphous elements (metalloids).
), aluminum (Ai'), germanium (Ge)
etc. are contained.

また、Fe、Go、N i 、とT i、 Zr、1−
1f、Nb等の合金から成る非晶質合金も知られている
In addition, Fe, Go, Ni, and Ti, Zr, 1-
Amorphous alloys made of alloys such as 1f and Nb are also known.

これらの非晶質合金は通常薄帯の形で得られ、それらの
磁心として用いるときには薄帯をトロイダル状やU形、
E形に成形した巻鉄心、あるいは薄帯を一定の形状に打
法いて積層した積層鉄心として使用されている。しかし
ながらこれらの磁心は特にU形、E形においてその作製
法が困難であるという点を有していた。
These amorphous alloys are usually obtained in the form of thin ribbons, and when used as their magnetic cores, the thin ribbons are shaped into toroidal, U-shaped, or
It is used as a wound core formed into an E shape, or as a laminated core made by laminating thin strips into a certain shape. However, these magnetic cores, especially in the U-shape and E-shape, have a drawback in that the manufacturing method thereof is difficult.

上記欠点を解消するため、非晶質磁性合金の粉末を作製
し、例えばエポキシ系樹脂を用いて圧粉成形する方法も
試みられている。通常非晶質磁性合金は熱処理を施すこ
とにより磁気特性を改善して用いる。しかしながら樹脂
を結着剤とした場合、熱処理を施すことができず、十分
に非晶質合金の特性を引き出すことができない。また、
非晶質合金粉末を熱処理した後に成形しようとすると、
材料が脆化しており、成形し難いという欠点がめった。
In order to eliminate the above-mentioned drawbacks, attempts have been made to produce powder of amorphous magnetic alloy and compact it using, for example, epoxy resin. Usually, an amorphous magnetic alloy is used after its magnetic properties are improved by heat treatment. However, when resin is used as a binder, heat treatment cannot be performed and the characteristics of the amorphous alloy cannot be fully brought out. Also,
When trying to shape amorphous alloy powder after heat treatment,
The disadvantage was that the material was brittle and difficult to mold.

一方、無機物例えばアルミナ、マグネシアのような酸化
物を絶縁層として用いた場合、非晶質合金は硬くて圧縮
性に乏しいため、成形するためには多量の酸化物を必要
とし、このため透磁率が極めて小さく実用に耐えないと
いう問題がめった。
On the other hand, when an inorganic material such as an oxide such as alumina or magnesia is used as an insulating layer, the amorphous alloy is hard and has poor compressibility. The problem was that it was extremely small and impractical.

[発明の目的] 本発明の目的は磁性粉末から製造され優れた磁気特性を
有する圧粉磁心を提供することにおる。
[Object of the Invention] An object of the present invention is to provide a powder magnetic core manufactured from magnetic powder and having excellent magnetic properties.

[発明の概要] 本発明者は、上記の問題点を解決するために鋭意研究を
重ねた結果、磁性粉末の成形に用いる結着剤として絶縁
性の無機高分子から成る塗料を用いることにより、容易
に成形でき、しかも優れた磁気特性を有する圧粉磁心を
製造できることを見出した。
[Summary of the Invention] As a result of extensive research in order to solve the above problems, the present inventor has discovered that by using a paint made of an insulating inorganic polymer as a binder for molding magnetic powder, It has been discovered that it is possible to produce a powder magnetic core that can be easily molded and has excellent magnetic properties.

即ち、磁性粉末を粉末作製時の状態で無機高分子を含む
溶剤を介して圧縮成形することにより得られた圧縮成形
体を磁心として用いるのである。
That is, a compression-molded body obtained by compression-molding magnetic powder in the state at the time of powder production through a solvent containing an inorganic polymer is used as a magnetic core.

磁性粉としては鉄粉、Fe−Aj!系合金粉、Fe−3
i系合金粉、Fe−Ni系合金粉等が挙げられるが、鉄
損、特に高周波域での鉄損の小さい非晶質合金粉を用い
ることが好ましい。
As magnetic powder, iron powder, Fe-Aj! alloy powder, Fe-3
Examples include i-based alloy powder, Fe-Ni-based alloy powder, etc., but it is preferable to use an amorphous alloy powder that has a small core loss, particularly in a high frequency range.

ここに用いられる非晶質合金としては、一般に次の組成
を有するものが挙げられる。
The amorphous alloy used here generally has the following composition.

