JPS6024346A - Ceramic instrument solidified from glassy alloy powder - Google Patents
Ceramic instrument solidified from glassy alloy powderInfo
- Publication number
- JPS6024346A JPS6024346A JP12723184A JP12723184A JPS6024346A JP S6024346 A JPS6024346 A JP S6024346A JP 12723184 A JP12723184 A JP 12723184A JP 12723184 A JP12723184 A JP 12723184A JP S6024346 A JPS6024346 A JP S6024346A
- Authority
- JP
- Japan
- Prior art keywords
- ferromagnetic
- powder
- metal body
- composition
- vitreous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims description 82
- 229910045601 alloy Inorganic materials 0.000 title claims description 31
- 239000000956 alloy Substances 0.000 title claims description 31
- 239000000919 ceramic Substances 0.000 title 1
- 230000005291 magnetic effect Effects 0.000 claims description 36
- 239000002245 particle Substances 0.000 claims description 22
- 239000005300 metallic glass Substances 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 20
- 230000035699 permeability Effects 0.000 claims description 20
- 230000005294 ferromagnetic effect Effects 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 12
- 230000006698 induction Effects 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 9
- 239000011230 binding agent Substances 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- -1 WtV Inorganic materials 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- 230000005389 magnetism Effects 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 230000009477 glass transition Effects 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 7
- 230000006835 compression Effects 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 238000007596 consolidation process Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 3
- 238000005056 compaction Methods 0.000 description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006355 external stress Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052810 boron oxide Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- 240000000220 Panda oleosa Species 0.000 description 1
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 125000005619 boric acid group Chemical group 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 238000003913 materials processing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/002—Making metallic powder or suspensions thereof amorphous or microcrystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15358—Making agglomerates therefrom, e.g. by pressing
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明はコアー、極片などとして作成された磁性物品、
およびそれらを金属ガラス粉末から製造する方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention provides magnetic articles made as cores, pole pieces, etc.
and methods for producing them from metallic glass powder.
非晶質金属合金およびそれらから製造された物品はチェ
ノおよびボークにより米国特許第3.856,513号
明細書(1974年12月24日交付)に記載されてい
る。この明細書は、非晶質の状態で得られ、同−金属全
基礎とする従来知られている結晶質合金よりも優れた特
定の新規な合金組成物について教示している。これらの
組成物は容易に急冷して非晶質状態にすることができ、
望ましい物理的特性をもつ。才た、その溶融合金を噴荘
してそれらの液滴を形成させ、これらの液滴を水、冷却
したブライン、または液体蟹素などの液体中で急冷する
ことにより、約10〜250μmの粒径をもつ非晶質金
属粉末全製造しうろことも記載されている。Amorphous metal alloys and articles made therefrom are described by Cheno and Bork in US Pat. No. 3,856,513, issued Dec. 24, 1974. This specification teaches certain new alloy compositions which are obtained in an amorphous state and which are superior to previously known crystalline alloys based on the same metal. These compositions can be easily quenched to an amorphous state;
Having desirable physical properties. By ejecting the molten alloy to form droplets and quenching these droplets in a liquid such as water, chilled brine, or liquid chloride, particles of about 10 to 250 μm are produced. It is also described that amorphous metal powders having a diameter can be manufactured entirely.
バクロイその他の結晶質合金粉末の団結により磁性物品
を製造することは知られている。磁性の改良を必要とす
る新たな用途には、同時に磁性物品の強度および磁気反
応を高める合金および団結法を開発する努力が要求され
た。It is known to produce magnetic articles by aggregating Bacroy and other crystalline alloy powders. New applications requiring improved magnetic properties have simultaneously required efforts to develop alloys and consolidation methods that increase the strength and magnetic response of magnetic articles.
本発明によれば、優れた強度および磁気反応をもつ物体
に団結させるために特に好適な非晶質合金粉末が提供さ
れる。さらに本発明によれば、ガラス質金属粉末の団結
が機械的圧力および/または結合剤を用いて物質の結晶
化温度以下の高められた温度で行われる磁性物品の製造
方法が提供される。また本発明によれば粉末の最適寸法
および好ましい合金組成、適切な結合剤材料、ならびに
加工後の熱処理についても教示される。The present invention provides an amorphous alloy powder that is particularly suitable for aggregation into objects with excellent strength and magnetic response. Further in accordance with the present invention there is provided a method of manufacturing a magnetic article in which the aggregation of the vitreous metal powder is carried out using mechanical pressure and/or a binder at an elevated temperature below the crystallization temperature of the material. The present invention also teaches optimal powder dimensions and preferred alloy compositions, suitable binder materials, and post-processing heat treatments.
本発明方法により製造された物品は低いコアー損および
高い透磁率をもつ。一般にこの独の団結した磁性ガラス
質金属体は周波数5KHzおよび誘導水準0.1テスラ
において少なくとも約70の初期相対透磁率をもつ。こ
こで用いる1相対透磁率″という語は、ある媒質中で特
定の磁場により生じる磁気誘導と、真空中で同一磁場に
より生じる磁気誘導の比を意味するものとする、
高い透磁率をもつ本発明の磁性圧縮体は、一般に粉末状
のガラス賀または非晶質の合金から製造される。合金か
ら金にガラス粉末を製造するための一般的方法は、溶融
合金の急冷工程およびこれに続く微粉砕工8を伴う1、
ガラス質合金の製造は、米国特許第3,856,553
号明、in+書(チェノら)に示された教示に従って行
うことができる、得られるシート、リボン、テープおよ
びワイヤが、ここに記載する材料の有用な前駆物質であ
る。これらの非晶質材Hの微粉砕は以下により行われる
。Articles made by the method of the invention have low core loss and high magnetic permeability. Generally, the solid magnetic glassy metal body has an initial relative permeability of at least about 70 at a frequency of 5 KHz and an induction level of 0.1 Tesla. The term "1 relative magnetic permeability" as used herein shall mean the ratio of the magnetic induction caused by a particular magnetic field in a medium to the magnetic induction caused by the same magnetic field in vacuum. Magnetic compacts are generally produced from powdered glasses or amorphous alloys. A common method for producing glass powders from alloys is a quenching step of the molten alloy followed by fine grinding. 1 with 8,
The manufacture of glassy alloys is described in U.S. Pat. No. 3,856,553.
The resulting sheets, ribbons, tapes, and wires, which can be made according to the teachings set forth in No. 1, in+ (Cheno et al.), are useful precursors for the materials described herein. These amorphous materials H are pulverized as follows.
