KR101387961B1 - Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof - Google Patents

Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof Download PDF

Info

Publication number
KR101387961B1
KR101387961B1 KR1020110141141A KR20110141141A KR101387961B1 KR 101387961 B1 KR101387961 B1 KR 101387961B1 KR 1020110141141 A KR1020110141141 A KR 1020110141141A KR 20110141141 A KR20110141141 A KR 20110141141A KR 101387961 B1 KR101387961 B1 KR 101387961B1
Authority
KR
South Korea
Prior art keywords
powder
amorphous alloy
soft magnetic
alloy powder
core
Prior art date
Application number
KR1020110141141A
Other languages
Korean (ko)
Other versions
KR20130073343A (en
Inventor
박원욱
손근용
김규성
김미래
Original Assignee
인제대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인제대학교 산학협력단 filed Critical 인제대학교 산학협력단
Priority to KR1020110141141A priority Critical patent/KR101387961B1/en
Publication of KR20130073343A publication Critical patent/KR20130073343A/en
Application granted granted Critical
Publication of KR101387961B1 publication Critical patent/KR101387961B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Abstract

본 발명은 철(Fe)계 합금에 칼슘(Ca)이 첨가된 조성을 갖는 나노결정립 연자성 합금 분말 코어 및 그 제조방법에 관한 것으로, 본 발명에 의한 나노결정립 연자성 합금 분말 코어는 철(Fe)계 합금에 칼슘(Ca)을 첨가하여 비정질 합금 리본을 제조하는 단계, 비정질 합금 리본을 분쇄하여 비정질 합금 분말을 형성하는 단계, 상기 형성된 비정질 합금 분말을 분급하는 단계, 상기 분급된 분말을 바인더와 혼합하는 단계, 상기 바인더와 혼합된 분말을 가압하여 분말 코어를 성형하는 단계, 상기 성형된 분말 코어의 나노 결정화를 위하여 열처리하는 단계를 포함하는 방법에 의해 제조된다. The present invention relates to a nanocrystalline soft magnetic alloy powder core having a composition in which calcium (Ca) is added to an iron (Fe) based alloy and a method for producing the same. The nanocrystalline soft magnetic alloy powder core according to the present invention comprises iron (Fe) A method of manufacturing an amorphous alloy ribbon, comprising the steps of: adding calcium (Ca) to a base alloy to produce an amorphous alloy ribbon; grinding the amorphous alloy ribbon to form an amorphous alloy powder; classifying the amorphous alloy powder formed; Forming a powder core by pressurizing the powder mixed with the binder, and heat treating the formed powder core for nanocrystallization.

Description

철계 나노결정립 연자성 합금 분말 코어 및 그 제조 방법{IRON BASED NANOCRYSTALLINE SOFT MAGNETIC ALLOY POWDER CORES AND PREPARATION THEREOF}FIELD OF THE INVENTION [0001] The present invention relates to an iron-based nano-crystal soft magnetic alloy powder core and an iron-

본 발명은 양호한 자성특성, 특히 우수한 코어 손실 특성을 가지는 Fe계 연자성 합금 분말 코어 및 그 제조 방법에 관한 것이다.
The present invention relates to an Fe-based soft magnetic alloy powder core having good magnetic properties, particularly excellent core loss properties, and a method for producing the same.

최근 산업의 고도화로 인해 거의 모든 분야의 제품이 고정밀화, 고성능화, 극소형화의 방향으로 급속한 진보가 이루어지고 있다. 특히 컴퓨터를 비롯한 전기, 전자기기는 고효율 및 소형, 경량화가 경쟁력의 요체가 되고 있어, 이들 제품에 맞는 연자성 재료를 개발하기 위한 연구가 전 세계적으로 활발하게 추진되어 일부는 이미 실용화되고 있다.Recently, due to the advancement of the industry, products in almost all fields are making rapid progress in the direction of high precision, high performance, and miniaturization. Particularly, electric and electronic devices including computers are becoming a necessity of high efficiency, small size, and light weight, and researches for developing soft magnetic materials suitable for these products have been actively promoted around the world, and some of them have already been put to practical use.

종래의 분말 야금법을 이용한 분말 코어용 재료로는 Ni-Fe계 퍼멀로이 합금, Fe-Si-Al계 센더스트(Sendust) 합금 등이 있다. 최근에는 연자성 신소재의 응용기술 개발 측면에서 Fe계 비정질 합금과 나노 결정립 합금 또는 분말을 성형하여 코어로 만드는 분말 코어용 재료로서 이용하고자 하는 연구가 추진되어 왔다.Examples of the material for the powder cores using the conventional powder metallurgy method include Ni-Fe permalloy alloys and Fe-Si-Al Sendust alloys. In recent years, studies have been made to utilize Fe-based amorphous alloys and nanocrystalline alloys or powders as materials for powder cores to form cores in terms of application technology development of soft magnetic materials.

일반적으로 전기 강판은 포화 자속 밀도가 2.0T로 높지만, 1kHz 이상 고주파 영역에서는 포화 자속 밀도가 급격히 감소하기 시작하고 그 특성이 매우 나빠지게 된다. 최근 들어, 고주파 영역에서의 낮은 특성의 전기 강판을 대체 할 수 있는 주파수 1kHz이상 1MHz 이하 고주파 영역에서 투자율, 포화자속밀도, 코어 손실 특성이 우수한 분말 성형 복합체에 대한 연구가 활발히 진행되고 있다. Generally, the electric steel sheet has a saturation magnetic flux density as high as 2.0 T, but the saturation magnetic flux density starts to decrease sharply at a high frequency range of 1 kHz or more and its characteristics become very poor. In recent years, studies on powder molding composites having excellent magnetic permeability, saturation magnetic flux density and core loss characteristics in a high frequency region of 1 kHz or more and 1 MHz or less, which can replace electric steel sheets having low characteristics in a high frequency region, have been actively conducted.