即ち、原子%表示で示すと、 次式: (Co    FeXN1pHV)ZGloo
−2又は−y−p (CO1−x−y−p FexNipMy) ”100
−u(式中、Mは−r;、v、Or、Mn、CLI、Z
r、Nb、Me、Ru、Rh、Pd、AQ、Hf、Ta
、W、Re、Pt、Au、Y及び希土類元素からなる群
から選ばれる少なくとも1種の元素を表わし:GはB、
C,s;、p及びGeからなる群から選ばれる少なくと
も1種の元素を表わし:TはT r、Zr、Hf、V、
Nb、Ta、W、MOlY及び希土類元素からなる群か
ら選ばれる少なくとも1種の元素を表わし:x、y、 
p。
That is, when expressed in atomic %, the following formula: (CoFeXN1pHV)ZGloo
-2 or -y-p (CO1-x-y-p FexNipMy) ”100
-u (where M is -r;, v, Or, Mn, CLI, Z
r, Nb, Me, Ru, Rh, Pd, AQ, Hf, Ta
, W, Re, Pt, Au, Y, and a rare earth element; G represents B;
represents at least one element selected from the group consisting of C, s;, p, and Ge: T is Tr, Zr, Hf, V,
Represents at least one element selected from the group consisting of Nb, Ta, W, MOIY and rare earth elements: x, y,
p.

Z及びUはそれぞれ、O≦X≦1、O≦y≦0.2、O
≦p≦0.8.65≦Z≦90及び85≦U≦95の関
係を満足する数を表わす。) で示される非晶質合金が用いられる。
Z and U are O≦X≦1, O≦y≦0.2, O
It represents a number that satisfies the relationships: ≦p≦0.8.65≦Z≦90 and 85≦U≦95. ) is used.

このような組成を有する非晶質合金粉は、粉末状、フレ
ーク状等の形状をとる。製造方法としては、通常の急冷
却で得られた非晶質合金薄帯を粉砕する方法、あるいは
アトマイズ法等溶融合金から一気に粉末を得る方法など
がある。特にこの製法に限定されることはない。このよ
うにして得られた非晶質合金粉はオートクレーブ処理等
の前処理により酸化被膜を形成してもよい。
Amorphous alloy powder having such a composition takes the form of powder, flakes, etc. Manufacturing methods include a method of pulverizing an amorphous alloy ribbon obtained by ordinary rapid cooling, and a method of obtaining powder from a molten alloy all at once, such as an atomization method. There is no particular limitation to this manufacturing method. The amorphous alloy powder thus obtained may be subjected to pretreatment such as autoclave treatment to form an oxide film.

磁性粉の粒径は、300μm以下程度が好ましく、10
0kH2以上程度の高周波での応用を考えると100μ
m以下程度、例えば30t1m以下が好ましい。あまり
小さいと密度が大きくならないため、磁気密度の低下を
招く、よって1μm以上、通常は10〜300μm程度
が好ましい。
The particle size of the magnetic powder is preferably about 300 μm or less, and about 10 μm or less.
Considering the application at high frequency of 0kHz or more, 100μ
It is preferable that the thickness is approximately 30 m or less, for example, 30 t1 m or less. If it is too small, the density will not increase, resulting in a decrease in magnetic density. Therefore, it is preferably 1 μm or more, usually about 10 to 300 μm.

本発明に用いる無機高分子としては、例えばポーシロキ
サン樹脂等が挙げられる。
Examples of the inorganic polymer used in the present invention include porsiloxane resin.

製造の際には、溶剤中に無機高分子、シリカ、後、例え
ば150〜250℃程度で溶剤を除去し磁性粉に応じ、
最適条件で熱処理を行なうと同時に硬化させることによ
り、優れた磁気特性を得る即ち、本発明によれば無機高
分子の結着剤を用いることしにより、成形後の熱処理を
加えることができるのである。
During production, inorganic polymers and silica are added to the solvent, and then the solvent is removed at about 150 to 250°C, depending on the magnetic powder.
By performing heat treatment under optimal conditions and curing at the same time, excellent magnetic properties can be obtained.In other words, according to the present invention, by using an inorganic polymer binder, heat treatment can be applied after molding. .

無機高分子量は求められる特性に応じて変えることがで
きるが、通常1〜10VOI%程度が好ましい。
Although the inorganic polymer weight can be changed depending on the desired properties, it is usually preferably about 1 to 10 VOI%.

また熱処理は、非晶質合金の場合結晶化温度以下で行な
う。
Further, in the case of an amorphous alloy, the heat treatment is performed at a temperature below the crystallization temperature.