シート状、リボン状、ワイヤ状またはフレーク状の非晶
質材料をその脆化温度よりも高いが、ただしその結晶化
温度よりも低い温度に加熱し、機械的に破砕する。得ら
れた種々の寸法のフレークおよび粉末を篩にかけて希望
する寸法のフレークおよび粉末を集める。ガラス質金属
合金粉末を得るための他の方法は米国特許第4.29’
0.803号明細書(レイら)に示されている。An amorphous material in the form of a sheet, ribbon, wire or flake is heated above its embrittlement temperature but below its crystallization temperature and mechanically fractured. The resulting flakes and powders of various sizes are sieved to collect flakes and powders of desired size. Another method for obtaining glassy metal alloy powders is described in U.S. Pat. No. 4.29'
No. 0.803 (Ray et al.).
粉末から出発する場合、粉末の団結が物体を製造するだ
めの最初の工程である。団結用の粉末は微細な粉末(約
2〜100μmの範囲の粒径をもつもの)、粗大な粉末
(100〜1000μmの粒径をもつもの)、およびフ
レーク(粒径1000μm〜約2鰭の粒径をもつもの)
からなっていてもよい。これらのフレークおよび粉末を
以下単に粉末または粉末粒子と呼ぶ。団結はガラス質金
属合金粉末を圧縮し、または接着結合させることにより
行われる。When starting from powder, the aggregation of the powder is the first step in producing the object. Solidifying powders include fine powders (with particle sizes in the range of about 2 to 100 μm), coarse powders (with particle sizes in the range of 100 to 1000 μm), and flakes (with particle sizes of 1000 μm to about 2 fins). diameter)
It may consist of. These flakes and powders are hereinafter simply referred to as powders or powder particles. Consolidation is accomplished by compacting or adhesively bonding the vitreous metal alloy powder.
低い透磁率を希望する場合、約5〜10μmの粒子直径
を用いる。高い透磁率を得るためには、これよりも大き
い約180μm以上の粒子直径を用いる。比較的高い透
磁率(たとえば5 KHzおよび0.1テスラの誘導に
おいて約200程度)および優れた機械的硬夏(たとえ
ば約400 ky/J程度)の組合せは、メツシュサイ
ズ(米国篩)約80をもつ粒子の使用により達成される
。フレークコアーには平行な平面をもつ、より大きな粒
子を用いる。この場合の特性は、ラメラコアーのものに
近づく。If low permeability is desired, particle diameters of about 5-10 μm are used. To obtain high magnetic permeability, larger particle diameters of about 180 μm or more are used. The combination of relatively high magnetic permeability (e.g., on the order of about 200 at 5 KHz and 0.1 Tesla induction) and excellent mechanical hardness (e.g., on the order of about 400 ky/J) makes it possible to obtain a magnetic material with a mesh size (US sieve) of about 80. This is achieved through the use of particles. The flake core uses larger particles with parallel planes. The properties in this case approach those of a lamellar core.
団結のためには、粉末を排気した缶に入れ、その合金の
ガラス転移温度よりも低い温度で熱間圧延し、または平
衡状態で熱間圧縮して希望する形状となす。さらに粉末
をそれらのガラス転移温度よりも低い温度で真空中、空
気中、または他の保護雰囲気中で常法により熱間圧縮し
て、希望するいかなる形状にすることもできる。好寸し
くに、粉末を少なくとも7MPaの圧力でガラス転移温
度の85〜95裂の温度において圧縮する。高い圧力お
よび温eを用いて短かい圧縮時間でほぼ理論的最大値の
圧縮非晶質形状物の密度を得ることもできる。時間、温
度および圧力が圧縮密度に与える影響を表■に示す。温
度がガラス転移温度にまで上昇するのに伴って、また圧
力が増すのに伴って相対密度は増すであろう。高圧およ
びガラス転移温度付近の温度を用いることにより、圧縮
時間を数秒に寸で短縮することができる。For consolidation, the powder is placed in an evacuated can and hot rolled at a temperature below the glass transition temperature of the alloy, or hot compacted at equilibrium to the desired shape. Additionally, the powders can be conventionally hot compacted below their glass transition temperature in vacuum, air, or other protective atmosphere into any desired shape. Preferably, the powder is compacted at a pressure of at least 7 MPa at a temperature between 85 and 95 degrees above the glass transition temperature. It is also possible to obtain compacted amorphous shape densities close to the theoretical maximum with short compaction times using high pressures and temperatures. The effects of time, temperature and pressure on compressed density are shown in Table 3. The relative density will increase as the temperature increases to the glass transition temperature and as the pressure increases. By using high pressures and temperatures near the glass transition temperature, compression times can be reduced by a fraction of a second.
我 ■
外径4.15crn−内径2.25cmの円環体に成形
されたFe 7 BB□a S 1 g ガラス質合金
(+80メツシユ粉末斧に関する
圧縮時間、温度、圧力および密度の相
関関係
圧縮時間 圧縮温度 圧 力 密 度*810 400
52.0 78.7
20 400 520 80.4
30 .400 210 70.9
30 400 310 77.2
30 400 420 8L1.2
30 400 520 85.2
30 425、 520 90.6
* 粉末の寸法、80メツシュ以上
** 100チは7.2 ? / cr;1に相当粉末
を適切な有機結合剤(たとえはハタフィンなど)と混和
したのち冷圧して適切な形状にすることができる。絶縁
体および結合剤としてはW脂、たとえばフェノールホル
ムアルデヒド樹脂、たとえばベークライト(ユニオン・
カーバイド社の開栓)が用いられる。他の適切な結合剤
には合成御脂、乾燥油、油もしくは脂肪の蒸留残渣、ゴ
ム類もしくは樹脂の溶液、および酸化された油もしくは
ワックス化合物が會まれる。特定の酸化物、たとえばS
iO2lMgOおよびB2O3を粉末と混合し、この混
合物を加圧下に、粉末のガラス転移温度または結晶化温
度よりも低い高められた温度で団結させることができる
。特定の酸、たとえばボレート(ホウ酸)を粉末と混合
し、この混合物を加圧下に、粉末のガラス転移温度また
は結晶化温度よりも低い高められた温度で団結させるこ
とができる。この場合、酸類が団結中に特定の酸化物(
たとえばボレートの場合はB203)と水(これは団結
中に蒸発する)に分解する。結合剤の量は60重量%寸
ででちゃ、高透磁率コアー用としては好ましくは10重
量%以下、より好ましくは0.1〜4重量%である。こ
のような成形された合金は理論的最大値の少なくとも6
0饅の密度を有しうる。Correlation of compression time, temperature, pressure and density for Fe 7 BB□a S 1 g glassy alloy (+80 mesh powder ax) molded into a toroid with an outer diameter of 4.15 crn and an inner diameter of 2.25 cm. Compression temperature Pressure Density *810 400
52.0 78.7 20 400 520 80.4 30. 400 210 70.9 30 400 310 77.2 30 400 420 8L1.2 30 400 520 85.2 30 425, 520 90.6 * Powder size, 80 mesh or more ** 100 mesh is 7.2? /cr;1 The powder can be mixed with a suitable organic binder (such as Hatafine) and then cold pressed into the appropriate shape. Insulators and binders include W resins, such as phenol formaldehyde resins, and Bakelite (Union).