분말 성형 복합체는 자기 및 열적 등방성을 가지고 저주파에서부터 고주파수에 이르기까지 매우 낮은 와전류 손실 및 상대적으로 낮은 손실, 높은 자기 투자율, 높은 포화자화 값을 가지며, 높은 저항성을 나타내고, 낮은 보자력 및 높은 큐리 온도의 고유 특성을 가지고 있다. The powder-formed composite has magnetic and thermal isotropy, has very low eddy current loss from low frequency to high frequency, relatively low loss, high magnetic permeability, high saturation magnetization value, high resistance, low inherent coercivity and high Curie temperature .

또한 분말 성형 복합체는 기존 적층 강판에 비해 많은 장점을 가지고 있다. 분말 성형 복합체는 기존 적층 전기 강판 코어에 비해 3차원적으로 균일한 연자성 특성과 유연한 설계 및 조립 특성, 매우 낮은 와전류 손실, 중량 및 가격 저감의 장점이 있다. 나노 결정립 합금 리본 코어의 경우에는 열처리와 리본 권취시 스트립의 단락, 고가의 생산가격이라는 단점과 함께 비정질 합금에 비해 사용범위가 제한적이며, 자화특성의 재현성이 낮아 새로운 수요의 창출에 있어 한계가 있다. 이에 비해, 나노결정 분말은 나노결정 합금의 단점을 보완할 수 있다. In addition, powdered composites have many advantages over existing laminated steel sheets. Powder forming composites have the advantages of three-dimensionally uniform soft magnetic properties, flexible design and assembly characteristics, very low eddy current loss, weight and cost reduction compared to existing laminated electrical steel sheet cores. In the case of nanocrystalline alloy ribbon cores, there are disadvantages of heat treatment and strip shorting at the time of ribbon winding, high production cost, limited range of use compared to amorphous alloys, and low reproducibility of magnetization characteristics, . In contrast, nanocrystalline powder can compensate for the disadvantages of nanocrystalline alloys.

나노결정질 연자성 합금은 비정질 합금에 비해 높은 포화자화 특성과 높은 투자율을 가지며, 낮은 자기변형 특성 및 낮은 코어 손실과 아울러 고주파 특성이 우수하여 전력변환, 에너지 저장소재 및 변압기 등에 광범위한 사용이 기대된다.Nanocrystalline soft magnetic alloys have higher saturation magnetization and higher magnetic permeability than amorphous alloys and have low magnetic deformation and low core loss as well as high frequency characteristics and are expected to be widely used for power conversion, energy storage materials and transformers.

이와 관련하여, 대한민국 특허등록 제 531253 호는 급냉응고법(RSP 법)으로 제조된 조성 Fe73.5Cu1Nb3Si13.5B9의 비정질 리본을 질소 분위기 하에서 540℃, 40분 열처리하여 10~15nm 범위의 나노 결정립 리본을 제조한 후 분쇄기를 이용하여 분쇄, 분급하여 얻은 나노 결정립 분말에 저융점 유리 3 중량%를 혼합한 다음 환형의 코아를 성형하는 방법을 개시하고 있다. Regarding this, Korean Patent Registration No. 531253 discloses a method for producing an amorphous ribbon having a composition of Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 prepared by the rapid coagulation method (RSP method) by heat treating the amorphous ribbon at 540 ° C. for 40 minutes under a nitrogen atmosphere, Discloses a method of forming an annular core by mixing 3% by weight of a low melting point glass into a nanocrystalline powder obtained by pulverizing and classifying the nanocrystalline ribbon with a pulverizer.

또한 본 출원인의 대한민국 특허등록 제 721501 호에는 급냉응고법(멜트스피닝법)에 의해 제조한 조성 Fe73-Si16-B7-Nb3-Cu1(at%)의 비정질 합금 리본을 100~450℃에서, 바람직하게는 300~450℃에서, 1시간 동안 예비 열처리한 후 파쇄시켜 얻은 분말에 폴리이미드계 수지의 바인더를 혼합하여 코어 형상으로 제조하는 방법을 개시하고 있다. In addition, Korean Patent Registration No. 721501 of the present applicant discloses an amorphous alloy ribbon of a composition Fe 73 -Si 16 -B 7 -Nb 3 -Cu 1 (at%) prepared by a rapid coagulation method (melt spinning method) , Preferably 300-450 占 폚, for 1 hour, and then pulverized, and then a binder of a polyimide resin is mixed to prepare a core.

한편, 대한민국 특허출원공개 제 2011-0071021 호는 낮은 코어 손실와 높은 직류 중첩 특성을 얻을 수 있는 Fe계 연자성 합금 및 이를 이용한 분말 코어에 관한 것으로, Fe 와 원소 R 을 갖고, 원소 R 은, P, C, B 및 Si 중 적어도 어느 1 종으로 이루어지고, α-Fe 결정상의 석출 온도와 Fe 화합물의 석출 온도 사이에 20 ℃ 이상의 온도차가 있고, 아모르퍼스상과 α-Fe 결정상의 혼상 조직으로 형성되고, 상기 α-Fe 결정상의 결정자의 직경이 50㎚ 이하이며, 또한, 상기 α-Fe 결정상의 체적 분율은 전체의 40 % 이하인 것을 특징으로 하는 Fe계 연자성 합금을 제시하고 있다. Korean Patent Application Laid-Open No. 2011-0071021 discloses a Fe-based soft magnetic alloy capable of obtaining low core loss and high direct current superimposition characteristics, and a powder core using the same, wherein Fe has an element R and the element R has P, C, B and Si and has a temperature difference of 20 占 폚 or more between the precipitation temperature of the? -Fe crystal phase and the precipitation temperature of the Fe compound, and is formed into a mixed phase structure of amorphous phase and? -Fe crystal phase , The crystallite diameter of the α-Fe crystal is 50 nm or less, and the volume fraction of the α-Fe crystal phase is 40% or less of the total.