また、成形に関しては、爆発圧着、温間圧縮など従来粉
末成形に用いられている方法で行なうことができる。
Further, molding can be carried out by methods conventionally used for powder molding, such as explosive compression bonding and warm compression.

[発明の効果] 本発明により得られた圧粉磁心は、優れた成形性を有し
、特に熱処理を加えることができるので高透磁率低鉄損
、と十分に磁性粉の磁気特性を引き出すことができる。
[Effects of the Invention] The powder magnetic core obtained by the present invention has excellent moldability, and can be particularly heat-treated, so that it can fully bring out the magnetic properties of the magnetic powder, such as high magnetic permeability and low iron loss. I can do it.

[発明の実施例] 実施例 単ロール法を用いて幅1Qmm、厚さ20μmの(Fe
 O,95Cr O,05)353 !3812非晶質
合金を作製した後得られた粉末の粒度は約10μmであ
った。次に、非晶質合金粉末を無機高分子としてポロシ
ロキサン樹脂を溶剤としてN−メチル−2−ピロリドン
を含む溶液(商品名5MR109昭和電線電纜)に浸し
た後、外径18mm、内径12mm、高さ’lQmmの
リング状コアに成形した。得られたコアを150℃で2
0分、250℃で30分熱処理を行ない溶剤をとばし、
420℃で60分間の硬化処理を施した。
[Embodiments of the Invention] Using a single roll method, a (Fe
O,95Cr O,05)353! The particle size of the powder obtained after making the 3812 amorphous alloy was about 10 μm. Next, the amorphous alloy powder was immersed in a solution containing N-methyl-2-pyrrolidone (trade name: 5MR109 Showa Electric Cable) using an inorganic polymer and a polysiloxane resin as a solvent, and then It was molded into a ring-shaped core with a diameter of 1Qmm. The obtained core was heated at 150℃ for 2
0 minutes, heat treated at 250℃ for 30 minutes to evaporate the solvent,
A curing treatment was performed at 420° C. for 60 minutes.

該リングコアの鉄損および透磁率の周波数特性を測定し
た。鉄損は動作磁束密度3kG、周波数50kHzの測
定条件で460mW/ccrあった。
The frequency characteristics of iron loss and magnetic permeability of the ring core were measured. The iron loss was 460 mW/ccr under the measurement conditions of an operating magnetic flux density of 3 kG and a frequency of 50 kHz.

透磁率の周波数特性を測定したところ、第1図(a)に
示すように1 kHzで700と高く、かつ優れた周波
数特性を持っていた。
When the frequency characteristics of magnetic permeability were measured, as shown in FIG. 1(a), it was as high as 700 at 1 kHz, and had excellent frequency characteristics.

なお、コアの強度も実用上問題なく1mの落下試験を行
なっても何ら変化はなかった。
In addition, the strength of the core was not a problem in practical use, and there was no change at all even when a 1 m drop test was performed.

比較として同一組成の非晶質合金粉末をあらかじめ42
0℃で60分間熱処理しエポキシ系樹脂で実施例と同一
形状に成形し、150℃で2時間硬化させた俊、鉄損と
透磁率の周波数特性を測定した。鉄損は実施例と同一条
件で2300(mW/CC)と大きく透磁率は1kHz
で20と極めて小さかった。
For comparison, 42% of amorphous alloy powder with the same composition was prepared in advance.
It was heat treated at 0°C for 60 minutes, molded with epoxy resin into the same shape as the example, and cured at 150°C for 2 hours, and the frequency characteristics of iron loss and magnetic permeability were measured. The iron loss is 2300 (mW/CC) under the same conditions as the example, and the magnetic permeability is 1kHz.
It was extremely small at 20.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明および比較例の非晶質合金圧粉磁心の透
磁率を示す曲線図。
FIG. 1 is a curve diagram showing the magnetic permeability of amorphous alloy dust cores of the present invention and comparative examples.