Carbide Co., Ltd.'s open cap) is used. Other suitable binders include synthetic oils, dry oils, distillation residues of oils or fats, solutions of gums or resins, and oxidized oil or wax compounds. Certain oxides, such as S
iO2lMgO and B2O3 can be mixed with a powder and the mixture can be consolidated under pressure at an elevated temperature below the glass transition temperature or crystallization temperature of the powder. Certain acids, such as borates, can be mixed with the powder and the mixture consolidated under pressure at an elevated temperature below the glass transition or crystallization temperature of the powder. In this case, certain oxides (
For example, borate decomposes into B203) and water (which evaporates during coalescence). The amount of binder is about 60% by weight, preferably less than 10% by weight for high permeability cores, more preferably 0.1 to 4% by weight. Such shaped alloys have a theoretical maximum of at least 6
It can have a density of 0.
圧縮された物体をガラス転移温度よシも低い比較的低温
で硬化させてより大きな強度を与え、次いで最終寸法に
粉砕することができる。この方法による好ましい製品は
、磁性成分として適した形状をなす。The compacted object can be cured at relatively low temperatures, below the glass transition temperature, to provide greater strength and then ground to final dimensions. Preferred products from this method have a shape suitable for magnetic components.
硬化処理は同時に磁場を与えながら行うことができる。The hardening process can be performed while simultaneously applying a magnetic field.
好ましくは、硬化処理は酸素の不在下で行われる。これ
らの処理は、ガラス質金属合金から製造される希望する
磁性および構造の製品を得るのに最適な熱処理サイクル
に適合される。Preferably, the curing process is carried out in the absence of oxygen. These treatments are matched to optimal heat treatment cycles to obtain the desired magnetic and structural products made from glassy metal alloys.
圧縮したのち最終製品を最終寸法に粉砕する。After compaction, the final product is ground to final dimensions.
この処理は簡単々幾何学的形状をもつ大型の工学機器を
加工するのに適している。さらに、最終製品を所望によ
り、手近な用途に用いられる個々の合金に応じて焼鈍す
ることができる。この固形物体は成形したままの状態の
合金の約60%よりも低くはない密度、好ましくは95
チの密度をもつ。This process is suitable for fabricating large engineering equipment with simple geometric shapes. Additionally, the final product can be annealed if desired depending on the particular alloy used in the application at hand. The solid body has a density not less than about 60% of the as-formed alloy, preferably 95%.
It has a density of
金属ガラスは、結晶化せずに剛性状態になるまで冷却さ
れた溶融合金生成物である。この種の金属ガラスは一般
に下記の特性のうち少なくとも幾つかをもつ。高い硬度
および耐引掻き性、大きなガラス質表面平滑性、寸法お
よび形状安定性、機拡的剛性、強度、延性、関連する金
属およびそれらの合金に比べて高い電気抵抗、優れた磁
気柔軟性(magnetic 5oftness)およ
びX線回折パターン。Metallic glasses are molten alloy products that have been cooled to a rigid state without crystallization. Metallic glasses of this type generally have at least some of the following properties: High hardness and scratch resistance, great vitreous surface smoothness, dimensional and shape stability, mechanical stiffness, strength, ductility, high electrical resistance compared to related metals and their alloys, excellent magnetic flexibility 5offtness) and X-ray diffraction pattern.
ここで“合金”という語は普通の意味で、2棟以上の金
属の固体混合物を表わすものとして用いられる(縮約化
学辞典、第9版、ファン・ノーストランド・ラインホー
ルド社、ニューヨーク、1977年)。これらの合金は
さらに少なくとも1種の非金属元素を混和含有する。゛
ガラス質(glassyまたはvitreous)金属
合金”−6金属ガラス“、“非晶質金属合金″という語
はすべてここで用いられる場合向等であると考えられる
。The word "alloy" is used here in its ordinary sense to denote a solid mixture of two or more metals (Abridged Chemistry Dictionary, 9th edition, Van Nostrand Reinhold, New York, 1977). ). These alloys further contain at least one non-metallic element. The terms "glassy or vitreous metal alloy"-6 metallic glass, and "amorphous metal alloy" are all considered interchangeable as used herein.
本発明方法に適した合金にはMaM’bZ cの組成の
ものが含まれる。式中MがFe、NiおよびCoのうち
少なくとも1種である場合、M′はCr 、Mo 、W
、V。Alloys suitable for the method of the invention include those of the composition MaM'bZ c. In the formula, when M is at least one of Fe, Ni and Co, M' is Cr, Mo, W
,V.
Nb 、Ta 、Ti 、ZrおよびHfのうち少なく
とも1種であシ、2はB、Si、CおよびPのうち少な
くとも1種であり、′a”、b″および“Cnは原子チ
であt)、a十り+c=100であり、aは約65〜8
8、bは約0〜7、そしてCは約12〜28の範囲にあ
る。2 is at least one of Nb, Ta, Ti, Zr and Hf; 2 is at least one of B, Si, C and P; 'a', b' and 'Cn are atoms; ), a + c = 100, and a is approximately 65 to 8
8, b ranges from about 0 to 7, and C ranges from about 12 to 28.
本発明による好ましい強磁性合金は鉄、コバルトおよび
ニッケルよりなる群の1員子を基礎とするものである。Preferred ferromagnetic alloys according to the invention are those based on members of the group consisting of iron, cobalt and nickel.
鉄を基礎とする合金は一般組成Fe 40−88 (C
o yNlのうち少なくとも1a)。−48(Cr 、
Mo 、W、V 、Nb 、Ta 、T i 、Zr
、Hf のうち少なくとも1種)。−7(B、St、C
,Pのうち少なくとも1種)12−28 をもち(脚部
の数値は原子係);コバルトを基礎とする合金は一般組
成Co 4 g 、、、B 8(Fe 、Niのうち少
なくとも1種) (Cr 、Mo 、W、V、Nb 。Iron-based alloys have the general composition Fe 40-88 (C
o At least 1a) of yNl. -48(Cr,
Mo, W, V, Nb, Ta, Ti, Zr
, Hf). -7(B, St, C
, P) 12-28 (numbers in the legs are in atomic relation); cobalt-based alloys have the general composition Co 4 g , , B 8 (at least one of Fe , Ni) (Cr, Mo, W, V, Nb.
