JPS63117406A - Amorphous alloy dust core - Google Patents

Amorphous alloy dust core

Info

Publication number
JPS63117406A
JPS63117406A JP61264268A JP26426886A JPS63117406A JP S63117406 A JPS63117406 A JP S63117406A JP 61264268 A JP61264268 A JP 61264268A JP 26426886 A JP26426886 A JP 26426886A JP S63117406 A JPS63117406 A JP S63117406A
Authority
JP
Japan
Prior art keywords
powder
amorphous alloy
alloy
heat treatment
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61264268A
Other languages
Japanese (ja)
Other versions
JPH0793204B2 (en
Inventor
Taku Meguro
卓 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP61264268A priority Critical patent/JPH0793204B2/en
Publication of JPS63117406A publication Critical patent/JPS63117406A/en
Publication of JPH0793204B2 publication Critical patent/JPH0793204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To facilitate powder pressing and molding so that a dust core whose dielectric breakdown is hard to occur can be manufactured, by powder-pressing and molding amorphous alloy powder which consists of one or two species of Fe, Cr, P, and C or B and has specified composition of atomic percentage, and by performing heat treatment at a temperature lower than a crystallization temperature. CONSTITUTION:An alloy consisting of one or two species of Pe, Cr, P, and C or B and having composition shown in atomic percentage formula; Fe100-a-b- c.Cra.Pb(C,B)c(1<=a<=8, 5<=b, 15<=b+c<=30), is powderpressed and molded. when a small amount of insulating material is mixed with this alloy and successively when the mixture is molded or when the surface of the powder is coated with an insulating film, frequency characteristics are more improved and a threshold frequency is enlarged. Though heat treatment is usually performed under a non-magnetic field above a Curie point, the characteristics can be occasionally further improved by performing the heat treatment under the magnetic field. When this amorphous alloy dust core is manufactured, irregular-shaped powder of 3.5 g/cm<3> or less in apparent density is available for alley powder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アモルファス合金圧粉磁心、特に電子機器内
のノイズフィルター、チョークコイル等の磁心に使用さ
れるアモルファス合金圧粉磁心に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an amorphous alloy powder magnetic core, particularly an amorphous alloy powder magnetic core used as a magnetic core for noise filters, choke coils, etc. in electronic devices. .

〔従来の技術〕[Conventional technology]

従来より電子機器の電源内のノイズフィルター。 Traditionally used as a noise filter in the power supply of electronic equipment.

チョークコイル等の磁心には、フェライト、M。Ferrite, M is used for the magnetic core of choke coils, etc.

パーマロイ圧粉磁心、Fe−5L−A1合金圧粉磁心な
どが使用されている。特に、近年電源がスイッチング電
源化され、さらにその駆動周波数の上昇と電流容量の増
加の傾向が強まっており、良好な周波数特性を有すると
ともに、大電流によって飽和しにくい高磁束密度の合金
圧粉磁心が注目を浴びつつある。
Permalloy powder magnetic cores, Fe-5L-A1 alloy powder magnetic cores, etc. are used. In particular, in recent years, power supplies have become switching power supplies, and there has been a growing trend toward higher drive frequencies and increased current capacities.Alloy powder magnetic cores have good frequency characteristics and high magnetic flux density, which is difficult to saturate with large currents. is attracting attention.

一方、結晶磁気異方性をもたないアモルファス合金は、
高透磁率、低保磁力等の優れた軟磁性をもちながら、通
常の結晶質磁性合金の2〜3倍も高い固有抵抗の故に高
周波損失が少なく、特にFe基アモルファス合金は磁束
密度が高いのでノイズフィルター、チョークコイル等の
磁心には最適の素材ということができる。□ アモルファス合金をノイズフィルター、チョークコイル
等の磁心に用いた例は、たとえば東芝レビュー39巻8
号、 1984 P735などに見られる。これらは単
ロール法と呼ばれる溶湯急冷法によって製造された厚さ
数10μmのアモルファス合金薄帯を素材として、これ
をトロイダル状に巻き回した巻鉄心として用いられてい
る。
On the other hand, amorphous alloys that do not have magnetocrystalline anisotropy
Although it has excellent soft magnetic properties such as high permeability and low coercive force, it has a resistivity that is 2 to 3 times higher than ordinary crystalline magnetic alloys, so it has low high frequency loss, and Fe-based amorphous alloys have particularly high magnetic flux density. It can be said to be the best material for magnetic cores in noise filters, choke coils, etc. □ Examples of using amorphous alloys in the magnetic cores of noise filters, choke coils, etc. are given in Toshiba Review Vol. 39, 8.
No., 1984 P735, etc. These are made of an amorphous alloy ribbon several tens of micrometers thick produced by a molten metal quenching method called the single roll method, and are used as a wound core made by winding this into a toroidal shape.

