JPS6370503A - Magnetic alloy powder and magnetic core using same - Google Patents

Magnetic alloy powder and magnetic core using same

Info

Publication number
JPS6370503A
JPS6370503A JP61214025A JP21402586A JPS6370503A JP S6370503 A JPS6370503 A JP S6370503A JP 61214025 A JP61214025 A JP 61214025A JP 21402586 A JP21402586 A JP 21402586A JP S6370503 A JPS6370503 A JP S6370503A
Authority
JP
Japan
Prior art keywords
phosphate
powder
magnetic
amorphous
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61214025A
Other languages
Japanese (ja)
Inventor
Norishige Yamaguchi
山口 紀繁
Kazunori Hirai
平井 一法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61214025A priority Critical patent/JPS6370503A/en
Publication of JPS6370503A publication Critical patent/JPS6370503A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder

Abstract

PURPOSE:To provide a magnetic metal powder having a surface coating film of high insulation properties formed and a metal powder compression magnetic core providing a permeability which is flat till high frequencies by forming a coating film of a phosphate containing boron on the surface of each particle. CONSTITUTION:An amorphous alloy assumes a film or powder state when it is quenched very rapidly from its molten state. For instance, an amorphous magnetic alloy powder has formed on the particle surface thereof a phosphate coating film containing boron. To form the phosphate coating film, the amorphous magnetic alloy powder is dipped in a solution in which boric acid and phosphate were dissolved, and is subjected to a short-time treatment at a comparatively high temperature. The amorphous magnetic alloy powder having been completed in the surface treatment is then powder compression molded into a predetermined magnetic core shape. At that time, a small amount of glass or synthetic resin (polyimide) may be added, for instance, to an extent of 20wt.%, as a binder. Alternatively, a small amount of lubricant can be added to enhance the powder compression molding properties, in which a binder need not be used. The magnetic powder is thus improved in its properites due to the surface phosphate coating film of high insulation properties.

Description

【発明の詳細な説明】 (技術分野) 本発明は非晶質磁性合金粉末などの磁性合金粉末及びそ
れを用いた圧粉磁心に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a magnetic alloy powder such as an amorphous magnetic alloy powder and a powder magnetic core using the same.

(従来技術とその問題点) 非晶質磁性合金は高透磁率、低保磁力等の優れた軟磁気
特性を有するので、最近変圧器、電動機、ヨーク材イン
ダクタ、磁気ヘッドとして研究され、また一部実用化さ
れている。これらの非晶質合金は、鉄、ニッケル及びコ
バルトを基本金属成分とし、半金属元素としてリン、ホ
ウ素、ケイ素、炭素を用い、また必要に応じて他の元素
例えばチタン、アルミニウム、ジルコニウム、モリブデ
ン、タンク/l/、Cr 、 W、ニオブ、ハフニウム
等を加え、共晶点近傍の組成を有するように混合し、高
温溶融状態から超急冷して得られるものである。
(Prior art and its problems) Amorphous magnetic alloys have excellent soft magnetic properties such as high magnetic permeability and low coercive force, so they have recently been researched for use in transformers, electric motors, yoke material inductors, and magnetic heads. Some parts have been put into practical use. These amorphous alloys have iron, nickel, and cobalt as basic metal components, phosphorus, boron, silicon, and carbon as metalloid elements, and, if necessary, other elements such as titanium, aluminum, zirconium, molybdenum, It is obtained by adding tank/l/, Cr, W, niobium, hafnium, etc., mixing to have a composition near the eutectic point, and ultra-quenching from a high temperature molten state.