−40
Ta、Ti、Zr、Hfのうち少なくとも1種)g−7
(B。-40 At least one of Ta, Ti, Zr, Hf) g-7
(B.
Si 、C,Pのうち少なくとも1種) −をもち22
8
(脚部の数値は原子%):ニッケルを基礎とする合金は
一般組成N1 (Co t Feのうち少なくと0−6
8
もI Fii ) 2 o46 (Cr 、Mo 、w
、v、Nb 、Ta 、T i yZr )Hfのうち
少なくとも1種)。−7(13,Si vcpPのうち
少なくとも1種) をもつ(脚部の数値は原子2−28
チ)。At least one of Si, C, and P) -22
8 (values on legs are in atomic %): Alloys based on nickel have a general composition of N1 (at least 0-6 of Co t Fe).
8 also I Fii ) 2 o46 (Cr , Mo , w
, v, Nb , Ta , Ti yZr )Hf). -7 (13, at least one of Si vcpP) (number of legs is 2-28 atoms).
好ましい合金は炭素5原子−以下、ホウ素25原子饅、
ケイ素20原子チ、およびリン10原子−の原子比をも
つ。A preferred alloy is 5 atoms or less of carbon, 25 atoms of boron,
It has an atomic ratio of 20 atoms of silicon and 10 atoms of phosphorus.
圧縮に際して各粉末は異なる程度の外部応力を受ける。During compaction, each powder is subjected to a different degree of external stress.
この外部応力は、粉末が磁気歪をもつ場合粉末の磁性を
変化させる。従って飽和磁気歪の低い粉末を団結させる
ことが望ましい。これは特に、高周波数で用いるための
団結材料について当てはまる。飽和磁気歪λ8は、消磁
された状態から飽和の強磁性状態へ移行する際に磁性材
料に生じる長さの分数変化率△1/1に関連する。磁気
歪(無単位の量)はしばしばマイクロストレイン(mi
crostrain)の単位で表わされる(すなわちマ
イクロストレインはlppmの長さの分数変化率である
)。量λ8はプラスまたはマイナスであり、その軟質磁
性がこの量により強く影響される材料に応じて定められ
る。粉末に関するλ の好ましい絶対値は約10X10
(すなわち10ppm)以下であや、これはコバルト
およびニッケルを基礎とするガラス質合金粉末の大部分
、ならびに鉄約40原子−とCr 、Mo 、W、V、
Nb 、Ta 、Ti 、ZrおよびHf よりなる群
から選ばれる少なくとも1種の元素約2原子係以下、あ
るいは鉄約40〜88原子チとCr 、Mo 、W、V
+Nb 、Ta 、Ti 、ZrおよびHfよりなる
群から選ばれる少なくとも1種の元素2原子φ以上を含
む、鉄を基礎とするガラス質合金粉末において認められ
る。粉末に関する最も好ましいλ。This external stress changes the magnetic properties of the powder if it is magnetostrictive. Therefore, it is desirable to consolidate powders with low saturation magnetostriction. This is especially true for cohesive materials for use at high frequencies. Saturation magnetostriction λ8 is related to the fractional change in length Δ1/1 that occurs in a magnetic material when going from a demagnetized state to a saturated ferromagnetic state. Magnetostriction (a unitless quantity) is often referred to as microstrain (mi
(i.e. microstrain is the fractional rate of change in length in lppm). The quantity λ8 is positive or negative and is determined depending on the material whose soft magnetism is strongly influenced by this quantity. The preferred absolute value of λ for powders is approximately 10×10
(i.e. below 10 ppm), which accounts for most of the glassy alloy powder based on cobalt and nickel, as well as about 40 atoms of iron and Cr, Mo, W, V,
At least one element selected from the group consisting of Nb, Ta, Ti, Zr and Hf, or about 40 to 88 atoms of iron, Cr, Mo, W, V
It is found in iron-based vitreous alloy powders containing two or more atoms φ of at least one element selected from the group consisting of +Nb, Ta, Ti, Zr, and Hf. Most preferred λ for powder.
の値はほぼゼロ、またはゼロであり、これは約0.06
〜約0.16の範囲の鉄対コバルト含量比をもつ、コバ
ルトを基礎とするガラス質合金粉末において達成される
。低周波数用途(すなわち50/60Hzの領域)の大
部分の場合のように磁気歪が重要な因子でない場合、こ
れらを考慮する必要はない。The value of is almost zero or zero, which is about 0.06
This is achieved in a cobalt-based vitreous alloy powder with an iron to cobalt content ratio in the range of ˜about 0.16. If magnetostriction is not an important factor, as is the case in most low frequency applications (ie in the 50/60 Hz region), there is no need to consider these.
非晶質金属粉末を圧縮して、電磁コアー、極片など各種
の用途に適した部品を加工することができる。ガラス質
金屈圧縮体は高い透磁重金もつ。Amorphous metal powder can be compressed into parts suitable for various uses, such as electromagnetic cores and pole pieces. The vitreous compacted material has high magnetic permeability.
これらは比較しうる透磁率をもつ普通の圧縮合金体より
もはるかに少ないニッケルを含有してもよい。得られた
コアーはトランス用コアーとして、凍だ他の交流用に用
いることができる。These may contain much less nickel than ordinary compression alloy bodies of comparable magnetic permeability. The obtained core can be used as a transformer core for freezing or other alternating current applications.
以下の実施例は本発明をより十分に理解するために提示
される。本発明の原理および実際を説明するために示さ
れた特定の技術、条件、材料、割合、および報告された
データは例示であり、本発明の範囲を限定するものと解
すべきではない。The following examples are presented in order to more fully understand the invention. The specific techniques, conditions, materials, proportions, and data reported to illustrate the principles and practice of the invention are illustrative and should not be construed as limiting the scope of the invention.
実施例1
Fe78B□381g の組成をもつ合金からなる数ミ
リメートル以下の寸法の非晶質金属粉末を調製した。Example 1 An amorphous metal powder having dimensions of a few millimeters or less was prepared consisting of an alloy having a composition of Fe78B□381 g.