しかしながら、巻磁心は巻き回し、含浸硬化、ギャップ
の加工等加工工数が大きく、勢い高価格となるという問
題があった。また、巻線工数を低減する意味では、E形
、U形等の異形コアの採用が有利であるが、アモルファ
ス合金薄帯から製造するには、アモルファス合金が高硬
度なため打抜きに使用する金型の寿命が短いという困難
があるため実用には至っていない。
However, the wound magnetic core requires a large number of man-hours for winding, impregnation hardening, gap machining, etc., and has the problem of being extremely expensive. In addition, in terms of reducing the number of winding steps, it is advantageous to use irregularly shaped cores such as E-shape and U-shape. It has not been put into practical use due to the difficulty of the short life of the mold.

上記のアモルファス合金薄帯よりなる磁心の欠点を解消
するため、アモルファス合金の粉末を製造し、これを圧
粉成形する方法も試行されている。
In order to eliminate the drawbacks of the magnetic core made of the amorphous alloy ribbon described above, a method of producing amorphous alloy powder and compacting it has also been tried.

しかしながら、有機物あるいは無機物を絶縁層かつバイ
ンダーとして用いた場合、アモルファス合金は硬くて圧
縮性に乏しいため、これら絶縁物質の量を大量に加えな
いと成形できず、成形できても絶縁物の量が多いために
透磁率が小さくなってしまうという問題があった。一方
、量産性に優れろ水アトマイズ法による不規則形状のア
モルファス合金粉末は、比較的圧縮性に富み1.バイン
ダー兼#!I縁物質を加えずども成形は可能であるが。
However, when organic or inorganic substances are used as the insulating layer and binder, the amorphous alloy is hard and has poor compressibility, so it cannot be formed unless a large amount of these insulating substances is added, and even if it can be formed, the amount of insulator is There was a problem in that the magnetic permeability decreased because there was a large amount. On the other hand, irregularly shaped amorphous alloy powder produced by the filtered water atomization method, which is easy to mass produce, has relatively good compressibility. Binder cum #! Although molding is possible without adding an I-edge material.

Fe、。Pi4C6等多くのアモルファス合金において
は、圧粉の際に粉末粒子相互が接触する頻度が高く、絶
縁が破壊される傾向が強いため、透磁率の周波数特性が
劣化するという問題があった。
Fe,. Many amorphous alloys such as Pi4C6 have a problem in that the frequency characteristics of magnetic permeability deteriorate because the powder particles frequently come into contact with each other during compaction, and there is a strong tendency for insulation to break down.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、圧粉、成形が容易で、圧粉の際に絶縁
破壊しにくく、かつ安価なアモルファス合金粉末から製
造されるアモルファス合金粉末圧粉磁心を提供すること
にある。
An object of the present invention is to provide an amorphous alloy powder dust core manufactured from an inexpensive amorphous alloy powder that is easy to compact and mold, is difficult to cause dielectric breakdown during compaction, and is inexpensive.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、上記のアモルファス合金に関する問題点を
解決するために検討を重ねた結果、 Fe、Cr、Pお
よびCまたはBの1種または2種よりなり、原子百分率
で表わした式、 F e100−a−b−c @ Cra−P b (C
e B )c(1≦a≦8,5≦b、15≦b+c≦3
0)で示される組成を有するアモルファス合金粉末を原
料粉末として用い、これを圧粉成形し、然る後結晶化温
度以下で熱処理することで圧粉成形が容易で優れた磁気
特性を有する圧粉磁心が製造できることを見い出し、本
発明をなすに至った。
As a result of repeated studies in order to solve the problems regarding the amorphous alloy described above, the present inventor has found that the following formula is obtained: -a-b-c @Cra-P b (C
e B ) c (1≦a≦8, 5≦b, 15≦b+c≦3
By using an amorphous alloy powder having the composition shown in 0) as a raw material powder, compacting it, and then heat-treating it below the crystallization temperature, a compacted powder that is easy to compact and has excellent magnetic properties. It was discovered that a magnetic core can be manufactured, and the present invention was accomplished.

以下、本発明について詳述する。The present invention will be explained in detail below.

本発明者は、上記アモルファス合金に関する問題点を解
決すべく、組成面から種々検討を行なった。
The present inventor conducted various studies from the viewpoint of composition in order to solve the problems regarding the above-mentioned amorphous alloy.

成形性、圧縮性が最も良好な粒子形態である不規則形状
のアモルファス合金粉末の成形体は、後述するようにバ
インダーを用いなくとも成形可能であるが、多くのアモ
ルファス合金では、圧粉の際、粉末粒子相互が接触する
頻度が高く、透磁率の周波数特性が乏しく、実用には耐
えない。例えば、Fe、、P、、CGアモルファス合金
の見掛密度3.0g/an?の粉末を20ton/al
でリング状にプレス成形し、Ar雰囲気下400”Cに
て2Hr保持した場合の10KIIZにおける透磁率は
230であるが、透磁率が半減する周波数(以下限界周
波数と呼称する)は0.3MH2であり、Fe−3i−
A1合金圧粉磁心やMoパーマロイ圧粉磁心のIOMI
(Z以上より大幅に劣る。
Irregularly shaped amorphous alloy powder compacts, which have the best particle shape for formability and compressibility, can be formed without the use of a binder, as described below, but many amorphous alloys are difficult to form during compaction. , powder particles often come into contact with each other, and the frequency characteristics of magnetic permeability are poor, making it unsuitable for practical use. For example, the apparent density of Fe, P, CG amorphous alloy is 3.0 g/an? 20 tons/al of powder
The magnetic permeability at 10KIIZ when press-formed into a ring shape and held at 400"C for 2 hours in an Ar atmosphere is 230, but the frequency at which the magnetic permeability is halved (hereinafter referred to as the limit frequency) is 0.3MH2. Yes, Fe-3i-
IOMI of A1 alloy powder magnetic core and Mo permalloy powder magnetic core
(Significantly inferior to Z or higher.

本発明者らは、種々検討の結果、アモルファス形成元素
としてP、および(C,B)を含むFe基アモルファス
合金にCrを含む合金(特開昭50−101215号)
が、それ自体強固な絶縁性皮膜を有し、圧粉成形時に絶
縁破壊しに<<、良好な周波数特性を有することを見い
出した。
As a result of various studies, the present inventors discovered an alloy containing Cr in a Fe-based amorphous alloy containing P and (C, B) as amorphous forming elements (Japanese Patent Application Laid-open No. 101215/1983).
However, it was found that the material itself has a strong insulating film, does not cause dielectric breakdown during powder compaction, and has good frequency characteristics.

すなわち、Fa、C,PおよびCまたはBの1種または
2種よりなり、原子百分率で表わした式、F elot
l−a−b−C@ Cra−P b(Cg B )c(
1≦a≦8,5≦b、15≦b十c≦30)で示される
組成を有する合金が強固な絶縁性皮膜を有し、圧粉成形
時に絶縁破壊しにくいことを見い出した。以下1組成限
定の理由を述べる。
That is, it is composed of one or two of Fa, C, P, and C or B, and has the formula expressed in atomic percentage, F elot
l-a-b-C@Cra-P b(Cg B )c(
It has been found that an alloy having a composition represented by the formulas 1≦a≦8, 5≦b, 15≦b and c≦30) has a strong insulating film and is difficult to cause dielectric breakdown during compaction. The reason for limiting the composition to one will be described below.

CrとPは共存することによって強固な絶縁性皮膜を生
成する効果を有する。この効果を発現させるための必要
最小限のCrとPの量は、Cr1%。
When Cr and P coexist, they have the effect of forming a strong insulating film. The minimum amount of Cr and P required to produce this effect is 1% Cr.

25%である。一方、Crの添加はFe−P−(C,B
)アモルファス合金の磁歪を低減し、透磁率を高める効
果をもつ、ただし、飽和磁束密度Bsは、添態量が多い
ほど低下する。8%以上添加すると素材粉末のBsが1
00OOGを下回るので好ましくない。
It is 25%. On the other hand, the addition of Cr is Fe-P-(C,B
) It has the effect of reducing the magnetostriction and increasing the magnetic permeability of the amorphous alloy. However, the saturation magnetic flux density Bs decreases as the additive amount increases. If 8% or more is added, the Bs of the material powder will be 1
Since it is less than 00OOG, it is not preferable.

Pおよび(C,B)はアモルファス形成に必要な元素で
あって合計15%以上30%以下であり、これより低い
か高くてもアモルファス形成能が困難となる。BはPと
の組み合わせ上、Cと同等以上にアモルファス化を促進
させるが、比較的高価な元素であるので添加量を少なく
するか、全く無添加であっても圧粉磁心としての特性を
引き出す上での支障はない。
P and (C, B) are elements necessary for amorphous formation, and their total content is 15% or more and 30% or less, and if the content is lower or higher than this, it becomes difficult to form an amorphous layer. B, in combination with P, promotes amorphization to the same or higher degree than C, but since it is a relatively expensive element, the amount added should be reduced, or even if no additive is added at all, the properties of the powder magnetic core can be brought out. There are no problems above.

このようなFa−Cr−P−(C,B)合金に添加元素
として、Ti、 Zr、 Hfe V、 Nb、 Ta
、 Mo。
Additive elements to such Fa-Cr-P-(C,B) alloy include Ti, Zr, Hfe, V, Nb, and Ta.
, Mo.

W、Mn、Go、Ni、Cu、SL、Ge、Bi、Be
W, Mn, Go, Ni, Cu, SL, Ge, Bi, Be
.

Mg、Y、Laのうち1種類以上を加えることも有効で
ある。このうちTiよりMgまでの元素は磁歪を低減し
、透磁率を高めるのに効果がある6また、Ti、Zr、
Hf、V、Nb、Ta、Mo、W、Ni。
It is also effective to add one or more of Mg, Y, and La. Among these elements, elements from Ti to Mg are effective in reducing magnetostriction and increasing magnetic permeability6.Also, Ti, Zr,
Hf, V, Nb, Ta, Mo, W, Ni.

Si、Ge、Bi、Y、Laは、アモルファス形成能を
高める。しかしながら、これらの元素は、添加量の増加
とともに磁束密度を下げるので、素材粉末のBsを10
0OOG以上とするには、添加量の上限があり、8以下
とする必要がある。
Si, Ge, Bi, Y, and La enhance the amorphous formation ability. However, these elements lower the magnetic flux density as the amount added increases, so if the Bs of the material powder is reduced to 10
In order to make it 0OOG or more, there is an upper limit to the amount added, and it needs to be 8 or less.

このような組成範囲のアモルファス合金粉末は、それ自
体が強固な絶縁性皮膜を有するために、そのまま成形し
ても周波数特性が高いが、少量の絶縁性物質を混合した
後、成形するかもしくは粉末表面に絶縁性皮膜を被覆す
ることによってさらに周波数特性が改良され、限界周波
数が高まる。絶縁物質は、成形後の熱処理が不可避なの
で熱処理温度に耐える耐熱性を持つことが望ましい。
Amorphous alloy powder in this composition range has a strong insulating film, so it has high frequency characteristics even if it is molded as it is, but it must be molded after mixing a small amount of insulating material or powder By coating the surface with an insulating film, the frequency characteristics are further improved and the limit frequency is increased. Since heat treatment is unavoidable after molding, the insulating material preferably has heat resistance that can withstand the heat treatment temperature.

熱処理は、アモルファス合金の結晶化温度以下で粉末製
造時および成形時に生じた応力を除去し。
Heat treatment is performed below the crystallization temperature of the amorphous alloy to remove stress generated during powder manufacturing and molding.

軟磁性を向上させるために施される。通常キュリー点以
上の無磁場処理がなされるが、磁場中熱処理を行なうと
さらに特性の向上が図られる場合がある。
Applied to improve soft magnetism. Normally, non-magnetic field treatment above the Curie point is performed, but properties may be further improved by heat treatment in a magnetic field.

なお1本発明アモルファス合金圧粉磁心を製造するにあ
たっては1以上の組成を有する合金粉末であって見掛密
度3.5 g /ad以下の不規則形状の粉末を用いる
のが良い、以下その理由を説明する。
1. In manufacturing the amorphous alloy powder magnetic core of the present invention, it is preferable to use an alloy powder having one or more compositions and an irregularly shaped powder with an apparent density of 3.5 g/ad or less.The reason is as follows. Explain.

アモルファス合金は、たとえばFe−P−C系で、  
はビッカース硬ざ700以上と高い硬さを有し、かつ塑
性変形しにくいのでガスアトマイズ粉末のような球状粉
末では成形が困難であり、またフレーク状では粉末粒子
相互の絡み合いが少なく、密度を高めるのが困難である
。成形性、圧縮性が最も良好な粒子形態は特公昭54−
76469号で開示された水アトマイズ法による不規則
形状の粉末である。
The amorphous alloy is, for example, Fe-P-C based,
has a high hardness of more than 700 on the Vickers hardness scale, and is difficult to deform plastically, making it difficult to mold with spherical powders such as gas atomized powders.In addition, in flake form, there is less entanglement of powder particles with each other, making it difficult to increase density. is difficult. The particle form with the best moldability and compressibility is
It is an irregularly shaped powder produced by the water atomization method disclosed in No. 76469.

本発明者の検討では不規則度が高くなるにつれて、成形
体の強度が高くなり、成形性は向上する。
According to studies conducted by the present inventors, as the degree of irregularity increases, the strength of the molded article increases and the moldability improves.

第1図にFe7.Cr、P14CGアモルファス合金の
平均粒度が約60μmでほぼ等しく見掛密度の異なる不
規則形状粉末に成形潤滑剤としてステアリン酸亜鉛を0
.5重量%添加して超硬合金製金型を用い、20ton
/ cxlの高圧力でプレス成形して長さ30mn+。
Fig. 1 shows Fe7. Zinc stearate was added as a molding lubricant to irregularly shaped powder of Cr, P14CG amorphous alloy with an average particle size of approximately 60 μm and approximately equal apparent densities.
.. Add 5% by weight and use a cemented carbide mold to produce 20 tons.
/ CXL high pressure press molding to length 30mm+.

幅5Im、高さ5mの成形体を作成し、その抗折力を測
定した結果を示す。見掛密度が3.5g/ci以下であ
れば、成形体として通常必要とされる抗折力が0 、5
 kg f / mm ”以上となることが明らかであ
る。したがって、見掛密度は3.5 g /(!!?以
下が望ましい。なお、見掛密度は平均粒度によっても変
動するが、適正な水アトマイズ法によってほぼ一50m
eshでアモルファス化が可能であり、上記の3.5 
g /adもこの範囲での値で考える。見掛密度が3.
5 g /a1以下のアモルファス合金粉末は、上記の
ように水アトマイズ法により製造するのが最も好ましい
が、水アトマイズままで見掛密度が低く、したがって流
動性が低い場合は、振動ミル、アトリッター等による機
械的粉砕によって不規則を低減し、見掛密度を増加させ
ることも可能である。
A molded body having a width of 5 Im and a height of 5 m was prepared, and the transverse rupture strength thereof was measured.The results are shown below. If the apparent density is 3.5 g/ci or less, the transverse rupture strength normally required as a molded product is 0.5 g/ci.
It is clear that the apparent density is 3.5 g/(!!?) or more.Although the apparent density varies depending on the average particle size, Approximately 150m by atomization method
Amorphousization is possible with esh, and 3.5 above
g/ad is also considered as a value within this range. The apparent density is 3.
It is most preferable to produce amorphous alloy powder of 5 g/a1 or less by the water atomization method as described above, but if it is water atomized and has a low apparent density and therefore low fluidity, it may be produced using a vibrating mill or an attritor. It is also possible to reduce irregularities and increase the apparent density by mechanical comminution, such as by mechanical grinding.

以上のように特定された組成(見掛密度)を有するアモ
ルファス合金粉末は、圧縮性、成形性に優れているとと
もに高い透磁率を有し、かつ圧粉の際に絶縁破壊しに<
<、これを用いて製造された圧粉磁心は優れた性質を有
する。また、原料として高価なりの添加を抑制するビと
が可能であること、最も量産的な粉末製造手法である水
アトマイズ法の利用にふされしい粉末であることから極
めて安価に製造することができる。
The amorphous alloy powder having the composition (apparent density) specified above has excellent compressibility and formability, high magnetic permeability, and is resistant to dielectric breakdown during compaction.
<The powder magnetic core manufactured using this has excellent properties. In addition, it is possible to suppress the addition of expensive raw materials, and the powder is suitable for use in the water atomization method, which is the most mass-produced powder manufacturing method, so it can be manufactured at an extremely low cost. .

なお、本発明に用いられる組成のアモルファス合金粉末
は、水アトマイズ後の乾燥工程中の酸化が少なく、取扱
い性に優れており、この面からも生産的なものである。
The amorphous alloy powder having the composition used in the present invention is less likely to be oxidized during the drying process after water atomization, and is easy to handle, making it productive from this point of view as well.

〔実施例〕〔Example〕

以下、本発明の具体的内容を実施例により詳述する。 Hereinafter, the specific content of the present invention will be explained in detail with reference to Examples.

実施例1 水アトマイズ法により、各種のアモルファス合金粉末を
製造し、−50meshで篩下した。見掛密度は、いず
れも1.5〜3.0 g /dであった。粉末に成形潤
滑剤としてステアリン酸亜鉛を0.5重量%添加し、外
径20mφ、内径10nmφ、高さ5mのリング状にプ
レス成形した。成形圧力は20ton/ alで行なっ
た。
Example 1 Various amorphous alloy powders were produced by a water atomization method and sieved through -50 mesh. The apparent density was 1.5 to 3.0 g/d in all cases. 0.5% by weight of zinc stearate was added to the powder as a molding lubricant, and the powder was press-molded into a ring shape with an outer diameter of 20 mφ, an inner diameter of 10 nmφ, and a height of 5 m. The molding pressure was 20 tons/al.

成形密度は真密度の約80%であった。The compacted density was approximately 80% of the true density.

この成形体をキュリー点以上結晶化温度以下の各組成の
最適条件で加熱後水中へ急冷し測定に供した。結果を第
1表に示す。
This molded body was heated under the optimum conditions for each composition above the Curie point and below the crystallization temperature, and then rapidly cooled in water and subjected to measurements. The results are shown in Table 1.

本発明合金は、l0KH2における実効透磁率μeが概
略200以上と高く、しかも限界周波数が高くなってお
り、周波数特性が優れているばかりでなく、従来のセン
ダスト圧粉磁心やMOパーマロイ圧粉磁心を上回るBs
を有している。比較例として示した類似組成の粉末より
なる圧粉磁心は、μeが高いと限界周波数が低く、一部
の合金は結晶質が混在しているためにμeが極めて低く
、実用できないレベルである。
The alloy of the present invention has a high effective magnetic permeability μe at 10KH2 of approximately 200 or more, and has a high limit frequency, and not only has excellent frequency characteristics, but also has superior characteristics to conventional sendust powder magnetic cores and MO permalloy powder magnetic cores. Bs exceeding
have. A powder magnetic core made of powder with a similar composition shown as a comparative example has a low limit frequency when μe is high, and some alloys have extremely low μe due to the presence of crystalline substances, which is at a level that is not practical.

実施例2 実施例1のNo、1合金、N008合金を水アトマイズ
法により製造し、−50meshで篩下した。見掛密度
は1.5〜1.9 g /adであった。この粉末にケ
イ酸ソーダを0.6重量%添加し、粉末表面を被覆した
後、成形潤滑剤としてステアリン酸亜鉛0.5重量%を
添加し、外径20naφ、内径101mφ、高さ5nw
+のリング状にプレス成形した。成形圧力は、20to
n/ciで行なった。成形密度は真密度の約77〜79
%であった。この成形体を400℃で120分熱処理し
た結果、No、1合金の圧粉磁心のl0KH2でのμe
は200、限界周波数は28MH2であり、N o 、
 8合金の圧粉磁心の1OKH2でのμeは240、限
界周波数は20MH2となり、実施例1の場合より周波
数特性が向上した。
Example 2 The No. 1 alloy and the N008 alloy of Example 1 were produced by a water atomization method and sieved through -50 mesh. The apparent density was 1.5-1.9 g/ad. After adding 0.6% by weight of sodium silicate to this powder and coating the powder surface, 0.5% by weight of zinc stearate was added as a molding lubricant, outer diameter 20 naφ, inner diameter 101 mφ, height 5nw.
Press molded into a + ring shape. Molding pressure is 20to
Performed at n/ci. The molded density is about 77-79 of the true density.
%Met. As a result of heat-treating this compact at 400°C for 120 minutes, the μe of powder magnetic core of No. 1 alloy at l0KH2
is 200, the limit frequency is 28MH2, and N o ,
The powder magnetic core of 8 alloy had a μe of 240 and a limit frequency of 20 MH2 at 1OKH2, and the frequency characteristics were improved compared to the case of Example 1.

実施例3 実施例1のN001合金を■水アトマイズ法、■ガスア
トマイズ直後水冷する方法(S、A、Miller。
Example 3 The N001 alloy of Example 1 was prepared by (1) water atomization method, (2) water cooling method immediately after gas atomization (S, A, Miller).

R,J、Murphy:5cripta Metall
urgica、Vol、13.P、673゜1979)
、■単ロール法でリボンを作製後粉砕する方法(特開昭
58−197205号)の3通りの方法で製造した。い
ずれも−200meshに篩下した。見掛密度および粉
末形状は、それぞれ■1.9 g /ad−不規則形状
、■5.0 g /cd−球状、■2.0 g /cx
l−フレーク状であった。いずれの粉末もステアリン酸
亜鉛0.5重量%を添加し、実施例1と同様にリング形
状にプレス成形を試みたが、■の球状粉末は成形体が取
扱い不能なほど強度がなく評価不能であった。
R, J, Murphy: 5cripta Metal
Urgica, Vol. 13. P, 673°1979)
It was manufactured using three methods: (1) a method in which a ribbon is prepared by a single roll method and then crushed (Japanese Patent Application Laid-Open No. 197205/1983). All were sieved through -200 mesh. The apparent density and powder shape are: ■1.9 g/ad - irregular shape, ■5.0 g/cd - spherical, and ■2.0 g/cx.
It was in the form of l-flake. 0.5% by weight of zinc stearate was added to each powder, and an attempt was made to press-form it into a ring shape in the same manner as in Example 1, but the spherical powder of (■) had so little strength that the molded product could not be handled and could not be evaluated. there were.

■、■の粉末の成形密度はそれぞれ78%、74%であ
った。400℃で120分熱処理した結果、■の粉末の
10KH2でのpeは170.限界周波数は33MH2
であり、■の粉末のl0KH2でのpeは100で、限
界周波数は42M1lZであった。このように見掛密度
が同様のレベルであってもフレーク状粉末の成形体は密
度が低いためにpeが低く、高いpeを得るには不規則
形状粉末が適していることが明白である。
The compacted densities of the powders (1) and (2) were 78% and 74%, respectively. As a result of heat treatment at 400°C for 120 minutes, the pe of powder (①) at 10KH2 was 170. The limit frequency is 33MH2
The pe of the powder (■) at 10KH2 was 100, and the limit frequency was 42M11Z. As described above, it is clear that even if the apparent density is at a similar level, flaky powder compacts have a low pe due to their low density, and irregularly shaped powders are suitable for obtaining a high pe.

〔発明の効果〕〔Effect of the invention〕

以上、述べたごとく本発明による、アモルファス合金圧
粉磁心は、成形性、圧縮性に優れ、圧粉の際に絶縁破壊
しにくく、かつ安価な製造法を採用し得る粉末を原料と
して得られ、高い透磁率と優れた周波数特性を有し、電
子機器内のノイズフィルター、チョークコイル等の磁心
に最適のものであり、その工業的価値が大である。
As described above, the amorphous alloy powder magnetic core according to the present invention is obtained from a powder that has excellent formability and compressibility, is resistant to dielectric breakdown during compaction, and can be produced using an inexpensive manufacturing method. It has high magnetic permeability and excellent frequency characteristics, making it ideal for magnetic cores in noise filters, choke coils, etc. in electronic devices, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不規則形状のアモルファス合金粉末の見掛密度
とそれを用いて製造した圧粉成形体の抗折力との関係を
示す相関図である。
FIG. 1 is a correlation diagram showing the relationship between the apparent density of an irregularly shaped amorphous alloy powder and the transverse rupture strength of a compact produced using the same.

Claims (1)

【特許請求の範囲】 1 Fe、Cr、PおよびCまたはBの1種または2種
よりなり、原子百分率で表わした式、 Fe_1_0_0_−_a_−_b_−_c・Cra・
Pb(C、B)c(1≦a≦8、5≦b、15≦b+c
≦30)で示される組成を有することを特徴とするアモ
ルファス合金圧粉磁心。 2 原料粉末が見掛密度3.5g/cm^3以下の不規
則形状である特許請求の範囲第1項記載のアモルファス
合金圧粉磁心。
[Scope of Claims] 1 Consisting of one or two of Fe, Cr, P, and C or B, represented by the formula Fe_1_0_0_-_a_-_b_-_c・Cra・
Pb(C,B)c(1≦a≦8, 5≦b, 15≦b+c
≦30) An amorphous alloy powder magnetic core having a composition represented by the formula: ≦30). 2. The amorphous alloy powder magnetic core according to claim 1, wherein the raw material powder has an irregular shape with an apparent density of 3.5 g/cm^3 or less.
JP61264268A 1986-11-06 1986-11-06 Amorphous alloy dust core Expired - Lifetime JPH0793204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61264268A JPH0793204B2 (en) 1986-11-06 1986-11-06 Amorphous alloy dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61264268A JPH0793204B2 (en) 1986-11-06 1986-11-06 Amorphous alloy dust core

Publications (2)

Publication Number Publication Date
JPS63117406A true JPS63117406A (en) 1988-05-21
JPH0793204B2 JPH0793204B2 (en) 1995-10-09

Family

ID=17400808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61264268A Expired - Lifetime JPH0793204B2 (en) 1986-11-06 1986-11-06 Amorphous alloy dust core

Country Status (1)

Country Link
JP (1) JPH0793204B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333660A (en) * 1995-06-02 1996-12-17 Res Dev Corp Of Japan Iron-base metallic glass alloy
JP2002226956A (en) * 2000-11-29 2002-08-14 Alps Electric Co Ltd Amorphous soft magnetic alloy
JP2004363235A (en) * 2003-06-03 2004-12-24 Alps Electric Co Ltd Dust core
WO2006054822A1 (en) * 2004-11-22 2006-05-26 Kyungpook National University Industry-Academic Cooperation Foundation Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
JP2006237368A (en) * 2005-02-25 2006-09-07 Hitachi Metals Ltd Powder magnetic core and its manufacturing method
WO2010084900A1 (en) 2009-01-23 2010-07-29 アルプス電気株式会社 Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy
WO2011016275A1 (en) 2009-08-07 2011-02-10 アルプス・グリーンデバイス株式会社 Fe-based amorphous alloy, dust core formed using the fe-based amorphous alloy, and dust core with embedded coil
JP2011235344A (en) * 2010-05-13 2011-11-24 Porite Corp Method for manufacturing glassy metal product, and dissimilar material composite
WO2012098817A1 (en) 2011-01-17 2012-07-26 アルプス・グリーンデバイス株式会社 Fe-BASED AMORPHOUS ALLOY POWDER, DUST CORE USING THE Fe-BASED AMORPHOUS ALLOY POWDER, AND COIL-EMBEDDED DUST CORE
WO2013015361A1 (en) * 2011-07-28 2013-01-31 アルプス・グリーンデバイス株式会社 Fe-BASED AMORPHOUS ALLOY, AND DUST CORE OBTAINED USING Fe-BASED AMORPHOUS ALLOY POWDER
WO2018143427A1 (en) * 2017-02-03 2018-08-09 山陽特殊製鋼株式会社 Magnetic flat powder and magnetic sheet containing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739103A (en) * 1980-05-29 1982-03-04 Allied Chem Glassy alloy magnetic product and manufacture
JPS63104407A (en) * 1986-10-22 1988-05-09 Nippon Kinzoku Kk Dust core of amorphous alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739103A (en) * 1980-05-29 1982-03-04 Allied Chem Glassy alloy magnetic product and manufacture
JPS63104407A (en) * 1986-10-22 1988-05-09 Nippon Kinzoku Kk Dust core of amorphous alloy

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333660A (en) * 1995-06-02 1996-12-17 Res Dev Corp Of Japan Iron-base metallic glass alloy
JP2002226956A (en) * 2000-11-29 2002-08-14 Alps Electric Co Ltd Amorphous soft magnetic alloy
JP2004363235A (en) * 2003-06-03 2004-12-24 Alps Electric Co Ltd Dust core
WO2006054822A1 (en) * 2004-11-22 2006-05-26 Kyungpook National University Industry-Academic Cooperation Foundation Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
US7815753B2 (en) 2004-11-22 2010-10-19 Kyungpook National University Industry-Academic Cooperation Foundation Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
JP2006237368A (en) * 2005-02-25 2006-09-07 Hitachi Metals Ltd Powder magnetic core and its manufacturing method
US8282745B2 (en) 2009-01-23 2012-10-09 Alps Green Devices Co., Ltd. Fe-based soft magnetic alloy and dust core using fe-based soft magnetic alloy
WO2010084900A1 (en) 2009-01-23 2010-07-29 アルプス電気株式会社 Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy
US8685179B2 (en) 2009-08-07 2014-04-01 Alps Green Devices Co., Ltd. Fe-based amorphous alloy, powder core using the same, and coil encapsulated powder core
WO2011016275A1 (en) 2009-08-07 2011-02-10 アルプス・グリーンデバイス株式会社 Fe-based amorphous alloy, dust core formed using the fe-based amorphous alloy, and dust core with embedded coil
US9422614B2 (en) 2009-08-07 2016-08-23 Alps Green Devices Co., Ltd. Fe-based amorphous alloy, powder core using the same, and coil encapsulated powder core
JP2011235344A (en) * 2010-05-13 2011-11-24 Porite Corp Method for manufacturing glassy metal product, and dissimilar material composite
WO2012098817A1 (en) 2011-01-17 2012-07-26 アルプス・グリーンデバイス株式会社 Fe-BASED AMORPHOUS ALLOY POWDER, DUST CORE USING THE Fe-BASED AMORPHOUS ALLOY POWDER, AND COIL-EMBEDDED DUST CORE
US8854173B2 (en) 2011-01-17 2014-10-07 Alps Green Devices Co., Ltd. Fe-based amorphous alloy powder, dust core using the same, and coil-embedded dust core
WO2013015361A1 (en) * 2011-07-28 2013-01-31 アルプス・グリーンデバイス株式会社 Fe-BASED AMORPHOUS ALLOY, AND DUST CORE OBTAINED USING Fe-BASED AMORPHOUS ALLOY POWDER
JP5505563B2 (en) * 2011-07-28 2014-05-28 アルプス・グリーンデバイス株式会社 Fe-based amorphous alloy and powder magnetic core using Fe-based amorphous alloy powder
US9558871B2 (en) 2011-07-28 2017-01-31 Alps Electric Co., Ltd. Fe-based amorphous alloy and dust core made using Fe-based amorphous alloy powder
WO2018143427A1 (en) * 2017-02-03 2018-08-09 山陽特殊製鋼株式会社 Magnetic flat powder and magnetic sheet containing same

Also Published As

Publication number Publication date
JPH0793204B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
KR100545849B1 (en) Manufacturing method of iron-based amorphous metal powder and manufacturing method of soft magnetic core using same
KR100531253B1 (en) Method for Making Nano Scale Grain Metal Powders Having Excellent High Frequency Characteristics and Method for Making Soft Magnetic Core for High Frequency Using the Same
CN101118797B (en) Composite powder, magnetic powder core for magnetic powder and preparation method thereof
US8048191B2 (en) Compound magnetic powder and magnetic powder cores, and methods for making them thereof
JP5501970B2 (en) Powder magnetic core and manufacturing method thereof
KR910002350B1 (en) Fe-base soft magnetic alloy powder and magnetic core thereof and method of producing same
KR101470513B1 (en) Soft Magnetic Cores Having Excellent DC Biased Characteristics in High Current and Core Loss Characteristics, and Manufacturing Methods thereof
JP2713363B2 (en) Fe-based soft magnetic alloy compact and manufacturing method thereof
JPH03219009A (en) Production of fe-base soft-magnetic alloy
JP2007019134A (en) Method of manufacturing composite magnetic material
JPH11238613A (en) Compound magnetic material and its manufacture
JPS63117406A (en) Amorphous alloy dust core
JPH02290002A (en) Fe-si based alloy dust core and its manufacture
JP2000232014A (en) Manufacture of composite magnetic material
JP6168382B2 (en) Manufacturing method of dust core
JPS63115309A (en) Magnetic alloy powder
JPS62232103A (en) Fe base amorphous dust core and manufacture thereof
JPH0534814B2 (en)
JPH06236808A (en) Composite magnetic material and its manufacture
JPS62226603A (en) Amophous dust core and manufacture thereof
EP0342922A2 (en) Fe-based soft magnetic alloy and dust core made therefrom
JPS59179729A (en) Magnetic core of amorphous alloy powder compact
JPH06204021A (en) Composite magnetic material and its manufacture
KR101387961B1 (en) Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof
JP7387670B2 (en) Soft magnetic powder, dust core containing the same, and method for producing soft magnetic powder