이와 같이, 연자성 합금 분말에 대한 연구가 활발히 진행되고 있으나 고주파용 분말 코어의 보다 양호한 자성특성, 특히 더욱 우수한 코어 손실 특성을 가지는 연자성 합금에 대한 요구는 계속되고 있다.
Although studies on soft magnetic alloy powder have been actively conducted, there is a continuing need for a soft magnetic alloy having a better magnetic property, particularly a more excellent core loss property, of a high-frequency powder core.

대한민국 특허등록 제 531253 호Korean Patent No. 531253 대한민국 특허등록 제 721501 호Korea Patent No. 721501 대한민국 특허출원공개 제 2011-0071021 호Korean Patent Application Publication No. 2011-0071021

본 발명은 상기와 같은 점들을 감안하여 창안된 것으로서, 분말 성형 복합체의 코어 손실을 줄일 수 있는 안정한 나노결정 연자성 재료 및 그 제조 방법을 제공하고자 한다.
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a stable nanocrystalline soft magnetic material and a method of manufacturing the same, which can reduce the core loss of the powder molding composite.

본 발명은 상기 과제를 달성하기 위하여, 철(Fe)계 합금에 칼슘(Ca)이 첨가된 조성을 갖는 나노결정립 연자성 합금 분말 코어를 제공한다. In order to achieve the above object, the present invention provides a nanocrystalline soft magnetic alloy powder core having a composition in which calcium (Ca) is added to an iron (Fe) based alloy.

또한 본 발명은 철(Fe)계 합금에 칼슘(Ca)을 첨가하여 비정질 합금 리본을 제조하는 단계, 비정질 합금 리본을 분쇄하여 비정질 합금 분말을 형성하는 단계, 상기 형성된 비정질 합금 분말을 분급하는 단계, 상기 분급된 분말을 바인더와 혼합하는 단계, 상기 바인더와 혼합된 분말을 가압하여 분말 코어를 성형하는 단계, 상기 성형된 분말 코어의 나노 결정화를 위하여 열처리하는 단계를 포함하는 나노결정립 연자성 합금 분말 코어의 제조방법을 제공한다.
The present invention also relates to a method of manufacturing an amorphous alloy, comprising the steps of: preparing an amorphous alloy ribbon by adding calcium (Ca) to an iron (Fe) alloy; milling an amorphous alloy ribbon to form an amorphous alloy powder; Mixing the classified powder with a binder, molding the powdered core by pressurizing the powder mixed with the binder, and heat treating the formed powdered core for nanocrystallization of the powdered core, Of the present invention.

본 발명의 방법에 의해 제조된 나노 결정립 연자성 합금 분말은, 최적의 나노크기의 결정조직으로 제어함으로써 코어 손실이 우수한 분말 복합체를 성형할 수 있다. 또한, 나노결정립 연자성 합금 분말코어는 우수한 자화특성을 가질 뿐만 아니라, 낮은 고주파 코어 손실을 가지고 있으며 부품의 소형화가 가능하다.  The nanocrystalline soft magnetic alloy powder produced by the method of the present invention can be molded into an optimal nano-sized crystal structure to form a powder composite having excellent core loss. In addition, the nanocrystalline soft magnetic alloy powder cores not only have excellent magnetization properties, but also have a low high frequency core loss and miniaturization of parts.

본 발명에 따르면, Ca을 첨가한 비정질 합금 리본은 Ca의 영향으로 합금 리본의 취성이 증가하여 파쇄공정에서 공정 시간을 단축시킬 수 있으며, 이에 따라 생산단가를 낮출 수 있다. 또한, 성형 밀도가 높으며, 투자율이 고주파수 대역에서도 변화가 없고, 분말 입자간 절연성이 우수하여 주파수 대역에서의 코어 손실이 낮아, 합금 분말 복합체를 고주파수 대역의 전기 및 전자 디바이스에 대규모로 활용할 수 있다.
According to the present invention, the amorphous alloy ribbon to which Ca is added increases the brittleness of the alloy ribbon due to the effect of Ca, thereby shortening the processing time in the crushing process, thereby lowering the production cost. In addition, since the molding density is high, the permeability does not change even in the high-frequency band, and the core-loss in the frequency band is low due to the excellent inter-powder insulating property, the alloy powder composite can be utilized on a large scale in electric and electronic devices in a high frequency band.

도 1은 본 발명의 실시예에 따른 나노결정립 연자성 합금 분말 복합체의 화학조성과 열처리 온도에 따른 코어 손실 값(Pcm)이다(코어 손실 측정조건 50kHz, 0.1 Tesla).
도 2는 본 발명의 실시예에 따른 나노결정립 연자성 합금 분말 복합체의 화학조성과 열처리 온도에 따른 코어 투자율(μa)이다(투자율 측정조건 10kHz, 0.1 Tesla).
1 is a core loss value (Pcm) (core loss measurement condition: 50 kHz, 0.1 Tesla) according to a chemical composition of a nanocrystalline soft magnetic alloy powder composite according to an embodiment of the present invention and a heat treatment temperature.
FIG. 2 is a graph showing the core permeability (μ a ) according to the chemical composition and the heat treatment temperature of the nanocrystalline soft magnetic alloy powder composite according to the embodiment of the present invention (permeability measurement condition: 10 kHz, 0.1 Tesla).

이하, 본 발명에 따른 신규한 나노결정립 연자성 합금 분말 코어 및 그 제조방법에 대하여 상술한다. Hereinafter, a novel nanocrystalline soft magnetic alloy powder core according to the present invention and its manufacturing method will be described in detail.

본 발명은 철(Fe)계 합금에 칼슘(Ca)이 첨가된 조성을 갖는 나노결정립 연자성 합금 분말 코어 및 그 제조방법을 제공한다. The present invention provides a nanocrystalline soft magnetic alloy powder core having a composition in which calcium (Ca) is added to an iron (Fe) based alloy and a method of manufacturing the same.

본 발명에 따른 연자성 합금 분말 코어에 사용되는 합금은 Fe-Si-B-Nb-Cu(at%)에 Ca을 0.01~2 at% 첨가한 것이 바람직하다. 보다 구체적으로는 규소(Si) 10~15 at%, 붕소(B) 5~15 at%, 니오븀(Nb) 1~7 at%, 구리(Cu) 0.5~3 at%, 칼슘(Ca) 0.01~2 at% 및 철(Fe)을 나머지 조성(at%)으로 하는 것이 더욱 바람직하다. 칼슘(Ca)의 함량이 0.01~0.5 at%인 것이 보다 바람직하다. The alloy used for the soft magnetic alloy powder core according to the present invention preferably contains Ca at 0.01 to 2 at% in Fe-Si-B-Nb-Cu (at%). More specifically, it includes 10 to 15 atomic percent of silicon (Si), 5 to 15 atomic percent of boron (B), 1 to 7 atomic percent of niobium (Nb), 0.5 to 3 atomic percent of copper (Cu) 2 at% and iron (Fe) as the other composition (at%). It is more preferable that the content of calcium (Ca) is 0.01 to 0.5 at%.

본 발명에 따른 연자성 합금 분말 코어는, 철(Fe)계 합금에 칼슘(Ca)을 첨가하여 비정질 합금 리본을 제조하는 단계, 비정질 합금 리본을 분쇄하여 비정질 합금 분말을 형성하는 단계, 상기 형성된 비정질 합금 분말을 분급하는 단계, 상기 분급된 분말을 바인더와 혼합하는 단계, 상기 바인더와 혼합된 분말을 가압하여 분말 코어를 성형하는 단계, 상기 성형된 분말 코어의 나노 결정화를 위하여 열처리하는 단계를 포함하는 방법에 의해 제조될 수 있다. The soft magnetic alloy powder core according to the present invention comprises the steps of preparing an amorphous alloy ribbon by adding calcium (Ca) to an iron (Fe) based alloy, pulverizing the amorphous alloy ribbon to form an amorphous alloy powder, Comprising the steps of: classifying alloy powder, mixing the classified powder with a binder, pressing powder mixed with the binder to form a powder core, and heat treating the formed powder core for nanocrystallization ≪ / RTI >

또한 본 발명의 바람직한 실시예에 따르면, 합금이 녹아 액체 상태일 때, 원자가 결정의 규칙도를 형성하지 못하도록 약 1,000,000K/s 정도의 빠른 냉각속도로 급속 응고시킬 수 있다. According to a preferred embodiment of the present invention, when the alloy is molten and in a liquid state, rapid solidification can be performed at a rapid cooling rate of about 1,000,000 K / s so as not to form a rule of atomic crystal.

액체 상태 그대로의 비정질 합금 제조 방법에는 대표적으로 단롤법과 쌍롤법에 의한 제조 방법이 있는데, 본 발명의 바람직한 실시예에서는 단롤법에 의해서 Fe계 비정질 합금 리본을 제작하였다. 단롤을 이용하는 제조법은 스트립의 형상이 공정변수에 의해 민감하게 영향을 받기는 하지만 두께 20~30㎛의 넓은 폭의 스트립을 대량으로 제조할 수 있어 널리 사용되고 있으며, 이 기술은 멜트스피닝공정(melt spinning process)이라 부른다.The amorphous alloy production method as it is in a liquid state is typically a manufacturing method by a single-roll method and a twin-roll method. In a preferred embodiment of the present invention, an Fe-based amorphous alloy ribbon is produced by a single-roll method. Although the production method using the mono-roll is widely used because it can produce a large number of strips having a wide width of 20 to 30 탆 in thickness although the shape of the strip is sensitively influenced by process parameters, the melt spinning process process.

상기의 비정질 합금 리본은 볼밀링(ball milling)과 같은 파쇄공정에 의해 분말로 제조될 수 있다. The amorphous alloy ribbon may be made into a powder by a crushing process such as ball milling.

본 발명의 바람직한 실시예에 따르면, 좀 더 빠른 파쇄를 위해 상기 합금 분말을 형성하는 단계 이전에 비정질 합금 리본을 예비 열처리하는 단계를 더 포함할 수 있다. 상기 예비 열처리 단계는 400~500℃에서 5~100분 동안 실시하는 것이 바람직하다. 예비 열처리로 인한 공정 시간의 감소는 경제적인 생산공정과 원가절감에 유리하다. According to a preferred embodiment of the present invention, the method may further comprise preliminary heat treatment of the amorphous alloy ribbon prior to the step of forming the alloy powder for faster fracture. The preliminary heat treatment is preferably performed at 400 to 500 ° C. for 5 to 100 minutes. Reduction of process time due to preliminary heat treatment is advantageous for economical production process and cost reduction.

비정질 합금 분말을 분급하는 단계는 균일한 최적의 입도를 갖도록 분말을 분급하는 것이다. The step of classifying the amorphous alloy powder is to classify the powder so as to have a uniform optimum particle size.

본 발명의 제조방법에서 사용되는 바인더는 바람직하게는 규산나트륨 수용액이다. 규산나트륨 수용액 바인더는 탈이온수를 이용하여 희석한 후 분급된 비정질 분말과 혼합하여 균일하게 액상 코팅하는 것이 바람직하다. The binder used in the production method of the present invention is preferably an aqueous solution of sodium silicate. The sodium silicate aqueous solution binder is preferably diluted with deionized water and then mixed with the classified amorphous powder and uniformly coated in liquid phase.

한편, 비정질 합금 분말 복합체 제조에 사용되는 바인더는 비정질 합금의 결정화 온도보다 그 연화점이 낮아야 하며, 분말 복합체 성형 형상을 유지하면서 크랙 발생을 억제할 수 있게 상온에서도 적절한 결합 강도를 가져야 한다. On the other hand, the binder used for preparing the amorphous alloy powder composite should have a lower softening point than the crystallization temperature of the amorphous alloy, and should have a proper bonding strength at room temperature so as to suppress cracking while maintaining the powder composite molding shape.

규산염수용액은 균일하게 분산되는 것이 바람직하며, 이를 위해 탈이온수를 첨가하여 희석시킴으로써 혼합을 용이하게 할 수 있다. 바람직한 수용액 농도는 20 내지 50 중량%이다. It is preferable that the aqueous solution of the silicate is uniformly dispersed. To this end, it is possible to facilitate mixing by adding deionized water to dilute it. The preferred aqueous solution concentration is 20 to 50% by weight.

규산나트륨 바인더를 사용한 비정질 및 나노결정립 연자성 합금 분말은 비교적 높은 기계적 강도, 높은 열적ㆍ화학적 안정성 및 내열성이 우수한 특징을 가진다. 또한 규산나트륨 바인더는 높은 연소점을 가지고 있어 비정질 합금 분말을 나노결정립 합금 분말로 제조하기 위한 결정화 열처리 공정에서도 연소하지 않고 분말 표면에 코팅되어 있어, 바인더로서 좋은 특성을 가지고 있다.The amorphous and nanocrystalline soft magnetic alloy powder using the sodium silicate binder has a characteristic of being relatively high in mechanical strength, high thermal and chemical stability and heat resistance. In addition, since the sodium silicate binder has a high combustion point, it is coated on the surface of the powder without burning even in the crystallization heat treatment process for preparing the amorphous alloy powder as the nanocrystalline alloy powder, and has good properties as a binder.

상기 규산나트륨 수용액을 분말 표면에 균일하게 코팅시키면 분말과 분말 사이의 절연효과로 인하여 비저항이 증가하게 되고, 이로 인하여 와전류 손실 및 코어 손실(철손) 감소라는 자기적 특성의 향상을 얻을 수 있다.When the sodium silicate aqueous solution is uniformly coated on the surface of the powder, the resistivity is increased due to the insulating effect between the powder and the powder, thereby improving the magnetic properties such as the eddy current loss and the core loss (iron loss) reduction.

혼합되는 바인더의 양은 탈이온수를 제외한 규산나트륨이 비정질 합금 분말의 총 질량의 0.5~3 중량% 이내로 사용하는 것이 바람직하다. 바인더의 양이 0.5 중량% 미만이 되면 바인더의 접합 강도가 약하여 분말과의 결합력이 낮아지므로 비정질 합금 분말의 벌크(bulk) 성형이 어려우며, 3 중량%를 초과할 때는 바인더와 분말간의 접합 강도는 강해지지만, 분말과 바인더의 혼합이 어려워지며, 비정질 합금 복합체내 비정질 합금 분말의 양이 적어져 연자성 특성이 저하되기 때문에 상기의 무게 비율로 혼합하는 것이 바람직하다. The amount of the binder to be mixed is preferably such that sodium silicate other than deionized water is used within 0.5 to 3% by weight of the total mass of the amorphous alloy powder. When the amount of the binder is less than 0.5% by weight, the bonding strength of the binder is low and the bonding strength with the powder is low, so bulk molding of the amorphous alloy powder is difficult. When the amount of the binder is more than 3% by weight, However, mixing of the powder and the binder becomes difficult, and the amount of the amorphous alloy powder in the amorphous alloy composite is decreased, so that the soft magnetic properties are lowered.

바인더와 혼합된 분말은 냉간 성형 공정 하에 가압하여 분말 복합체로 성형된다. 구체적으로 희석한 바인더의 용매를 건조한 후, 냉간 성형을 위해 프레스공정으로 25~40 ton/cm3의 압력을 가해 비정질 합금 분말 복합체의 형상을 성형하게 된다. 성형 압력이 너무 낮으면 복합체의 밀도가 낮아져 복합체의 강도 및 특성이 저하되며, 너무 높으면 다이의 마모가 빨라져 다이의 수명이 짧아지고 생산 원가의 증가를 가져오게 된다. 희석한 바인더의 용매를 건조하지 않고 성형 공정을 행하게 되면, 결정화 열처리 과정 중 용매의 기화로 인해 복합체내 공공이 발생하게 되어 특성의 저하를 가져오게 된다. The powder mixed with the binder is pressed into a powder composite under a cold forming process. Specifically, after the solvent of the diluted binder is dried, a pressure of 25 to 40 ton / cm < 3 > is applied to the amorphous alloy powder composite in the pressing step for cold forming. If the forming pressure is too low, the density of the composite is lowered to deteriorate the strength and characteristics of the composite. If the molding pressure is too high, the wear of the die is accelerated, which shortens the life of the die and increases the production cost. If the molding process is performed without drying the solvent of the diluted binder, voids in the composite body are generated due to vaporization of the solvent during the crystallization heat treatment process, resulting in deterioration of characteristics.

분말 복합체를 나노 결정화를 위하여 열처리 개시 온도 이상에서 열처리하여 나노결정립을 형성할 수 있다. 벌크 형상으로 성형한 비정질 합금 분말 복합체의 나노결정립 형성을 위한 열처리 단계는 결정 성장 개시 온도 이상 500~550℃에서 5~60분 동안 열처리하는 것이 바람직하다. The nanocrystallized powder composite may be heat treated at a temperature above the heat treatment initiation temperature to form nanocrystalline grains. It is preferable that the annealing step for forming nanocrystalline grains of the amorphous alloy powder composite molded into a bulk shape is heat-treated at a temperature not less than the crystal growth start temperature of 500 to 550 DEG C for 5 to 60 minutes.

나노결정립 구조 형성을 위한 열처리 온도는 결정화 개시 온도(Tx)보다 50℃ 이내의 높은 온도가 바람직하다. 너무 높은 열처리 온도는 결정의 급격한 조대화를 초래해 바인더가 분해되어 접합력을 약화시키게 된다. 또한, 비정질 합금 분말 복합체의 자기적 특성을 향상시키기 위해서 분말 성형 및 가공 시에 분말 내부에 축적에너지가 생기게 되는데, 이로 인해 분말 형태에서의 결정화 개시 온도는 비정질 합금 리본의 결정화 개시 온도(Tx)보다 다소 낮은 온도를 가지고, 리본 상태보다 급격히 증가한 표면적으로 인해 결정화 개시 온도가 낮아지게 된다. 그러므로, 상기의 축적에너지 완화 및 표면적 증가로 인한 결정화 온도가 낮아지는 것을 고려해야 하며, 나노결정립의 결정화온도 조건은 상기와 같은 열처리 온도 범위에서 행함으로써 최종적으로 나노결정립 크기를 원활하게 제어할 수 있다. 또한, 위의 조건에서 열처리 공정을 진행하면 10~15nm 정도의 미세한 나노결정립을 얻을 수 있어 우수한 연자성 특성을 기대할 수 있다.  The heat treatment temperature for forming the nanocrystalline structure is preferably higher than the crystallization starting temperature (Tx) by 50 占 폚. Too high a heat treatment temperature results in a sudden coarsening of crystals, which degrades the binder and weakens the bonding force. Further, in order to improve the magnetic properties of the amorphous alloy powder composite, accumulation energy is generated in the powder during powder molding and processing. As a result, the crystallization starting temperature in the powder form is lower than the crystallization starting temperature (Tx) of the amorphous alloy ribbon The crystallization initiation temperature is lowered due to a somewhat lower temperature and a surface area that increases sharply than the ribbon state. Therefore, consideration should be given to lowering the crystallization temperature due to the above-mentioned accumulation energy relaxation and surface area increase, and the crystallization temperature condition of the nanocrystalline grains can be controlled in the heat treatment temperature range as described above to finally control the nanocrystal grain size. In addition, when the heat treatment process is performed under the above conditions, fine nanocrystalline grains of about 10 to 15 nm can be obtained and excellent soft magnetic characteristics can be expected.

이하, 본 발명의 실시예를 참조하여 설명한다.Hereinafter, embodiments of the present invention will be described.

[실시예][Example]

급냉응고법(melt spinning)에 의해 제조된 Fe73-Si14-B9-Nb3-Cu1(at%) 조성의 비정질 합금 리본과 위 합금 조성에 0.37at% Ca을 첨가한 후 제조한 리본을, 미세하고 균일한 분말을 얻기 위해 400~500℃에서 90분 동안 예비 열처리한 후, 110~120rpm의 회전속도로 10시간 동안 볼밀링(ball milling)하여 리본을 파쇄하였다. Amorphous alloy ribbon of Fe 73 -Si 14 -B 9 -Nb 3 -Cu 1 (at%) composition prepared by melt spinning and a ribbon prepared by adding 0.37 at% Ca to the alloy composition , Preliminarily heat-treated at 400 to 500 ° C for 90 minutes to obtain fine and uniform powder, and then ball milled for 10 hours at a rotating speed of 110 to 120 rpm to break the ribbon.

파쇄 공정을 거쳐 얻은 비정질 합금 분말(평균 입도 약 30㎛)의 코어 성형을 위해, 파쇄 분말 100g에 탈이온수로 희석한 규산나트륨 수용액(농도 33.3중량%) 4.5g을 부어 약 5시간 혼합한 후 건조시켰으며, 이 복합 입자 분말을 상온에서 성형 다이 내부에 약 6g정도 장입한 후 대략 30ton/cm2의 성형압력으로 냉간성형하여 외부직경 17.28mm, 내부직경 9.7mm, 평균 높이 6.27mm인 환상(torroidal)의 코어를 성형하였다. For the core molding of the amorphous alloy powder (average particle size of about 30 μm) obtained by the crushing process, 4.5 g of an aqueous solution of sodium silicate (concentration 33.3 wt%) diluted with deionized water was poured into 100 g of the crushed powder for about 5 hours, The composite powder was charged into the molding die at a room temperature of about 6 g and then cold-formed at a molding pressure of about 30 ton / cm 2 to obtain a toroidal powder having an outer diameter of 17.28 mm, an inner diameter of 9.7 mm, and an average height of 6.27 mm ).

상기와 같이 제조된 Fe-계 비정질 연자성 합금 분말의 결정화 온도가 521.3℃로 측정됨에 따라, 결정화 열처리 온도 500~550℃의 범위 질소 분위기 하에서 분말 코어를 1시간 동안 열처리를 하였다.
As the crystallization temperature of the Fe-based amorphous soft magnetic alloy powder thus prepared was measured at 521.3 ° C, the powder cores were heat-treated for 1 hour under a nitrogen atmosphere in a temperature range of 500-550 ° C for crystallization heat treatment.

[비교예][Comparative Example]

칼슘을 전혀 첨가하지 않은 것을 제외하고는 실시예와 동일하게 분말 코어를 제조하였다.
Powder cores were prepared in the same manner as in Example except that calcium was not added at all.

분말 코어의 특성 평가Characterization of powder cores

실시예 및 비교예에서 제조된 분말의 입도는 SEM(Scanning Electron Microscope)으로 관찰하였으며, 분말에 대한 결정립 크기는 TEM(Transmission Electron Microscope)을 사용하여 관찰하였다. Particle sizes of the powders prepared in Examples and Comparative Examples were observed by SEM (Scanning Electron Microscope), and the grain sizes of the powders were observed by TEM (Transmission Electron Microscope).

도 1은 Ca이 첨가된 실시예의 합금과 Ca이 전혀 첨가되지 않은 비교예에 따른 나노결정립 연자성 합금 분말 복합체의 화학조성과 열처리 온도에 따른 코어 손실 값(Pcm)이다(코어 손실 측정조건 50kHz, 0.1 Tesla).Fig. 1 shows the core loss value (Pcm) according to the chemical composition and the heat treatment temperature of the nanocrystalline soft magnetic alloy powder composite according to the comparative example in which Ca and Ca were not added at all, 0.1 Tesla).

도 2는 실시예 및 비교예에서 제조한 코어의 온도에 따른 투자율 특성을 비교한 것이다(투자율 측정조건 10kHz, 0.1 Tesla).FIG. 2 is a graph comparing permeability characteristics according to temperature of cores prepared in Examples and Comparative Examples (permeability measurement condition: 10 kHz, 0.1 Tesla).

도 1과 도 2를 참조하면, Ca 첨가 Fe계 합금은 Ca이 첨가되지 않은 Fe계 합금에 비하여 코어 손실이 약 20% 감소하는 우수한 특성을 나타내었을 뿐 아니라 투자율은 약 10% 감소하여, 전반적으로 자화특성이 향상되었음을 알 수 있다. Referring to FIGS. 1 and 2, the Ca-containing Fe-based alloy exhibits excellent characteristics in which the core loss is reduced by about 20% as compared with the Fe-based alloy not containing Ca, and the permeability is reduced by about 10% It can be seen that the magnetization characteristics are improved.

Claims (7)

삭제delete 삭제delete (1) 철(Fe)계 합금에 칼슘(Ca)을 첨가하여 규소(Si) 10~15(at%), 붕소(B) 5~15(at%), 니오븀(Nb) 1~7(at%), 구리(Cu) 0.5~3(at%), 칼슘(Ca) 0.01~2(at%) 및 철(Fe)을 나머지 조성(at%)으로 하는 비정질 합금 리본을 제조하는 단계;
(2) 비정질 합금 리본을 분쇄하여 비정질 합금 분말을 형성하는 단계;
(3) 상기 형성된 비정질 합금 분말을 분급하는 단계;
(4) 상기 분급된 분말을 규산나트륨 수용액 바인더와 혼합하는 단계;
(5) 상기 바인더와 혼합된 분말을 가압하여 분말 코어를 성형하는 단계; 및
(6) 상기 성형된 분말 코어의 나노 결정화를 위하여 500~550℃에서 5~60분 동안 열처리하는 단계를 포함하는 것을 특징으로 하는 나노결정립 연자성 합금 분말 코어의 제조방법.
(1) At least one element selected from the group consisting of silicon (Si) 10 to 15 (at%), boron (B) 5 to 15 (at%), niobium (Nb) 1 to 7 (At%), copper (Cu) at 0.5 to 3 at%, calcium (Ca) at 0.01 to 2 at%, and iron (Fe) as the remainder of the composition (at%).
(2) pulverizing the amorphous alloy ribbon to form an amorphous alloy powder;
(3) classifying the formed amorphous alloy powder;
(4) mixing the classified powder with an aqueous sodium silicate solution binder;
(5) pressing the powder mixed with the binder to form a powder core; And
(6) heat-treating the formed powder core at 500 to 550 ° C for 5 to 60 minutes for nanocrystallization of the powder core.
삭제delete 제 3 항에 있어서,
상기 합금 분말을 형성하는 단계 (2) 이전에 상기 단계 (1)에서 제조된 비정질 합금 리본을 예비 열처리하는 단계를 더 포함하는 것을 특징으로 하는 나노결정립 연자성 합금 분말 코어의 제조방법.
The method of claim 3,
Further comprising the step of preheating the amorphous alloy ribbon produced in the step (1) before the step (2) of forming the alloy powder.
삭제delete 삭제delete
KR1020110141141A 2011-12-23 2011-12-23 Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof KR101387961B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110141141A KR101387961B1 (en) 2011-12-23 2011-12-23 Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110141141A KR101387961B1 (en) 2011-12-23 2011-12-23 Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof

Publications (2)

Publication Number Publication Date
KR20130073343A KR20130073343A (en) 2013-07-03
KR101387961B1 true KR101387961B1 (en) 2014-04-24

Family

ID=48987820

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110141141A KR101387961B1 (en) 2011-12-23 2011-12-23 Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof

Country Status (1)

Country Link
KR (1) KR101387961B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030582A1 (en) * 2016-08-08 2018-02-15 한국생산기술연구원 Nitrogen-added amorphous soft magnetic alloy and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102268103B1 (en) * 2019-05-17 2021-06-22 인제대학교 산학협력단 Fe BASED NANO-STRUCTURED SOFT MAGNETIC ALLOY RIBBON AND METHOD FOR PREPARING THE SAME

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295005A (en) * 2000-04-14 2001-10-26 Hitachi Metals Ltd Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
KR100531253B1 (en) * 2003-08-14 2005-11-28 (주) 아모센스 Method for Making Nano Scale Grain Metal Powders Having Excellent High Frequency Characteristics and Method for Making Soft Magnetic Core for High Frequency Using the Same
KR100721501B1 (en) * 2005-12-22 2007-05-23 인제대학교 산학협력단 Method for manufacturing a nano-sized crystalline soft-magnetic alloy powder core and a nano-sized crystalline soft-magnetic alloy powder core manufactured thereby
WO2008099803A1 (en) 2007-02-13 2008-08-21 Hitachi Metals, Ltd. Fe-base nanocrystal soft magnetic alloy, amorphous alloy ribbon, process for producing fe-base nanocrystal soft magnetic alloy, and magnetic part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295005A (en) * 2000-04-14 2001-10-26 Hitachi Metals Ltd Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
KR100531253B1 (en) * 2003-08-14 2005-11-28 (주) 아모센스 Method for Making Nano Scale Grain Metal Powders Having Excellent High Frequency Characteristics and Method for Making Soft Magnetic Core for High Frequency Using the Same
KR100721501B1 (en) * 2005-12-22 2007-05-23 인제대학교 산학협력단 Method for manufacturing a nano-sized crystalline soft-magnetic alloy powder core and a nano-sized crystalline soft-magnetic alloy powder core manufactured thereby
WO2008099803A1 (en) 2007-02-13 2008-08-21 Hitachi Metals, Ltd. Fe-base nanocrystal soft magnetic alloy, amorphous alloy ribbon, process for producing fe-base nanocrystal soft magnetic alloy, and magnetic part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030582A1 (en) * 2016-08-08 2018-02-15 한국생산기술연구원 Nitrogen-added amorphous soft magnetic alloy and manufacturing method therefor

Also Published As

Publication number Publication date
KR20130073343A (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP6662436B2 (en) Manufacturing method of dust core
JP4274896B2 (en) Method for producing nanocrystalline metal powder having excellent high-frequency characteristics and method for producing high-frequency soft magnetic core using the same
KR101516936B1 (en) ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND MANUFACTURING METHOD THEREFOR, AND MAGNETIC COMPONENT
KR910002350B1 (en) Fe-base soft magnetic alloy powder and magnetic core thereof and method of producing same
JP5912349B2 (en) Soft magnetic alloy powder, nanocrystalline soft magnetic alloy powder, manufacturing method thereof, and dust core
JP2004349585A (en) Method of manufacturing dust core and nanocrystalline magnetic powder
JP6530164B2 (en) Nanocrystalline soft magnetic alloy powder and dust core using the same
CN109273185B (en) Method for preparing magnetic powder core by using iron-based nanocrystalline alloy powder
KR101166963B1 (en) Method for the production of magnet cores, magnet core and inductive component with a magnet core
JPS63304603A (en) Green compact of fe soft-magnetic alloy and manufacture thereof
US20190013129A1 (en) Dust core
KR100721501B1 (en) Method for manufacturing a nano-sized crystalline soft-magnetic alloy powder core and a nano-sized crystalline soft-magnetic alloy powder core manufactured thereby
JP5919144B2 (en) Iron powder for dust core and method for producing dust core
JP7148876B2 (en) Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
JP2009147252A (en) Compound magnetic material and method of manufacturing thereof
KR101387961B1 (en) Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof
KR101905411B1 (en) Method for manufacturing Fe based soft magnetic alloy
JPH0448005A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
KR20200129089A (en) Iron-based soft magnetic powder and its manufacturing method, and articles containing iron-based soft magnetic alloy powder, and its manufacturing method
KR101607483B1 (en) Fe-based Amorphous Alloy Power And Fe-based Nano-Crystallization Amorphous Compressed Power Core Using the same
JP7387670B2 (en) Soft magnetic powder, dust core containing the same, and method for producing soft magnetic powder
KR102613785B1 (en) Nanocrystral soft magnetic ribon and method of preparing the same
WO2019044132A1 (en) Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC MATERIAL, POWDER MAGNETIC CORE, ELECTRIC/ELECTRONIC-RELATED COMPONENT, AND DEVICE
WO2020179535A1 (en) Magnetic powder and method for manufacturing same, magnetic core and method for manufacturing same, and coil component
WO2020179534A1 (en) Magnetic core, method for manufacturing same, and coil component

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170323

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190426

Year of fee payment: 6