これらの粉末を篩分けし、異なる寸法をもつものを分類
した。篩分けされた粉末を圧縮して、内径および外径そ
れぞれ約3.2crnおよび4.2αならびに高さ約0
.7画の円環体となした。団結の温度および圧力はそれ
ぞれ350℃および345 MPaであった。成形した
ままの環状体および焼鈍した円環体の磁性に対し粉末の
寸法が与える影響を表■にまとめる。この表は、大きな
粉末はより良好な磁性を与える傾向を示し、180μT
rL〜1.4mの粉末寸法が最良の総体的磁性を得るた
めに最も好ましいことを示す。たとえば、約80μrI
L〜1.4順の範囲の寸法をもつ粉末から製造され焼鈍
された円環体は5 xnzおよび50 KI(zでそれ
ぞれ200および70を越える透磁率を有する。These powders were sieved and those with different dimensions were sorted. The sieved powder is compressed to an inner and outer diameter of approximately 3.2 crn and 4.2 α, respectively, and a height of approximately 0.
.. It was made into a torus of 7 strokes. The temperature and pressure of consolidation were 350° C. and 345 MPa, respectively. The influence of powder dimensions on the magnetism of as-formed and annealed toroids is summarized in Table 3. This table shows that larger powders tend to give better magnetism, with 180 μT
A powder size of rL ~ 1.4 m is shown to be most preferred to obtain the best overall magnetism. For example, about 80μrI
Annealed tori produced from powders with dimensions in the order of L~1.4 have magnetic permeabilities of over 200 and 70 at 5 x nz and 50 KI (z, respectively).
実施例2
表Hにおいて円環体の透磁率μ(f)は周波数fの増加
に伴って低下することが認められる。これは粉末間の導
電性により生じる渦電流損失によるものである。各粉末
粒子は絶縁されていないのでこの導電性はかな9のもの
である。一般に金属強磁性体における渦電流損失は周波
数、材料の寸法、およびその導電性と共に増大する。従
って粒子寸法および粉末量導電性を低下させると渦電流
損失は減少するであろう。粉末量電気抵抗(導電性の逆
)を高めるために種々の寸法のFe78B□a S 1
g粉末と混和したSi0□2重t%が団結したコアー
の磁性に与える影響を表■にまとめる。180μm以上
の粉末から製造されたコアーについては、異なる絶縁性
の効果を調べるためにボレート75重量%も用いた。ボ
レートはホウ酸であり、酸化ホウ素に分解し、優れた結
合剤および粉末粒子間の絶縁拐を提供する。表■の結果
が示すように、SiO□すなわち酸化ホウ素により与え
られた絶縁性は高周波磁性を改良するのに実際に有効で
あつた しかし予想しなかったのは、粉末寸法の大きい
方がより良好な磁性を得たという結果である。Example 2 In Table H, it is observed that the magnetic permeability μ(f) of the torus decreases as the frequency f increases. This is due to eddy current losses caused by conductivity between the powders. This conductivity is of Kana 9 since each powder particle is not insulated. In general, eddy current losses in metallic ferromagnetic materials increase with frequency, the dimensions of the material, and its conductivity. Therefore, reducing particle size and powder conductivity will reduce eddy current losses. Powder quantity Fe78B□a S 1 of various dimensions to increase electrical resistance (opposite of conductivity)
The influence of Si0□2 weight t% mixed with g powder on the magnetism of the unified core is summarized in Table 3. For cores made from powders larger than 180 μm, 75 wt% borate was also used to investigate the effect of different insulation properties. Borate is boric acid, which decomposes into boron oxide and provides an excellent binder and insulation between powder particles. As the results in Table ■ show, the insulation provided by SiO□, or boron oxide, was indeed effective in improving high frequency magnetism. However, what was unexpected was that the larger powder size was better. As a result, a good magnetic property was obtained.
たとえば50 ’KHzおよび0.1Tの誘導において
寸法180μm以上の絶縁粉末から製造されたコアーに
関する透磁率μは約16o″″Cある。これを寸法68
μ以下の絶縁粉末から製造したものに関するtt (5
0KHz 、 0.1T ) = 42と比較すべきで
ある。従って絶縁粉末の寸法は、本発明の圧縮コアーに
おいて良好な磁性を達成するためにも約180μm以上
であることが好ましい。For example, the magnetic permeability μ for a core made from insulating powder with dimensions of 180 μm or more at 50′ KHz and 0.1 T induction is approximately 16 o″″C. Dimensions 68
tt (5
0KHz, 0.1T) = 42. Therefore, the size of the insulating powder is preferably about 180 μm or more in order to achieve good magnetism in the compressed core of the present invention.
表 ■
粉末量絶縁が表■と同じ条件下で製造さf=5KHz
f=50KHz
−≧180μm 7.5重量%ボレー) 3<SO13
0)180μm 2重量%Si0 340 160−
2
180μm〜 2重量%Si0 210 130500
μm
125μm〜 2重量%Si0 130 75180μ
m
66μm〜
125μm 2重量%si0 11Q 65< 38μ
m 2 重量%SiO7242□ 2
実施例6
81022重量%またはボレート7、5重量襲で絶縁さ
れた種々の寸法の粉末から多数のコアーを製造した。寸
法75μm以下の粉末、および180μm〜1.4藺の
ものから製造され、焼鈍されたコアーにおいて得られた
磁性の範囲を表1■に示す。より大きな粉末から製造さ
れたコアーの総体的特性の方が、より小さな粉末から製
造されたものよりも良好であった。5KHzおよびL]
、ITにおいて10W/kyという低いコアー損(L)
および1000という高い透磁率(μ)が約1.6テス
ラの飽和誘導をもつFeを基硫とする粉末コアーにおい
て達成された点は注目される。これらの値を、約0.5
テスラの飽和誘導をもつ市販のNi−Znフェライトの
tt (5KHz 、 0.IT )約1000および
L約5W/Kgと比較すべきである。Table ■ Powder quantity insulation manufactured under the same conditions as in Table ■ f = 5KHz
f=50KHz -≧180μm 7.5wt% volley) 3<SO13
0) 180 μm 2% by weight Si0 340 160-
2 180 μm ~ 2 wt% Si0 210 130500
μm 125μm ~ 2wt% Si0 130 75180μ
m 66μm~125μm 2wt%si0 11Q 65<38μ
m 2 wt % SiO7242□ 2 Example 6 A number of cores were made from powders of various sizes insulated with 81022 wt % or borate 7,5 wt %. The range of magnetism obtained in annealed cores made from powders with dimensions up to 75 .mu.m and from 180 .mu.m to 1.4 .mu.m is shown in Table 1. The overall properties of cores made from larger powders were better than those made from smaller powders. 5KHz and L]
, low core loss (L) of 10W/ky in IT
It is noteworthy that a high magnetic permeability (μ) of 1000 and 1000 was achieved in a Fe-based powder core with a saturation induction of about 1.6 Tesla. These values are approximately 0.5
This should be compared to commercially available Ni-Zn ferrites with Tesla saturation induction tt (5 KHz, 0.IT) of about 1000 and L of about 5 W/Kg.