Claims (1)

【特許請求の範囲】[Claims] 電気的絶縁体である無機高分子を結着剤とした磁性粉の
圧縮成形体からなることを特徴とする圧粉磁心。
A dust core characterized by being made of a compacted compact of magnetic powder using an inorganic polymer as an electrical insulator as a binder.
JP27362584A 1984-12-27 1984-12-27 Dust core Pending JPS61154014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27362584A JPS61154014A (en) 1984-12-27 1984-12-27 Dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27362584A JPS61154014A (en) 1984-12-27 1984-12-27 Dust core

Publications (1)

Publication Number Publication Date
JPS61154014A true JPS61154014A (en) 1986-07-12

Family

ID=17530316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27362584A Pending JPS61154014A (en) 1984-12-27 1984-12-27 Dust core

Country Status (1)

Country Link
JP (1) JPS61154014A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260005A (en) * 1987-04-16 1988-10-27 Nippon Ferrite Ltd Dust core
JPS63304603A (en) * 1987-06-04 1988-12-12 Hitachi Metals Ltd Green compact of fe soft-magnetic alloy and manufacture thereof
JPH01128405A (en) * 1987-11-11 1989-05-22 Riken Corp Dust compacted magnetic substance and its manufacture
JPH02250901A (en) * 1989-03-22 1990-10-08 Kobe Steel Ltd Magnetic powder for electromagnetic clutch
US5651841A (en) * 1994-07-22 1997-07-29 Tdk Corporation Powder magnetic core
US6054219A (en) * 1996-05-28 2000-04-25 Hitachi, Ltd. Process for forming insulating layers on soft magnetic powder composite core from magnetic particles
JP2005184872A (en) * 2003-12-16 2005-07-07 Nippon Steel Corp Stator core of motor
CN106205935A (en) * 2016-08-29 2016-12-07 张听 A kind of amorphous state soft magnetism composite magnetic powder core and preparation method thereof
CN106356176A (en) * 2016-08-29 2017-01-25 张听 Composite amorphous powder precursor used for magnetic powder core and preparation method of composite amorphous powder precursor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260005A (en) * 1987-04-16 1988-10-27 Nippon Ferrite Ltd Dust core
JPS63304603A (en) * 1987-06-04 1988-12-12 Hitachi Metals Ltd Green compact of fe soft-magnetic alloy and manufacture thereof
JPH01128405A (en) * 1987-11-11 1989-05-22 Riken Corp Dust compacted magnetic substance and its manufacture
JPH02250901A (en) * 1989-03-22 1990-10-08 Kobe Steel Ltd Magnetic powder for electromagnetic clutch
JPH0699722B2 (en) * 1989-03-22 1994-12-07 株式会社神戸製鋼所 Magnetic powder for electromagnetic clutch
US5651841A (en) * 1994-07-22 1997-07-29 Tdk Corporation Powder magnetic core
US6054219A (en) * 1996-05-28 2000-04-25 Hitachi, Ltd. Process for forming insulating layers on soft magnetic powder composite core from magnetic particles
JP2005184872A (en) * 2003-12-16 2005-07-07 Nippon Steel Corp Stator core of motor
CN106205935A (en) * 2016-08-29 2016-12-07 张听 A kind of amorphous state soft magnetism composite magnetic powder core and preparation method thereof
CN106356176A (en) * 2016-08-29 2017-01-25 张听 Composite amorphous powder precursor used for magnetic powder core and preparation method of composite amorphous powder precursor

Similar Documents

Publication Publication Date Title
US10984932B2 (en) Amorphous soft magnetic alloy and inductance component using the same
CN101226802B (en) Soft-magnetic powder core and method of preparing the same
JP5288405B2 (en) Inductor and method of manufacturing inductor
JP5632608B2 (en) Soft magnetic alloy, magnetic component using the same, and manufacturing method thereof
JP3624681B2 (en) Composite magnetic material and method for producing the same
JPS61154014A (en) Dust core
JP3059187B2 (en) Soft magnetic alloy, manufacturing method thereof and magnetic core
JP2003059710A (en) Dust core
JPS6024346A (en) Ceramic instrument solidified from glassy alloy powder
JP5919144B2 (en) Iron powder for dust core and method for producing dust core
WO1991018404A1 (en) Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation
JPH0534814B2 (en)
JPS63115309A (en) Magnetic alloy powder
JPH07135106A (en) Magnetic core
JPS59179729A (en) Magnetic core of amorphous alloy powder compact
JPS62232103A (en) Fe base amorphous dust core and manufacture thereof
JP3201782B2 (en) Manufacturing method of dust core
JP4216918B2 (en) Co-based amorphous soft magnetic alloy
JPH08153614A (en) Magnetic core
JPS6370503A (en) Magnetic alloy powder and magnetic core using same
JPH0733564B2 (en) Method for producing C-bottom 0-based amorphous alloy
JP2000003810A (en) Dust core
JPH11273926A (en) Manufacture of dust core and pot-like dust core
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
JP2760539B2 (en) Fe-based soft magnetic alloy