非晶質合金は、フィルムまたは繊維、粉末として得られ
、フィルムの場合には粉砕を行って粉末とする。これら
から磁心を製造するにはガラス或いはエポキシ樹脂等の
バインダーを用い、圧縮成形する。一方、従来から知ら
れているパーマロイ、七ンダスト等の軟磁性合金粉末は
バインダーとしてS 10x ’P M g Oを混合
し、10〜20t/m意の強圧をかけて圧縮成形する。
Amorphous alloys are obtained as films, fibers, or powders, and in the case of films, they are ground into powders. To manufacture a magnetic core from these materials, a binder such as glass or epoxy resin is used and compression molding is performed. On the other hand, conventionally known soft magnetic alloy powders such as Permalloy and Seven Dust are mixed with S 10x 'P M g O as a binder and compression molded by applying a strong pressure of 10 to 20 t/m.

バインダーが多量であると電磁率が低下するので一般に
は少量を用いるが、逆に非晶質金属粒子同志が接触する
機会が多くなるため圧粉体の電気抵抗が小さくなり、渦
電流により高周波側ではパフー四スが増え、また透磁率
も低下する。また、バインダーの量が少ないと機械的強
度が低下する。
If a large amount of binder is used, the electromagnetic coefficient will decrease, so a small amount is generally used.However, conversely, there are more opportunities for amorphous metal particles to come into contact with each other, which reduces the electrical resistance of the green compact, and causes eddy currents to increase the high frequency side. In this case, the permeability increases and the permeability also decreases. Moreover, if the amount of binder is small, mechanical strength will be reduced.

上記の欠陥を克服するために、非晶質合金の表面を酸化
して酸化被膜を形成することが提案されている(特開昭
59−179729号、特開昭60−26603号)。
In order to overcome the above-mentioned defects, it has been proposed to oxidize the surface of an amorphous alloy to form an oxide film (Japanese Patent Laid-Open Nos. 59-179729 and 60-26603).

このような酸化被膜は非晶質合金粉末を水と共にオート
クレーブ中に装入し、高温及び水蒸気による高圧下、酸
化舅囲気中で数時間ないし数日間処理して粉末粒子の表
面に?@@04、C0aOa 、N l O等を仝戒す
ることにより形成される。これにより粉末の成形性が改
善され、透磁率が高くなると報告されている。主成分が
鉄である非晶質磁性合金の場合は酸化被膜はF・、04
が主体である。ところが周知のようにF・、0.は良導
体であるから(C0,04もそうであり、NiOはNl
”十を生じ易く導電性が一般的である)、高周波側の緒
特性の改善には不十分である。また、酸化工程は設備と
長時間を要する。
Such an oxide film is formed on the surface of powder particles by charging amorphous alloy powder with water into an autoclave and treating it in an oxidized atmosphere at high temperature and high pressure with water vapor for several hours to several days. It is formed by prohibiting @@04, C0aOa, N l O, etc. It is reported that this improves the moldability of the powder and increases its magnetic permeability. In the case of an amorphous magnetic alloy whose main component is iron, the oxide film is F.,04
is the main subject. However, as is well known, F.,0. is a good conductor (so is C0,04, and NiO is Nl
However, the oxidation process requires equipment and a long time.

本発明者の一人は、先きに各粒子の表面にリン酸塩被膜
を形成したことを特徴とする非晶質磁性合金粉末及びそ
れを圧粉成形して成る磁心を提供した(特願昭60−1
61163号)。
One of the inventors of the present invention has provided an amorphous magnetic alloy powder characterized in that a phosphate coating is formed on the surface of each particle, and a magnetic core made by compacting the same (patent application 60-1
No. 61163).

同粉末は表面に絶縁性の高いリン酸塩被膜を有するから
、非晶質磁性合金の特性を安定化して空気中の酸素によ
る酸化に起因する特性の経時変化を防止することができ
、信頼性の高い磁心として広い用途に適用できる。また
リン酸塩被膜は簡単な工程で短時間に形成できる。また
この粉末は成形性が良いので無機・有機のバインダーは
少量用いれば良く(用途によっては用いなくても良い)
、高密度磁心とすることができるので高磁束密度を有し
、しかも高絶縁性のため浦波微特性が良くなる。この場
合のリン酸塩はリン酸亜鉛、リン酸マンガン、リン酸カ
ドミウム1リン酸カルシウム、リン酸鉄であった。とこ
ろが、これらによる表面被覆を施した非晶質合金粉末を
用いた圧粉磁心は絶縁性が十分でなく高周波帯域におい
て磁気特性が十分でないことが分った。
Since the powder has a highly insulating phosphate coating on its surface, it can stabilize the properties of amorphous magnetic alloys and prevent changes in properties over time due to oxidation caused by oxygen in the air, increasing reliability. It can be used in a wide range of applications as a magnetic core with high strength. Moreover, the phosphate coating can be formed in a short time using a simple process. Also, this powder has good moldability, so you only need to use a small amount of inorganic or organic binder (depending on the application, it may not be necessary to use it).
Since it can be made into a high-density magnetic core, it has a high magnetic flux density, and also has high insulation properties, which improves the Urahami microcharacteristics. The phosphates in this case were zinc phosphate, manganese phosphate, cadmium phosphate monocalcium phosphate, and iron phosphate. However, it has been found that powder magnetic cores using amorphous alloy powders coated with these materials do not have sufficient insulation properties and do not have sufficient magnetic properties in high frequency bands.

(発明の目的) 従って、本発明の目的は、絶縁性の高い表面被膜を形成
した磁性金属粉末及び特性の良い金属圧粉磁心を提供す
ること、特に非晶質磁性合金粉末及び圧粉磁心を提供す
ることにある。
(Object of the Invention) Therefore, the object of the present invention is to provide a magnetic metal powder with a highly insulating surface coating and a metal powder magnetic core with good properties, and particularly to provide an amorphous magnetic alloy powder and a powder magnetic core. It is about providing.

(発明の構成と効果の概要) 本発明は、各粒子の表面にホウ素を含有するリン酸塩の
被膜を形成したことを特徴とする磁性合金、特に非晶f
磁性合金粉末及びそれを圧粉成形して成る磁心を提供す
る。
(Summary of Structure and Effects of the Invention) The present invention provides a magnetic alloy, in particular an amorphous f.
Provided is a magnetic alloy powder and a magnetic core formed by compacting the same.

本発明の粉末は表面に絶縁性の高いホウ素含有リン酸塩
被膜を有するから、非晶質磁性合金等の磁性金属の特性
を安定化して空気中の酸素による酸化に起因する特性の
経時変化を防止することができ、信頼性の高い磁心とし
て広い用途に適用できる。またこのリン酸塩被膜は簡単
な工程で短時間に形成できる。またこの粉末は成形性が
良いので無機・有機のバインダーは少量用いれば良く(
用途によっては用いなくても良い)、高密度磁心とする
ことができるので高磁束密度を有し、しかも高絶縁性の
ため損失が少なく、周波数特性が良くなり、高周波まで
7ラツトな透磁率が得られる。
Since the powder of the present invention has a highly insulating boron-containing phosphate coating on its surface, it stabilizes the properties of magnetic metals such as amorphous magnetic alloys and prevents changes over time in properties caused by oxidation due to oxygen in the air. It can be used in a wide range of applications as a highly reliable magnetic core. Moreover, this phosphate coating can be formed in a short time using a simple process. Also, this powder has good moldability, so you only need to use a small amount of inorganic or organic binder (
(It may not be necessary to use it depending on the application), it has a high magnetic flux density because it can be made into a high-density magnetic core, and has low loss due to its high insulation properties, and has good frequency characteristics, and has a magnetic permeability of 7 rad up to high frequencies. can get.

(発明の詳細な説明) 本発明で用いる非晶質磁性合金は公知のいかなる組成の
ものでも良い。すでに述べたように、鉄ニッケル、コバ
ルトの少なくとも1種を基本成分として用い、半金属と
してリン、炭素、ホウ素、ケイ素の少なくとも1種を用
い、さらに必要に応じてアルミニウム、チタン、りpム
、マンガン、モリブデン、タンタル、バナジウム、ジル
コニウム、鋼、ニオブ、タングステン、タリウム、レニ
ウム、白金、金、銀、パラジウム、党ジウム、ルビジウ
ム、ハフニウム、希土類元素の少なくとも1種の元素を
用いる。好ましい組成は用いる各2元素間の共晶点近傍
のものである。この非晶質合金は公知の任意の方法で溶
融状態から超急冷することによりフィルム状または粉末
状として得ることができる。例えばアトマイズ法、溶射
法1双ロール法)単ロール法等各種の方法で製造するこ
とができる。フィルム状で非晶質合金が得られる場合に
は水素脆化し、或いは他の脆化処理の後粉砕して粉末化
することができる。
(Detailed Description of the Invention) The amorphous magnetic alloy used in the present invention may have any known composition. As already mentioned, at least one of iron nickel and cobalt is used as a basic component, at least one of phosphorus, carbon, boron, and silicon is used as a semimetal, and if necessary, aluminum, titanium, phosphorus, At least one element selected from manganese, molybdenum, tantalum, vanadium, zirconium, steel, niobium, tungsten, thallium, rhenium, platinum, gold, silver, palladium, trisium, rubidium, hafnium, and rare earth elements is used. A preferred composition is one near the eutectic point between each of the two elements used. This amorphous alloy can be obtained in the form of a film or powder by ultra-quenching from a molten state using any known method. For example, it can be manufactured by various methods such as an atomizing method, a thermal spraying method, a single roll method, and a single roll method. When an amorphous alloy is obtained in the form of a film, it can be pulverized into powder after hydrogen embrittlement or other embrittlement treatment.

得られた非晶質磁性合金粉末は本発明に従って粒子表面
にホウ素を含有するリン酸塩被膜を形成される。リン酸
塩被膜の形成にはホウ酸とリン酸塩とを溶解した溶液中
に非晶質磁性合金粉末を浸漬し、比較的高い温度で短時
間処理する。例えばリン酸亜鉛の場合には60〜100
℃に加熱した濃度数%の水溶液で数分〜30分程度処理
すれば良い。これにより、非晶質磁性合金粒子の表面に
リン酸塩が膜状に付着する。
The obtained amorphous magnetic alloy powder is coated with a boron-containing phosphate coating on the particle surface according to the present invention. To form a phosphate film, amorphous magnetic alloy powder is immersed in a solution of boric acid and phosphate, and treated at a relatively high temperature for a short time. For example, in the case of zinc phosphate, 60 to 100
The treatment may be performed for several minutes to about 30 minutes using an aqueous solution with a concentration of several percent heated to .degree. As a result, a film of phosphate is deposited on the surface of the amorphous magnetic alloy particles.

表面処理を終えた非晶質磁性合金粉末は、次に所定の磁
心形状に圧粉成形される。その際にバインダーとしてガ
ラスまたは合成樹脂(ポリイミド等)を少量、例えば2
0vt% 程度まで加えても良い。或いは少量の潤滑剤
を加えて圧粉成形性を増大することもでき、この場合に
はバインダーは用いなくても良い。
The amorphous magnetic alloy powder that has undergone the surface treatment is then compacted into a predetermined magnetic core shape. At that time, a small amount of glass or synthetic resin (polyimide etc.) is used as a binder, for example 2
It may be added up to about 0vt%. Alternatively, a small amount of lubricant can be added to increase the compactability, in which case no binder is needed.

本発明の磁性粉末は高絶縁性の表面リン酸塩被膜のため
安定性、高電気抵抗性及び成形性が改善される。またこ
のため磁心の透磁率も高くでき、さらに高周波特性も改
善される。
The magnetic powder of the present invention has improved stability, high electrical resistance, and moldability due to the highly insulating surface phosphate coating. Furthermore, the permeability of the magnetic core can be increased, and the high frequency characteristics can also be improved.

ホウ素がリン酸塩中にどのような形で含有されているか
は未確認であるが、先きに述べたようにホウ酸をリン酸
塩と共に水に溶解したものから一諸に磁性粒子の表面に
析出されるもので、リン酸塩の種類にもよるがリン酸塩
(BPO4)に換算して、BPO4/金属リン酸塩の比
が[1001〜α1(α1〜10Wt、子%)になると
よい。この範囲にあるとき、リン酸塩被膜の粒界が小さ
く均一になり、ち密で絶縁性の高い被覆が得られること
が分った。表面組織は顕微鏡によって容易に観察しうる
。この比が1/1000より小さいと効果がなく、1/
10より大きいと皮膜の膜厚が厚くなり成形体の初透住
率が劣化してしまう。金属リン酸塩としては先きに挙げ
たリン酸マンガン、リン酸亜鉛、リン酸カルシウム、リ
ン酸カドミウムミリン酸鉄を用いることができる。中で
もリン酸マンガンはち密な絶縁性の高い膜を与え、リン
酸亜鉛はち密さには劣り電気抵抗もJPJP低くて高周
波特性が劣るが高い透磁率を与える。従って、高周波用
にはMn系またはZn−Mn糸のものを用い、さらにホ
ウ素で特性を改善し、高周波特性があまり問題でない場
合にはZn糸のものにホウ素を加えると、広い周波数域
で7ラツトな透磁率が得られ、また渦電流による鉄損も
減少する。
It has not been confirmed in what form boron is contained in phosphate, but as mentioned earlier, boric acid and phosphate dissolved in water are mixed together on the surface of magnetic particles. Although it depends on the type of phosphate, it is preferable that the ratio of BPO4/metal phosphate is [1001 to α1 (α1 to 10 Wt, child %) in terms of phosphate (BPO4). . It has been found that when it is within this range, the grain boundaries of the phosphate coating become small and uniform, resulting in a dense and highly insulating coating. Surface texture can be easily observed with a microscope. If this ratio is smaller than 1/1000, there will be no effect;
If it is larger than 10, the film thickness of the film becomes thick and the initial permeability of the molded article deteriorates. As the metal phosphate, the aforementioned manganese phosphate, zinc phosphate, calcium phosphate, cadmium phosphate, and iron myphosphate can be used. Among these, manganese phosphate provides a dense and highly insulating film, while zinc phosphate provides high magnetic permeability although it is less dense, has lower electrical resistance, and has poorer high frequency characteristics. Therefore, for high frequencies, use Mn-based or Zn-Mn yarn, and improve the characteristics with boron, and if high frequency characteristics are not a problem, add boron to the Zn yarn, and it will be 7. A smooth magnetic permeability is obtained, and iron loss due to eddy currents is also reduced.

以下に本発明を実施例により説朗する。The present invention will be explained below using examples.

実施例1 F@ylSigB1s組成のアモルファス合金リボンを
粉砕し、20〜80メツシユのフレーク状粉末とした。
Example 1 An amorphous alloy ribbon having a composition of F@ylSigB1s was pulverized into a flaky powder of 20 to 80 meshes.

4%のリン酸亜鉛水溶液を用意し、これにホウ酸を添加
し95〜99℃の温度に昇温した。
A 4% zinc phosphate aqueous solution was prepared, boric acid was added thereto, and the temperature was raised to 95 to 99°C.

この液中に非晶質合金粉末を浸し約20分間処理し、粉
体表面にリン酸至鉛−リン酸ホウ素の被膜を形成した。
The amorphous alloy powder was immersed in this liquid and treated for about 20 minutes to form a lead phosphate-boron phosphate coating on the powder surface.

その後熱風中で乾燥して目的とする磁性粉末を得た。こ
の被膜を化学的に分析したところリン酸ホウ素をα5a
t  %含有していた。
Thereafter, it was dried in hot air to obtain the desired magnetic powder. Chemical analysis of this coating revealed that boron phosphate was α5a.
It contained t%.

こうして得られた粉末に潤滑剤として富化ポロンを2v
t%加え、成形金型に装入し、460°c1800MP
a  の条件下、1分間圧粉成形して外径25 mm 
、内径1gmm及び厚さ5mmのトロイダル磁心を得た
。これに導線をフィル状に巻き磁気特性を測定した。表
1にこの結果を示す。
Add 2v of enriched poron to the powder thus obtained as a lubricant.
Add t%, charge into a mold, and heat at 460°c1800MP.
Under the conditions of a, powder compaction was performed for 1 minute to obtain an outer diameter of 25 mm.
A toroidal magnetic core having an inner diameter of 1 gmm and a thickness of 5 mm was obtained. A conducting wire was wrapped around this in a film shape and the magnetic properties were measured. Table 1 shows the results.

実施例2 10%のリン酸マンガン水溶液にホウ酸を加え、82〜
85”Cの温度に上げ、非晶質合金粉末を入れ約10分
間処理し、粉体表面にリン酸マンガン−リン酸ホウ素の
被膜を形成した。この被膜を化学的に分析した所、リン
酸ホウ素が12at  %含有していた。熱風中で合金
粉末を乾燥して目的とする磁性粉末を得た。
Example 2 Boric acid was added to a 10% manganese phosphate aqueous solution, and 82~
The temperature was raised to 85"C, and amorphous alloy powder was added and treated for about 10 minutes to form a manganese phosphate-boron phosphate film on the powder surface. Chemical analysis of this film revealed that phosphoric acid It contained 12 at % of boron.The alloy powder was dried in hot air to obtain the intended magnetic powder.

ホウ酸の添加量を変えて同様にして処理を行い、リン酸
ホウ素をそれぞれ3at%、9at%、含有している磁
性粉末を得た。これら粉末を実施例1と同様にして成形
し磁気特性を測定した。
The same treatment was carried out by changing the amount of boric acid added to obtain magnetic powders containing 3 at% and 9 at% of boron phosphate, respectively. These powders were molded in the same manner as in Example 1 and their magnetic properties were measured.

比較例1 実施例2においてリン酸ホウ素を12at% とじてト
ロイダルコアを製造した。結果を表1に示す。
Comparative Example 1 A toroidal core was manufactured by adding 12 at% of boron phosphate in Example 2. The results are shown in Table 1.

比較例2 上記実施例1においてホウ素を添加しないでトロイダル
コアを作製したものをそれぞれ比較例2とする。その測
定結果を表1に示す。
Comparative Example 2 Comparative Example 2 was obtained by producing a toroidal core without adding boron in Example 1 above. The measurement results are shown in Table 1.

比較例3 上記実施例2においてホウ素を添加しないでトロイダル
コアを作成した。表1にその結果を示す。
Comparative Example 3 A toroidal core was prepared in the same manner as in Example 2 without adding boron. Table 1 shows the results.

実施例3 実施例1において非晶質合金の代りにセンダスジ粉末を
用いたほかは実施例1と同様にしてトロイダルコアを作
成した。表2にその結果を示す。
Example 3 A toroidal core was produced in the same manner as in Example 1 except that Sendasuji powder was used instead of the amorphous alloy. Table 2 shows the results.

比較例4 実施例3において、リン酸ホウ素を使用しないでリン酸
亜鉛被覆を有する磁性粉及びそれからトロイダルコアを
製造した。表2にその結果を示す。
Comparative Example 4 In Example 3, a magnetic powder with a zinc phosphate coating and a toroidal core therefrom were produced without using boron phosphate. Table 2 shows the results.

結果の検討 表から分るように、リン酸ホウ素含有により鉄損値は非
常に小さくなり、特に11〜10 at%で安定した特
性が得られる。しかし、10%を超えると初透磁率の値
は小さくなり鉄損値は増大する。これより被膜中に含有
されるリン酸ホウ素はα1%より大きく10%以下でな
ければならない。
As can be seen from the table of results, the iron loss value becomes extremely small due to the inclusion of boron phosphate, and stable characteristics are obtained especially at 11 to 10 at%. However, when it exceeds 10%, the value of initial magnetic permeability becomes small and the value of iron loss increases. From this, the boron phosphate contained in the coating must be greater than α1% and less than 10%.

(作用効果のまとめ) 以上のように、本発明によれば、ホウ素を含有したリン
酸塩被覆を用いると磁性合金粉末の鉄損が減じ、また周
波数依存性の少ないフラットな初透磁率を有する磁性粉
及び圧粉磁心を得ることができる。
(Summary of effects) As described above, according to the present invention, the iron loss of the magnetic alloy powder is reduced by using a phosphate coating containing boron, and the magnetic alloy powder has a flat initial permeability with little frequency dependence. Magnetic powder and dust core can be obtained.

Claims (6)

【特許請求の範囲】[Claims] 1.粒子の表面にホウ素を含有する金属リン酸塩の被覆
を形成したことを特徴とする磁性合金粉末。
1. A magnetic alloy powder characterized by forming a coating of metal phosphate containing boron on the surface of the particles.
2.金属リン酸塩はリン酸亜鉛、リン酸マンガン、リン
酸カドミウムミリン酸カルシウム、リン酸鉄より選ばれ
る前記第1項記載の磁性合金粉末。
2. The magnetic alloy powder according to item 1 above, wherein the metal phosphate is selected from zinc phosphate, manganese phosphate, cadmium phosphate, calcium myphosphate, and iron phosphate.
3.ホウ素はリン酸ホウ素に換算して、リン酸塩の0.
1〜10原子%含有される前記第1項または第2項記載
の磁性合金粉末。
3. Boron is converted to boron phosphate, which is 0.0% of phosphate.
The magnetic alloy powder according to the above item 1 or 2, containing 1 to 10 atomic %.
4.粒子の表面にホウ素を含有する金属リン酸塩の被覆
を形成した磁性合金粉末を用いて成形した圧粉磁心。
4. A powder magnetic core formed using magnetic alloy powder with a coating of metal phosphate containing boron on the surface of the particles.
5.金属リン酸塩はリン酸亜鉛、リン酸マンガン、リン
酸カドミウム、リン酸カルシウム、リン酸鉄より選ばれ
る前記第4項記載の圧粉磁心。
5. 5. The powder magnetic core according to item 4, wherein the metal phosphate is selected from zinc phosphate, manganese phosphate, cadmium phosphate, calcium phosphate, and iron phosphate.
6.ホウ素はリン酸ホウ素に換算して、リン酸塩の0.
1〜10原子%含有される前記第4項または第5項記載
の磁性合金。
6. Boron is converted to boron phosphate, which is 0.0% of phosphate.
The magnetic alloy according to the above item 4 or 5, containing 1 to 10 atomic %.
JP61214025A 1986-09-12 1986-09-12 Magnetic alloy powder and magnetic core using same Pending JPS6370503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61214025A JPS6370503A (en) 1986-09-12 1986-09-12 Magnetic alloy powder and magnetic core using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61214025A JPS6370503A (en) 1986-09-12 1986-09-12 Magnetic alloy powder and magnetic core using same

Publications (1)

Publication Number Publication Date
JPS6370503A true JPS6370503A (en) 1988-03-30

Family

ID=16649027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61214025A Pending JPS6370503A (en) 1986-09-12 1986-09-12 Magnetic alloy powder and magnetic core using same

Country Status (1)

Country Link
JP (1) JPS6370503A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505086A2 (en) * 1991-03-19 1992-09-23 Cookson Laminox Limited Method for the treatment of lamellar or plate-like materials
US6054219A (en) * 1996-05-28 2000-04-25 Hitachi, Ltd. Process for forming insulating layers on soft magnetic powder composite core from magnetic particles
JP2006128663A (en) * 2004-09-30 2006-05-18 Sumitomo Electric Ind Ltd Soft magnetic material, dust core and method of producing soft magnetic material
JP2011054924A (en) * 2009-08-07 2011-03-17 Tamura Seisakusho Co Ltd Dust core and method for manufacturing the same
US8323725B2 (en) 2004-09-30 2012-12-04 Sumitomo Electric Industries, Ltd. Soft magnetic material, powder magnetic core and method of manufacturing soft magnetic material
CN105057656A (en) * 2015-08-31 2015-11-18 中国科学院宁波材料技术与工程研究所 Sharp corner passivation method for iron-based amorphous powder
JP6458853B1 (en) * 2017-12-14 2019-01-30 Tdk株式会社 Powder magnetic core and inductor element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505086A2 (en) * 1991-03-19 1992-09-23 Cookson Laminox Limited Method for the treatment of lamellar or plate-like materials
EP0505086A3 (en) * 1991-03-19 1993-02-03 Cookson Laminox Limited Method for the treatment of lamellar or plate-like materials
US6054219A (en) * 1996-05-28 2000-04-25 Hitachi, Ltd. Process for forming insulating layers on soft magnetic powder composite core from magnetic particles
JP2006128663A (en) * 2004-09-30 2006-05-18 Sumitomo Electric Ind Ltd Soft magnetic material, dust core and method of producing soft magnetic material
US8323725B2 (en) 2004-09-30 2012-12-04 Sumitomo Electric Industries, Ltd. Soft magnetic material, powder magnetic core and method of manufacturing soft magnetic material
JP2011054924A (en) * 2009-08-07 2011-03-17 Tamura Seisakusho Co Ltd Dust core and method for manufacturing the same
CN105057656A (en) * 2015-08-31 2015-11-18 中国科学院宁波材料技术与工程研究所 Sharp corner passivation method for iron-based amorphous powder
JP6458853B1 (en) * 2017-12-14 2019-01-30 Tdk株式会社 Powder magnetic core and inductor element
JP2019106495A (en) * 2017-12-14 2019-06-27 Tdk株式会社 Dust core and inductor element
CN109961917A (en) * 2017-12-14 2019-07-02 Tdk株式会社 Compressed-core and inductance element
CN109961917B (en) * 2017-12-14 2021-06-15 Tdk株式会社 Dust core and inductance element

Similar Documents

Publication Publication Date Title
CN110246652B (en) Soft magnetic alloy powder, dust core, and magnetic component
KR102165133B1 (en) Soft magnetic metal powder, dust core, and magnetic component
CN110246650B (en) Soft magnetic alloy powder, dust core, and magnetic component
EP3549696A1 (en) Soft magnetic powder, dust magnetic core, magnetic part, and method for producing dust magnetic core
JP6504288B1 (en) Soft magnetic metal powder, dust core and magnetic parts
CN105390231B (en) Coil component
KR102229115B1 (en) Soft magnetic metal powder, dust core, and magnetic component
JP2003142310A (en) Dust core having high electrical resistance and manufacturing method therefor
JP2024038321A (en) Soft magnetic alloy powder and its manufacturing method, coil parts made from soft magnetic alloy powder and circuit board mounted thereon
JP2019178402A (en) Soft magnetic powder
JPS6024346A (en) Ceramic instrument solidified from glassy alloy powder
JP6504289B1 (en) Soft magnetic metal powder, dust core and magnetic parts
JP5919144B2 (en) Iron powder for dust core and method for producing dust core
JPS6370503A (en) Magnetic alloy powder and magnetic core using same
JPS63115309A (en) Magnetic alloy powder
JPH0534814B2 (en)
JPS61154014A (en) Dust core
JP2019096747A (en) Powder-compact magnetic core
JP7222664B2 (en) dust core
JP3857356B2 (en) Manufacturing method of magnetic powder for dust cores
JPH03278501A (en) Soft magnetic core material and manufacture thereof
JPS6222410A (en) Amorphous magnetic alloy powder and dust core using said powder
JP2011114331A (en) Method of manufacturing dust core, and dust core obtained by the manufacturing method
CN110853907A (en) Iron-silicon-aluminum-nickel soft magnetic powder core with effective magnetic conductivity of 90 for switching power supply and preparation method thereof
US20230178275A1 (en) Soft magnetic metal powder, dust core, magnetic component, and electronic component