表tV
Fe78B□3Si9粉末から350℃で5時間、約6
45MPa の圧力で団結させたコアーに関して得られ
る磁性の範囲。粉末粒子を5iO22重量%またはボレ
ー ) 7.5重量−で絶縁した。コアーは表■の表題
に示された寸法をもつ円環体の円周に沿って与えられた
約1600A/mの直流磁場で400℃において2時間
焼鈍された。Table tV From Fe78B□3Si9 powder at 350°C for 5 hours, about 6
Magnetic range obtained for cores united at a pressure of 45 MPa. The powder particles were insulated with 5iO22% by weight or 7.5% by weight. The cores were annealed for 2 hours at 400° C. in a DC magnetic field of about 1600 A/m applied along the circumference of a torus having the dimensions indicated in the heading of Table 3.
直流保磁力
(W/にり〕
<75μm 〜30−15090−500 20−10
0180μm −40−120100−100020−
401,4Tcn
実施例4
強磁性体の性能はその磁気歪(λ)、磁気化学的作用の
規模によシきわめて大きな影Qk受けるであろう。λの
量は内部応力によって付加的な磁気アニソトロピーエネ
ルギーを導入する。磁性粉末を圧縮すると、各粉末が異
なる程度の応力下に置かれる。粉末が磁気歪をもつ場合
、この外部応力が保磁力全増大させ、その残留磁気を変
化させ、従ってコアーの交流特性に影響を与える。表■
に粉末材料の磁気歪値と類似の寸法の粉末から圧縮され
たコアーの交流特性の関係11とめる。この表は磁気歪
のより低い粉末コアーがより良好な磁性を示すことを明
示している。従って約10x10−6以下の低い磁気歪
が好ましく、本発明の圧縮されたコアーの最良の総体的
磁性を得るために最も好ましいλの値はほぼゼロである
。DC coercive force (W/Ni) <75μm ~30-15090-500 20-10
0180μm -40-120100-100020-
401,4Tcn Example 4 The performance of a ferromagnetic material will be greatly affected by its magnetostriction (λ), Qk, depending on the magnitude of the magnetochemical action. The amount of λ introduces additional magnetic anisotropic energy due to internal stress. Compressing magnetic powders places each powder under a different degree of stress. If the powder is magnetostrictive, this external stress increases the total coercive force, changes its remanence, and thus affects the AC properties of the core. Table■
The relationship between the magnetostriction value of a powder material and the AC characteristics of a core compressed from powder of similar dimensions is shown in Figure 11. This table clearly shows that powder cores with lower magnetostriction exhibit better magnetic properties. Therefore, a low magnetostriction of about 10.times.10@-6 or less is preferred, and the most preferred value of .lambda. is approximately zero to obtain the best overall magnetism of the compressed core of the present invention.
表V
粉末材料の磁気歪が180μm〜1.4 mmの寸法を
もつ粉末から製造された団結コアーの特性に与える影響
。圧縮条件は弐■の表題に示す。Table V Effect of magnetostriction of powder materials on the properties of united cores made from powders with dimensions between 180 μm and 1.4 mm. The compression conditions are shown in the title of 2.
組成 λ(10−6ン (W/ky )S 13 、5
C2
Fe7sBtaSic+ 30 220 701°4へ
・・ 9 6!:)0 22
Mo 4B I B
MO2B□5Si5
実施例5
表■に示した磁気歪の低い粉末から製造された本発明の
圧縮コアーの磁性をさらに改良するため、5iO24重
量係およびMg04重量%を添加して粉末粒子を絶縁し
た。結果を表■に示す。表■と■のデータを比較すると
、絶縁された低磁気歪の粉末コアーが最良の総体的磁性
を示すととる明らかである。5 KHzおよび0.1テ
スラにおける透磁率Cμ)800〜16’00はNi
−Zn ニ関f ルモノ(μ〜1000)に匹敵するか
、またはそれよりも良好である。Composition λ (10-6 N (W/ky) S 13 , 5
C2 Fe7sBtaSic+ 30 220 701° To 4... 9 6! :) 0 22 Mo 4B I B MO2B□5Si5 Example 5 To further improve the magnetism of the compressed core of the present invention manufactured from the powder with low magnetostriction shown in Table ■, 5iO24% by weight and Mg04% by weight were added. to insulate the powder particles. The results are shown in Table ■. Comparing the data in Tables ■ and ■, it is clear that the insulated, low magnetostrictive powder core exhibits the best overall magnetism. Magnetic permeability Cμ) 800 to 16'00 at 5 KHz and 0.1 Tesla is Ni
-Zn is comparable to or better than mono (μ~1000).
寸法180μm〜1.4調の絶縁された低磁気歪のFe
4oN13 BMo 4B I B (λ:9X1[
1−6)およびco7□、2Fe5.8M02B15S
i5(λ〜o)から製造されたコアーの磁性。コアーの
団結条件は表■の表題に示した1ものと同一である。コ
アーは円環体の円周に沿って与えられる1 600 A
/ mの磁場のもとで650℃で2時間焼鈍された。Insulated low magnetostriction Fe with dimensions 180 μm to 1.4 tone
4oN13 BMo 4B I B (λ:9X1[
1-6) and co7□, 2Fe5.8M02B15S
Magnetism of cores made from i5(λ~o). The core unity condition is the same as the one shown in the title of Table ■. The core is given along the circumference of the torus 1 600 A
Annealed at 650 °C for 2 h under a magnetic field of /m.
以上、本発明をかなり詳細に記述したが、これらの詳述
に固執する必要はなく、商業者には各種の変更をなしう
ろことは自明であり、これらはすべて特許請求の範囲の
記載に包含される。Although the present invention has been described in considerable detail above, it is not necessary to adhere to these detailed descriptions, and it is obvious that various modifications can be made by a person skilled in the art, all of which are included within the scope of the claims. be done.
特許出願人 アライド・コーポレーション手続補正書
昭和5q年7月2s日
昭和β年特許願第 /−!7ユ、?/号2、発明の名称
ゴ1゛うTス懺メ≧\/r〜1カオカ・θl、q fH
!’7二ノノ;贋’t@z$6、補正をする者
事件との関係 特許出願人
住所
必称丁クイl”、コーオ0V−ジョン
4、代理人Patent Applicant: Allied Corporation Procedural Amendment July 2s, 1932, Showa β, Patent Application No. /-! 7 Yu,? / No. 2, name of invention
! '72nono;False't@z$6, Relation to the case of the person making the amendment Patent applicant's address (required name: Ding Kui I), Koo 0V-John 4, Agent
Claims (10)
属粉末を圧縮して団結体となすことよりなる、成形され
た磁性金属合金物品の製造方法。(1) A method for producing a shaped magnetic metal alloy article comprising compressing ferromagnetic vitreous metal powder having a particle size of about 2 μm to about 2 fins into a solid body.
2O3よりなる群から選ばれる酸化物からなる結合剤と
混合し、この混合物中に存在する結合剤の量が約1〜2
0重量%の範囲にある、特許請求の範囲第1項記載の方
法。(2) SiO□, TaoO and B are added to the powder before the compression process.
2O3, and the amount of binder present in the mixture is about 1 to 2.
A method according to claim 1, in the range of 0% by weight.
。(3) The method according to claim 2, wherein the powder has a composition essentially consisting of the following formula: %.
Ti tZrおよびHfの元素のうち少なくとも1種で
あシ、ZtiB、Si。 CおよびPの元素のうち少なくとも1棟である)により
定められる組成をもつガラス質合金よりなる団結した強
磁性ガラス質金属体。(4) Essentially the following formula % (where M is Cr, Mo, WtV, Nb, Ta,
At least one of the following elements: Ti, Zr, Hf, ZtiB, and Si. A unified ferromagnetic vitreous metal body consisting of a vitreous alloy having a composition defined by at least one of the elements C and P.
団結された焼鈍された強磁性ガラス質金属体であって、
このガラス質金属体がFe7BB□351gの組成をも
ち、5KHzおよび0.1テスラの誘導において少なく
とも約70の初相対透磁率をもつ強磁性ガラス質金属体
1、(5) an annealed ferromagnetic glassy metal body consolidated from powder having a particle size between about 180 μm and 1.4 μm;
a ferromagnetic glassy metal body 1 having a composition of Fe7BB□351 g and having an initial relative permeability of at least about 70 at 5 KHz and 0.1 Tesla induction;
ら団結された焼鈍された強磁性ガラス質金趙体であって
、このガラス質金属体がFe7BB□381gの組成を
もち、5 KHzおよび0.1テスラの誘導において少
なくとも約100の初相対透磁率をもつ強磁性ガラス質
金属体。(6) An annealed ferromagnetic vitreous metal body consolidated from powders with a particle size of about 180 μm-1,4 van, the glassy metal body having a composition of Fe7BB□381 g, 5 KHz and A ferromagnetic glassy metal body having an initial relative permeability of at least about 100 at an induction of 0.1 Tesla.
団結された焼鈍された強磁性ガラス質金九体であって、
このガラス質金属体がFe4oN1asMO4B□8の
組成をもち、5 KHzおよび0.1テスラの誘導にお
いて約650の初相対透磁率および約22W/kgのコ
アー損をもつ強磁性ガラス質金属体。(7) an annealed ferromagnetic vitreous gold body consolidated from powder with a particle size between about 180 μm and 1.4 μm,
A ferromagnetic glassy metal body having a composition of Fe4oN1asMO4B□8 and having an initial relative permeability of about 650 and a core loss of about 22 W/kg at 5 KHz and 0.1 Tesla.
ら団結された焼鈍された強磁性ガラス質金属体であって
、このガラス質金属体がFe 46N 13 BMO4
B□8の組成をもち、5KH2および0.1テスラの誘
導において約1600の初相対透磁率および約6W/に
7のコアー損をもつ強磁性ガラス質金属体。(8) An annealed ferromagnetic glassy metal body consolidated from powder having a particle size of about 180 μm to 1.4Ta, the glassy metal body being Fe46N13BMO4
A ferromagnetic glassy metal body having a composition of B□8, with an initial relative permeability of about 1600 at 5 KH2 and an induction of 0.1 Tesla and a core loss of about 6 W/7.
団結された強磁性ガラス質金属体であや、このガラス質
金属体がCO72,2F e s 、aMo 2 B
15 S 1 sの組成全もち、5 KHzおよび0.
1テスラの誘等において約800の初相対透磁率および
約19W/に7のコアー損をもつ強磁性ガラス質金属体
。(9) A ferromagnetic vitreous metal body consolidated from powder having a particle size of about 18 l to 1.4 mm, and this vitreous metal body is composed of CO72,2F e s , aMo 2 B
Composition of 15 S 1 s, 5 KHz and 0.
A ferromagnetic glassy metal body having an initial relative permeability of about 800 and a core loss of about 19 W/7 at an induction of 1 Tesla.
粒子から団結された焼鈍された強磁性ガラス質金網体で
あって、このガラス質金属体がco7□、2Fe5.8
M02B15S15の組成をもち、5 KHzおよび0
.1テア、7の誘導において約900の初相対透磁率お
よび約3W/kgのコアー損をもつ強磁性ガラス質金属
体。(10) An annealed ferromagnetic glass wire mesh body aggregated from particles having a particle size of about 180μrIL to 1.4Nm, the glassy metal body having co7□, 2Fe5.8
It has a composition of M02B15S15 and has a frequency of 5 KHz and 0
.. A ferromagnetic glassy metal body with an initial relative permeability of about 900 and a core loss of about 3 W/kg at 1 tare and 7 leads.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US50561983A | 1983-06-20 | 1983-06-20 | |
US505619 | 1983-06-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6024346A true JPS6024346A (en) | 1985-02-07 |
JPH0542497B2 JPH0542497B2 (en) | 1993-06-28 |
Family
ID=24011101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12723184A Granted JPS6024346A (en) | 1983-06-20 | 1984-06-20 | Ceramic instrument solidified from glassy alloy powder |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS6024346A (en) |
DE (1) | DE3422281A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62144958U (en) * | 1986-03-06 | 1987-09-12 | ||
JPS6475648A (en) * | 1987-09-18 | 1989-03-22 | Nippon Denko | Alloy for semi-hard magnetic material and its manufacture |
JPH01101607A (en) * | 1987-10-14 | 1989-04-19 | Riken Corp | Dust molded magnetic body |
JPH01264959A (en) * | 1988-04-18 | 1989-10-23 | Hitachi Ltd | Magnetic ceramics and its production |
JP2008109080A (en) * | 2006-09-29 | 2008-05-08 | Alps Electric Co Ltd | Dust core and manufacturing method thereof |
WO2011057552A1 (en) * | 2009-11-11 | 2011-05-19 | Byd Company Limited | Zirconium-based amorphous alloy, preparing method and recycling method thereof |
JP2014529013A (en) * | 2011-08-22 | 2014-10-30 | カリフォルニア インスティテュート オブ テクノロジー | Bulk nickel-based chromium and phosphorus-containing metallic glass |
US10458008B2 (en) | 2017-04-27 | 2019-10-29 | Glassimetal Technology, Inc. | Zirconium-cobalt-nickel-aluminum glasses with high glass forming ability and high reflectivity |
US11371108B2 (en) | 2019-02-14 | 2022-06-28 | Glassimetal Technology, Inc. | Tough iron-based glasses with high glass forming ability and high thermal stability |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3587010T3 (en) * | 1984-09-29 | 1999-06-10 | Kabushiki Kaisha Toshiba, Kawasaki, Kanagawa | Pressed magnetic powder core. |
EP0271095A3 (en) * | 1986-12-12 | 1989-07-12 | Nippon Steel Corporation | Method for the manufacture of formed products from powders, foils, or fine wires |
EP1114429B1 (en) | 1998-09-17 | 2003-11-12 | Vacuumschmelze GmbH | Current transformer with a direct current tolerance |
DE10024824A1 (en) | 2000-05-19 | 2001-11-29 | Vacuumschmelze Gmbh | Inductive component and method for its production |
DE102006028389A1 (en) | 2006-06-19 | 2007-12-27 | Vacuumschmelze Gmbh & Co. Kg | Magnetic core, formed from a combination of a powder nanocrystalline or amorphous particle and a press additive and portion of other particle surfaces is smooth section or fracture surface without deformations |
KR101060091B1 (en) | 2006-07-12 | 2011-08-29 | 바쿰슈멜체 게엠베하 운트 코. 카게 | Method of manufacturing magnetic core and induction element with magnetic core and magnetic core |
DE102007034925A1 (en) * | 2007-07-24 | 2009-01-29 | Vacuumschmelze Gmbh & Co. Kg | Method for producing magnetic cores, magnetic core and inductive component with a magnetic core |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5625942A (en) * | 1979-07-09 | 1981-03-12 | Inst Seratsuku Sa | Manufacture of large body from powder particle in equilibrium state |
JPS5739103A (en) * | 1980-05-29 | 1982-03-04 | Allied Chem | Glassy alloy magnetic product and manufacture |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3856513A (en) * | 1972-12-26 | 1974-12-24 | Allied Chem | Novel amorphous metals and amorphous metal articles |
US4197146A (en) * | 1978-10-24 | 1980-04-08 | General Electric Company | Molded amorphous metal electrical magnetic components |
US4290808A (en) * | 1979-03-23 | 1981-09-22 | Allied Chemical Corporation | Metallic glass powders from glassy alloys |
US4406700A (en) * | 1979-11-14 | 1983-09-27 | Allied Corporation | Powder produced by embrittling of metallic glassy alloy by hydrogen charging |
DE3120168C2 (en) * | 1980-05-29 | 1984-09-13 | Allied Corp., Morris Township, N.J. | Use of a metal body as an electromagnet core |
-
1984
- 1984-06-15 DE DE19843422281 patent/DE3422281A1/en not_active Ceased
- 1984-06-20 JP JP12723184A patent/JPS6024346A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5625942A (en) * | 1979-07-09 | 1981-03-12 | Inst Seratsuku Sa | Manufacture of large body from powder particle in equilibrium state |
JPS5739103A (en) * | 1980-05-29 | 1982-03-04 | Allied Chem | Glassy alloy magnetic product and manufacture |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62144958U (en) * | 1986-03-06 | 1987-09-12 | ||
JPH0449160Y2 (en) * | 1986-03-06 | 1992-11-19 | ||
JPS6475648A (en) * | 1987-09-18 | 1989-03-22 | Nippon Denko | Alloy for semi-hard magnetic material and its manufacture |
JPH01101607A (en) * | 1987-10-14 | 1989-04-19 | Riken Corp | Dust molded magnetic body |
JPH01264959A (en) * | 1988-04-18 | 1989-10-23 | Hitachi Ltd | Magnetic ceramics and its production |
JP2008109080A (en) * | 2006-09-29 | 2008-05-08 | Alps Electric Co Ltd | Dust core and manufacturing method thereof |
WO2011057552A1 (en) * | 2009-11-11 | 2011-05-19 | Byd Company Limited | Zirconium-based amorphous alloy, preparing method and recycling method thereof |
JP2014529013A (en) * | 2011-08-22 | 2014-10-30 | カリフォルニア インスティテュート オブ テクノロジー | Bulk nickel-based chromium and phosphorus-containing metallic glass |
US10458008B2 (en) | 2017-04-27 | 2019-10-29 | Glassimetal Technology, Inc. | Zirconium-cobalt-nickel-aluminum glasses with high glass forming ability and high reflectivity |
US11371108B2 (en) | 2019-02-14 | 2022-06-28 | Glassimetal Technology, Inc. | Tough iron-based glasses with high glass forming ability and high thermal stability |
Also Published As
Publication number | Publication date |
---|---|
JPH0542497B2 (en) | 1993-06-28 |
DE3422281A1 (en) | 1984-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4385944A (en) | Magnetic implements from glassy alloys | |
KR100307195B1 (en) | Composite magnetic material and process for producing the same | |
US4197146A (en) | Molded amorphous metal electrical magnetic components | |
TWI383410B (en) | Amorphous soft magnetic alloy and inductance component using the same | |
JPS6024346A (en) | Ceramic instrument solidified from glassy alloy powder | |
US6827557B2 (en) | Amorphous alloy powder core and nano-crystal alloy powder core having good high frequency properties and methods of manufacturing the same | |
JP3624681B2 (en) | Composite magnetic material and method for producing the same | |
KR101166963B1 (en) | Method for the production of magnet cores, magnet core and inductive component with a magnet core | |
JP2013098384A (en) | Dust core | |
KR20070085168A (en) | Method for producing powder compound cores made from nano-crystalline magnetic material | |
JP2003142310A (en) | Dust core having high electrical resistance and manufacturing method therefor | |
JPWO2010038441A1 (en) | Composite magnetic material and manufacturing method thereof | |
JP5919144B2 (en) | Iron powder for dust core and method for producing dust core | |
JP6229166B2 (en) | Composite magnetic material for inductor and manufacturing method thereof | |
JPS63158810A (en) | Dust core | |
JP2023549271A (en) | Soft magnetic powder and its preparation and use | |
JP2017034069A (en) | Powder magnetic core | |
JPH0534814B2 (en) | ||
US2508705A (en) | Pulverulent iron of improved electromagnetic properties | |
JPS63117406A (en) | Amorphous alloy dust core | |
JPS63115309A (en) | Magnetic alloy powder | |
JPS61154014A (en) | Dust core | |
JP4106966B2 (en) | Composite magnetic material and manufacturing method thereof | |
JPS62232103A (en) | Fe base amorphous dust core and manufacture thereof | |
JPS6370503A (en) | Magnetic alloy powder and magnetic core using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |