KR101607483B1 - Fe-based Amorphous Alloy Power And Fe-based Nano-Crystallization Amorphous Compressed Power Core Using the same - Google Patents

Fe-based Amorphous Alloy Power And Fe-based Nano-Crystallization Amorphous Compressed Power Core Using the same Download PDF

Info

Publication number
KR101607483B1
KR101607483B1 KR1020140101861A KR20140101861A KR101607483B1 KR 101607483 B1 KR101607483 B1 KR 101607483B1 KR 1020140101861 A KR1020140101861 A KR 1020140101861A KR 20140101861 A KR20140101861 A KR 20140101861A KR 101607483 B1 KR101607483 B1 KR 101607483B1
Authority
KR
South Korea
Prior art keywords
amorphous alloy
powder
core
composition
prepared
Prior art date
Application number
KR1020140101861A
Other languages
Korean (ko)
Other versions
KR20160018013A (en
Inventor
김규진
Original Assignee
티엠나노테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티엠나노테크 주식회사 filed Critical 티엠나노테크 주식회사
Priority to KR1020140101861A priority Critical patent/KR101607483B1/en
Publication of KR20160018013A publication Critical patent/KR20160018013A/en
Application granted granted Critical
Publication of KR101607483B1 publication Critical patent/KR101607483B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명에서 개발한 나노결정합금의 출발원료로서, 조성식 FeaSibBcPxNbyCuz의 합금조성물로서, 77≤a≤83at%, 8< b≤13at%, 6≤c≤10at%, 0.5≤x≤2.0at%, 0.5≤y≤2.0at%, 0.5≤z≤2.0at%이며, b+2c≥11.0at%, c+x≥7.0at%로 구성되는 것으로 한다.
본 조성의 비정질 합금분말은 고압수분사법 및 급랭응고법에 의하여 제조되며, 제조된 분말의 포화속밀도가 1.5T이상이며, 본 분말을 이용하여 온간성형법에 의해 압분자심코아를 제조시에 철손값이 50kHz 및 1000Gauss하에서 300mW/cc이하를 나타내며, 종래의 상온성형시에 불가했던 실효투자율이 100kHz하에서 150이상의 나노결정 압분자심코아를 제조할 수 있게 된다.
As an alloy composition of the composition formula Fe a Si b B c P x Nb y Cu z as the starting material of the nanocrystalline alloy developed in the present invention, 77? A? 83at%, 8 <b? 13at%, 6? , 0.5? X? 2.0at%, 0.5? Y? 2.0at%, 0.5? Z? 2.0at%, b + 2c? 11.0at%, c + x? 7.0at%.
The amorphous alloy powder of this composition is produced by high pressure water dispersion method and rapid solidification method and the saturation velocity density of the prepared powder is 1.5T or more. By using this powder, Value of less than 300 mW / cc at 50 kHz and 1000 Gauss, and a nanocrystalline pressure molecular core of 150 or more at an effective permeability of 100 kHz, which was impossible at the time of conventional room temperature molding, can be produced.

Description

철계 비정질 합금분말 및 이를 이용한 철계 나노결정 압분자심코아{Fe-based Amorphous Alloy Power And Fe-based Nano-Crystallization Amorphous Compressed Power Core Using the same}    Iron-based amorphous alloy powder and iron-based nanocrystalline pressure molecular core using the same. The present invention relates to a Fe-based amorphous alloy powder,

본 발명은 트랜스, 인덕터 등에 사용하기에 적합한 Fe계 비정질(나노결정)합금 및 그 제조방법에 관한 것이다.
The present invention relates to an Fe-based amorphous (nano-crystal) alloy suitable for use in transformers, inductors and the like, and a manufacturing method thereof.

종래의 요시자와 등이 개발한 Fe-Si-B-Nb-Cu계 연자성 합금은 실효투자율 및 고주파에서의 손실값은 매우 우수하지만 자체 합금이 보유한 포화자속밀도(Bs)값이 1.2T정도로 낮아서 일반적인 압분자심코아로로서 적용시에 대전류용의 부품에 적용이 어렵다. 이에 대해서는 논문문헌 1에 기재되어 있다.    The Fe-Si-B-Nb-Cu soft magnetic alloy developed by Yoshizawa et al. Has a very high effective magnetic permeability and high loss at high frequency. However, since the saturation magnetic flux density (Bs) It is difficult to apply it to a component for a large current when it is applied as a pressurized core core. This is described in the document 1.

[논문문헌 1] J. Appl. Phys., 64(1988), 6444[Paper 1] J. Appl. Phys., 64 (1988), 6444

반면에 마키노가 개발한 Fe-B-Si-P-C-Cu계는 포화자속밀도는 1.6T이상으로 높지만, 고주파에서 손실값이 높다는 단점이 있다. 이에 대해서는 특허문헌2에 기재되어 있다   On the other hand, the Fe-B-Si-P-C-Cu system developed by Makino has a saturation magnetic flux density higher than 1.6T, but has a disadvantage of high loss at high frequencies. This is described in Patent Document 2

[특허문헌 2] 한국 공개특허공보 10-2011-0044832
[Patent Document 2] Korean Unexamined Patent Publication No. 10-2011-0044832

따라서 본 발명에서는 대전류용에 적용이 가능한 1.5T이상의 높은 자속밀도를 지니면서, 고주파손실이 낮은 비정질(나노결정)합금과 그것을 제조하는 방법을 제공하는 것을 목적으로 한다.
Accordingly, an object of the present invention is to provide an amorphous (nanocrystalline) alloy having a high magnetic flux density of 1.5 T or more, which is applicable to high current applications, and a high frequency loss and a method of manufacturing the same.

본 발명은 특정합금 조성물에 있어서 1.5T이상의 높은 자속밀도를 지니면서, 또한 높은 투자율을 지니는 Fe계 나노결정합금분말을 얻기 위한 출발원료로서 이용할 수 있는 것을 찾아냈다. 여기서 특정합금조성물은 소정의 조성식으로 나태내고, 주상으로서 비정질(amorphous)상을 가지고 있으며, 또한 우수한 고주파손실을 가지고 있다. 특정합금조성물을 결정화온도 이상에서 열처리하면, bcc 구조를 가지는α-Fe상으로 이루어진 나노결정물을 석출시킬 수 있다. 이러한 나노결정합금은 포화자기왜곡을 크게 감소함에 의하여 보자력을 크게 감소시키고, 이에 따라 높은 포화자속밀도와 높은 투자율 및 낮은 고주파 손실값을 제공한다.    The present invention has found that a specific alloy composition can be used as a starting material for obtaining an Fe-based nanocrystalline alloy powder having a high magnetic flux density of 1.5 T or more and a high magnetic permeability. Here, the specific alloy composition has a predetermined composition formula, has an amorphous phase as a main phase, and has excellent high frequency loss. When the specific alloy composition is heat-treated at a crystallization temperature or higher, nanocrystalline water having a bcc structure can be precipitated. These nanocrystalline alloys greatly reduce coercivity by greatly reducing saturation magnetostriction, thereby providing high saturation flux density, high permeability, and low RF loss values.

본 발명에 있어서 나노결정합금의 출발원료는 조성식 FeaSibBcPxNbyCuz의 합금조성물로서, 77≤a≤83at%, 8< b≤13at%, 6≤c≤10at%, 0.5≤x≤2.0at%, 0.5≤y≤2.0at%, 0.5≤z≤2.0at%이며, b+2c≥11.0at%, c+x≥7.0at%의 조건을 만족하는 것이 바람직하다.In the present invention, the starting material of the nanocrystalline alloy is an alloy composition of a composition formula Fe a Si b B c P x Nb y Cu z , wherein 77? A? 83at%, 8 <b? 13at%, 6? C? It is preferable that the following conditions are satisfied: 0.5? X? 2.0at%, 0.5? Y? 2.0at%, 0.5? Z? 2.0at%, b + 2c? 11.0at%, c + x? 7.0at%.

상기 합금조성물에 있어서 Fe원소는 주원소이며, 자성을 담당하는 필수 원소이다. 기본적으로 포화자속밀도의 증가 및 원료가격의 저감을 위하여 Fe의 비율이 높은 것이 바람직하다. Fe의 비율이 77at%보다 낮으면 포화자속밀도값이 1.5T이하로 낮아지며, 83at%보다 높아지면, 급랭조건하에서 비정질상의 형성이 곤란해진다.  In the alloy composition, the Fe element is a main element and is an essential element responsible for magnetism. Basically, it is preferable that the proportion of Fe is high in order to increase the saturation magnetic flux density and to reduce the raw material cost. When the Fe content is lower than 77 at%, the saturation flux density value is lowered to 1.5 T or lower, and when the Fe content is higher than 83 at%, it becomes difficult to form an amorphous phase under quenching conditions.

상기 합금조성물에 있어서 Si원소는 비정질상의 형성 및 연자기 특성 향상에 필수 원소이다. Si의 비율이 8at%이하면 연자기 특성이 떨어지며, 13at%이상이면 Fe의 조성비율이 77at%이하로 떨어져 포화자속밀도가 1.5T이하로 낮아진다.  The Si element in the alloy composition is an essential element for the formation of an amorphous phase and the improvement of a soft magnetic characteristic. If the ratio of Si is less than 8 at%, the soft magnetic characteristics deteriorate. If the proportion of Si is more than 13 at%, the composition ratio of Fe becomes less than 77 at% and the saturation magnetic flux density becomes as low as 1.5 T or less.

상기 합금조성물에 있어서 B원소는 비정질상 형성을 담당하는 필수 원소이다.   In the alloy composition, element B is an essential element responsible for amorphous phase formation.

B의 비율이 6at%보다 낮으면 균일한 비정질상 형성이 어렵고, 10at%를 넘어서면 포화자속밀도가 떨어진다. When the ratio of B is less than 6 at%, it is difficult to form a uniform amorphous phase, and when it exceeds 10 at%, the saturation magnetic flux density is decreased.

상기 합금조성물에 있어서 P원소는 비정질상 형성을 담당하는 필수 원소이다. 본 실시형태에 있어서는 Si, B 및 P원소의 조합을 이용함으로써, 어느 하나밖에 이용하지 않는 경우와 비교하여, 훨씬 적은 첨가량에 의하여 비정질상 형성능이 개선된다. P의 비율이 0.5at%이하면 비정질상의 형성능이 떨어지고, 2at%를 넘어서면 포화자속밀도가 떨어진다. 조합의 관점에서는 Si+2B의 합이 11at%이상이 되어야 하며, 그 이하에서는 비정질상의 형성능이 떨어지며, 또한 B+P의 합이 7.0at%이상이 되어야 하며 그 이하에서는 비정질상의 형성능이 떨어진다.  In the alloy composition, the P element is an essential element responsible for the formation of the amorphous phase. In the present embodiment, by using a combination of Si, B and P elements, amorphous phase forming ability is improved by a much smaller addition amount as compared with the case where only one of them is used. If the ratio of P is less than 0.5 at%, the ability to form an amorphous phase is deteriorated, and if it exceeds 2 at%, the saturation magnetic flux density is deteriorated. From the viewpoint of the combination, the sum of Si + 2B should be at least 11 at%, the amorphous phase forming ability is lowered, and the sum of B + P should be at least 7.0 at%.

상기 합금조성물에 있어서 Nb원소는 나노결정화에 기여하는 필수 원소이다. 나노결정합금의 형성시에 Nb함량이 0.5at%이하에서는 조대한 나노결정화가 생성되며, 2.0at%이상에서는 포화자속밀도가 급격히 떨어진다.  In the alloy composition, the Nb element is an essential element contributing to nanocrystallization. At the formation of the nanocrystalline alloy, coarse nanocrystallization is produced when the Nb content is less than 0.5 at%, and the saturation magnetic flux density is rapidly decreased at more than 2.0 at%.

상기의 합금조성물은 30MPa이상의 고압의 수분사법에 의해 직접 미립의 분말을 제조하거나 급랭응고법에 의하여 제조한 리본을 결정화이하의 온도에서 열처리한 다음 분쇄하여 분말을 제조한다. 제조한 분말의 자기특성을 평가하기 위하여 분말간 절연 및 결합성을 부여하기 위하여 인산 및 폴리이미드에 의한 2회 코팅을 실시한 다음, 고온에서도 윤활성을 유지하는 금속산화물계 윤활제를 적용하여, 400~550℃의 온도범위에서 자동 압축성형하여 비정질 압분자심 코아를 제조한다. 성형한 압분자심코아는 결정화온도 이상에서 30-60분간 환원성 가스분위기하에서 열처리한다.
The above alloy composition is prepared by directly preparing a fine powder by a water pressure method at a high pressure of 30 MPa or higher, or by heat-treating a ribbon produced by a rapid solidification method at a temperature lower than the crystallization temperature and then pulverizing the powder to prepare a powder. In order to evaluate the magnetic properties of the prepared powders, two coatings of phosphoric acid and polyimide were applied to provide insulation and bonding between powders, and then a metal oxide based lubricant which maintains lubricity even at high temperatures was applied, Lt; RTI ID = 0.0 &gt; C, &lt; / RTI &gt; to produce an amorphous pressure molecular core. The molded pressure-sensitive core is heat-treated in a reducing gas atmosphere at a crystallization temperature or more for 30 to 60 minutes.

본 발명에 있어서 고압수분사법 및 급랭응고법에 의하여 제조한 포화속밀도가 1.5T이상인 비정질 합금분말을 이용하여 온간성형법에 의해 압분자심코아를 제조시에 철손값이 50kHz 및 1000Gauss하에서 300mW/cc이하를 나타내며, 종래의 상온성형시에 불가했던 실효투자율이 100kHz에서 200이상의 압분자심코아를 제조할 수 있게 된다.   In the present invention, amorphous alloy powder having a saturation flux density of 1.5 T or more prepared by a high-pressure water dispersion method and a rapid solidification method was used to produce a pressure-sensitive core by a warm-tempering method at an iron loss value of 300 kW / cc And it is possible to manufacture a pressure-sensitive core of 200 or more at an effective permeability of 100 kHz, which was impossible at the time of conventional room temperature molding.

또한, 본 발명에 의하여 개발된 비정질 합금분말은, 온간성형에 의하여 성형밀도를 크게 높일 수 있으며, 입자간 절연성이 우수하여 주파수 의존성이 적으며, 고주파수 대역에서도 변화가 거의 없는 투자율을 지니며, 수㎑에서 수십㎒ 주파수 대역의 전기 및 전자 디바이스의 대전류용 자기소자로서 이용 가능한 나노결정 압분자심코아를 제조할 수 있게 된다.
In addition, the amorphous alloy powder developed by the present invention can greatly increase the molding density by warm-forming, has low permeability due to excellent inter-particle insulating property, has a permeability hardly changed even in a high frequency band, It is possible to manufacture a nanocrystalline pressure molecular core that can be used as a high current magnetic element for electric and electronic devices in the frequency band of from 10 kHz to several tens MHz.

(실시예 1)(Example 1)

Fe81.2Si9.5B6P1Nb1.5Cu0.8 합금조성(중량%)이 되도록 고주파용해에 의하여 용해한 다음, 수압 40MPa 및 유량 300l/min의 조건인 고압의 수분사에 의하여 비정질 합금 분말(평균 입경 약 15㎛) 을 제조하였다. 다음에 분말의 자기 특성을 평가하기 위하여 비정질 합금분말 1,000g에 인산(H3PO4) 10g을 아세톤에 넣어 희석하여 1차 코팅처리를 하여 건조한 다음, 폴리이미드 10g을 메틸렌클로라이드(methylene chloride) 용액에 녹여 제조된 용액으로 2차 코팅처리를 한 후, 건조처리를 행하여 폴리이미드가 평균 입경 약 15㎛의 비정질 합금 분말의 표면에 약 1㎛ 이하의 두께로 균일하게 코팅된 복합 입자의 분말을 제조하여 건조한 다음에 평균입경이 3㎛인 MoS2분말 10g을 균일 혼합하였다. 혼합된 복합입자 분말을 외경 12.7mm, 내경 7.65mm이며, 450℃로 유지된 성형 다이스의 내부에 2.50g정도로 자동 장입한 후 18ton/㎠의 압력 및 분당 10타의 속도로 성형하여 평균 높이 4.75mm의 압분자심코아를 제조하였다. 제조된 성형코아는 아르곤(Ar) 가스 분위기의 530℃에서 60분간 열처리하여 코아 내부조직이 나노결정인 압분자심코아를 제조하였다. 제조된 상태의 코아에 대해 실효투자율(effective permeability), 포화자속밀도 및 철손(core loss) 등의 자기 특성을 표 1에 나타낸다. (Fe) 81.2 Si 9.5 B 6 P 1 Nb 1.5 Cu 0.8 Alloy composition (weight%) and then the amorphous alloy powder (having an average particle size of about 70 nm) 15 mu m). Next, in order to evaluate the magnetic properties of the powder, 10 g of phosphoric acid (H 3 PO 4 ) was diluted with acetone in 1,000 g of the amorphous alloy powder, dried by a primary coating treatment and then 10 g of polyimide was dissolved in methylene chloride solution , And then subjected to a drying treatment to prepare a powder of composite particles uniformly coated on the surface of the amorphous alloy powder having an average particle size of about 15 μm at a thickness of about 1 μm or less And then 10 g of MoS 2 powder having an average particle diameter of 3 탆 was uniformly mixed. The blended composite particle powder was automatically charged into a molding die having an outer diameter of 12.7 mm and an inner diameter of 7.65 mm at a rate of 2.50 g in a molding die maintained at 450 ° C. and molded at a pressure of 18 ton / Pressure molecular core was prepared. The molded core was thermally treated at 530 ° C in an argon (Ar) gas atmosphere for 60 minutes to produce a pressure-sensitive core which was nanocrystal in core. Table 1 shows magnetic properties such as effective permeability, saturation magnetic flux density and core loss with respect to the manufactured core.

여기서, 제조한 분말에 대한 상의 구조는 X선 회절법에 의하여 측정했으며, 제1결정화개시온도(Tx1) 및 제2결정화개시온도(Tx2)는 시차형 열량분석계(DSC)를 이용하여 가열속도 분당 10℃의 속도로 가열하여 평가하였다. 포화자속밀도(Bs)는 진동시료형자력계(VSM)를 이용하여 800kA/m의 자장하에서 측정하였으며, 실효 투자율은 임피던스어낼라이져(Impedance Analyzer)를 이용하여 100kHz의 주파수 대역에서 10mOe의 외부 자장하에서 측정된 값이다. 철손값은 주파수 50kHz 및 유도자속밀도 1000Gauss의 조건하에서 BH 어낼라이져(BH Analyzer)로 측정한 것이다.
The first crystallization initiation temperature (T x1 ) and the second crystallization initiation temperature (T x2 ) were measured by a differential scanning calorimeter (DSC) using a differential scanning calorimeter (DSC) Speed at a rate of 10 ° C per minute. The saturation magnetic flux density (B s ) was measured under a magnetic field of 800 kA / m using a vibrating sample type magnetometer (VSM). The effective magnetic permeability was measured by using an impedance analyzer under the external magnetic field of 10 mOe in the frequency band of 100 kHz Measured value. The iron loss value was measured with a BH analyzer under the conditions of a frequency of 50 kHz and an induced magnetic flux density of 1000 Gauss.

(실시예 2)(Example 2)

실시예1의 동일 합금조성을 급랭응고법(RSP)에 의하여 폭 약 3mm, 두께 약 30㎛의 비정질 합금 리본을 제조한 다음, 결정화이하의 온도인 430℃의 수소가스 분위기하에서 약 30분간 열처리한 다음 분쇄하여 평균입경이 약 30㎛인 비정질 합금분말을 제조하는 것 이외에는 실시예 1과 동일하게 실시하였다. 제조된 나노결정 압분자심코아에 대한 제 특성을 표 1에 나타낸다.
An amorphous alloy ribbon having a width of about 3 mm and a thickness of about 30 탆 was prepared by the rapid solidification method (RSP) of the same alloy composition of Example 1 and then heat-treated for about 30 minutes under a hydrogen gas atmosphere at a temperature of 430 캜, To prepare an amorphous alloy powder having an average particle size of about 30 mu m. Table 1 shows the properties of the prepared nanocrystalline pressure molecular core.

(실시예 3-6)(Example 3-6)

하기의 표1에 나타낸 실시예 3-4의 합금조성이 되도록 정량화하여 용해한 다음 고압수분사법에 의해 비정질 합금분말을 제조하는 것 이외에는 실시예 1과 동일하게 실시하였다. 제조된 나노결정 압분자심코아에 대한 제 특성을 표 1에 나타낸다.
The procedure of Example 1 was repeated, except that the amorphous alloy powder was prepared by quantifying and dissolving the alloy composition of Example 3-4 shown in Table 1 below and then subjecting it to high-pressure water dispersion. Table 1 shows the properties of the prepared nanocrystalline pressure molecular core.

(비교예 1-5)(Comparative Example 1-5)

하기의 표1에 나타낸 비교예 1-5의 합금조성이 되도록 정량화하여 용해한 다음   The composition was quantified and dissolved so as to have the alloy composition of Comparative Example 1-5 shown in Table 1 below

고압수분사법에 의해 합금분말을 제조하는 것 이외에는 실시예 1과 동일하게 실시하였다. 제조된 나노결정 압분자심코아에 대한 제 특성을 표 1에 나타낸다.
The procedure of Example 1 was repeated except that the alloy powder was produced by the high-pressure water-dispersion method. Table 1 shows the properties of the prepared nanocrystalline pressure molecular core.

조건번호Condition number 비정질합금계Amorphous alloy system 분말상Powder Tx1(℃)T x1 (占 폚) Tx2(℃)T x2 (占 폚) Bs(T)Bs (T) 실효
투자율
Rationality
Investment ratio
철손
(mW/cc)
Iron loss
(mW / cc)
실시예1Example 1 Fe81 .2Si9 .5B6P1Nb1.5Cu0 .8 Fe 81 .2 Si 9 .5 B 6 P 1 Nb 1.5 Cu 0 .8 비정질Amorphous 441441 588588 1.61.6 275275 185185 실시예2Example 2 Fe81 .2Si9 .5B6P1Nb1.5Cu0 .8 Fe 81 .2 Si 9 .5 B 6 P 1 Nb 1.5 Cu 0 .8 "" 441441 588588 1.61.6 280280 175175 실시예3Example 3 Fe77 .7Si13B6P1Nb1 .5Cu0 .8 Fe 77 .7 Si 13 B 6 P 1 Nb 1 .5 Cu 0 .8 "" 449449 619619 1.51.5 350350 110110 실시예4Example 4 Fe77 .2Si9 .5B10P1Nb1.5Cu0 .8 Fe 77 .2 Si 9 .5 B 10 P 1 Nb 1.5 Cu 0 .8 "" 455455 623623 1.51.5 265265 165165 실시예5Example 5 Fe81 .2Si8 .5B6P2Nb1.5Cu0 .8 Fe 81 .2 Si 8 .5 B 6 P 2 Nb 1.5 Cu 0 .8 "" 436436 595595 1.61.6 240240 210210 실시예6Example 6 Fe81 .7Si9 .5B6P1Nb1.0Cu0 .8 Fe 81 .7 Si 9 .5 B 6 P 1 Nb 1.0 Cu 0 .8 "" 430430 565565 1.61.6 180180 230230 실시예7Example 7 Fe81 .4Si9 .5B6P1Nb1.5Cu0 .6 Fe 81 .4 Si 9 .5 B 6 P 1 Nb 1.5 Cu 0 .6 "" 440440 589589 1.61.6 170170 265265 비교예1Comparative Example 1 Fe82 .2Si7B6P1Nb1 .5Cu0 .8 Fe 82 .2 Si 7 B 6 P 1 Nb 1 .5 Cu 0 .8 "" 420420 582582 1.61.6 210210 425425 비교예2Comparative Example 2 Fe76 .7Si14B6P1Nb1 .5Cu0 .8 Fe 76 .7 Si 14 B 6 P 1 Nb 1 .5 Cu 0 .8 "" 463463 635635 1.31.3 320320 135135 비교예3Comparative Example 3 Fe80 .2Si9 .5B5P1Nb1.5Cu0 .8 Fe 80 .2 Si 9 .5 B 5 P 1 Nb 1.5 Cu 0 .8 비정질+결정Amorphous + crystal 442442 590590 1.51.5 130130 750750 비교예4Comparative Example 4 Fe82 .2Si9 .5B6P1Nb0.5Cu0 .8 Fe 82 .2 Si 9 .5 B 6 P 1 Nb 0.5 Cu 0 .8 비정질Amorphous 423423 546546 1.61.6 125125 665665 비교예5Comparative Example 5 Fe78 .8Si9 .5B6P1Nb0.5Cu0 .4 Fe 78 .8 Si 9 .5 B 6 P 1 Nb 0.5 Cu 0 .4 비정질Amorphous 423423 546546 1.51.5 125125 565565

여기서, 표 1을 참조하면, 본 발명에서 개발된 합금조성범위에서 포화자속밀도가 1.5T이상이면서 철손값도 300mW/cc이하로 매우 우수하며, 실효투자율도 150 - 350까지 나타내며, 이는 종래의 상온성형시에 불가했던 투자율값이다. 반면에 비교예의 합금에서 나타낸 바와 같이 본 발명의 합금조성법위이외의 합금은 포화자속밀도가 높으면 철손이 높거나, 철손값이 낮으면 포화자속밀도가 낮음을 알 수 있다.   Here, referring to Table 1, the saturation flux density is 1.5T or more and the iron loss value is 300mW / cc or less in the alloy composition range developed in the present invention, and the effective permeability is also in the range of 150-350, It is the permeability value which was not available in molding. On the other hand, as shown in the alloys of the comparative examples, alloys other than the alloying composition of the present invention have a high iron loss when the saturation magnetic flux density is high or a saturation magnetic flux density when the iron loss value is low.

Claims (4)

삭제delete 조성식 FeaSibBcPxNbyCuz인 비정질 합금조성물로서, 77≤a≤83at%, 8<b≤13at%, 6≤c≤10at%, 0.5<x≤2.0at%, 0.5<y≤2at%, 0.5≤z≤2at%이며, b+2x≥11.0at%, c+x≥7.0at%이며, 상기 조성식의 원소 중 Si+2B의 합이 11at% 이상이며, B+P의 합이 7.0at% 이상인 조건으로 조성되는 비정질 합금조성물을 고압의 수분사법에 의하여 제조하거나 급랭응고법에 의하여 비정질 합금 리본을 제조한 후에 결정화 이하 온도범위로 열처리한 다음에 분쇄하여 미세분말로 제조하는 것을 특징으로 하는 철계 비정질 합금분말.
The composition formula Fe a Si b B c P x Nb y Cu z as an amorphous alloy composition, 77≤a≤83at%, 8 <b≤13at% , 6≤c≤10at%, 0.5 <x≤2.0at%, 0.5 < the sum of Si + 2B in the elements of the composition formula is not less than 11 at%, and the sum of B + P and B + P is not less than 2 at% The amorphous alloy composition is prepared by a high-pressure hydration method or by an amorphous alloy ribbon manufactured by a rapid solidification method, followed by heat treatment at a temperature lower than the crystallization temperature, followed by pulverization to obtain a fine powder Fe-based amorphous alloy powder characterized.
조성식 FeaSibBcPxNbyCuz인 비정질 합금조성물로서, 77≤a≤83at%, 8<b≤13at%, 6≤c≤10at%, 0.5<x≤2.0at%, 0.5<y≤2at%, 0.5≤z≤2at%이며, b+2x≥11.0at%, c+x≥7.0at%이며, 상기 조성식의 원소 중 Si+2B의 합이 11at% 이상이며, B+P의 합이 7.0at% 이상인 조건으로 조성되는 비정질 합금조성물을 고압의 수분사법에 의하여 제조하거나 급랭응고법에 의하여 비정질 합금 리본을 제조한 후에 결정화 이하 온도범위로 열처리한 다음에 분쇄하여 미세분말로 제조된 철계 비정질 합금분말에 인산(H3PO4)을 아세톤에 넣어 희석하여 1차 코팅처리를 하여 건조한 다음, 폴리이미드를 메틸렌클로라이드(methylene chloride) 용액에 녹여 제조된 용액으로 2차 코팅처리를 한 후, 건조처리를 행하여 폴리이미드가 비정질 합금 분말의 표면에 균일하게 코팅된 복합 입자의 분말을 제조하여 건조한 후에 금속산화물계 윤활제를 균일 혼합한 후에, 상기 혼합된 복합입자 분말을 400℃~550℃로 유지된 성형 다이스의 내부에 자동 장입하여 성형하는 온간성형법에 의하여 압분자심 성형코아를 제조한 후, 상기 제조된 압분자심 성형코아를 결정화 온도 이상으로 나노결정화 열처리하여 코아 내부조직이 나노결정으로 제조되며, 100kHz에서의 실효투자율이 150~350 이며, 포화자속밀도가 1.5T 이상이면서, 50kHz 및 1000Gauss에서의 철손값이 300mW/cc 이하인 것을 특징으로 하는 철계 나노결정 압분자심코아The composition formula Fe a Si b B c P x Nb y Cu z as an amorphous alloy composition, 77≤a≤83at%, 8 <b≤13at% , 6≤c≤10at%, 0.5 <x≤2.0at%, 0.5 < the sum of Si + 2B in the elements of the composition formula is not less than 11 at%, and the sum of B + P and B + P is not less than 2 at% Amorphous alloy composition is prepared by high-pressure water dispersion method or a rapid solidification method, and amorphous alloy ribbon is prepared by heat-treating the amorphous alloy ribbon at a temperature below the crystallization temperature and then pulverized to obtain an iron- The amorphous alloy powder was diluted by adding phosphoric acid (H 3 PO 4 ) in acetone, dried by primary coating treatment, and then subjected to a secondary coating treatment with a solution prepared by dissolving polyimide in methylene chloride solution, Dried to obtain a powder of composite particles in which polyimide is uniformly coated on the surface of the amorphous alloy powder, followed by drying The metal oxide based lubricant is uniformly mixed and then the mixed particle powder is automatically charged into a molding die maintained at 400 ° C to 550 ° C to form a compacted core by a warm- , The inner core of the core is made of nanocrystals by performing the nanocrystallization heat treatment on the prepared core of the pressure-sensitive core above the crystallization temperature, the effective permeability at 100 kHz is 150 to 350, the saturation magnetic flux density is 1.5 T or more, And an iron loss value at 1000 Gauss is 300 mW / cc or less. 삭제delete
KR1020140101861A 2014-08-07 2014-08-07 Fe-based Amorphous Alloy Power And Fe-based Nano-Crystallization Amorphous Compressed Power Core Using the same KR101607483B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140101861A KR101607483B1 (en) 2014-08-07 2014-08-07 Fe-based Amorphous Alloy Power And Fe-based Nano-Crystallization Amorphous Compressed Power Core Using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140101861A KR101607483B1 (en) 2014-08-07 2014-08-07 Fe-based Amorphous Alloy Power And Fe-based Nano-Crystallization Amorphous Compressed Power Core Using the same

Publications (2)

Publication Number Publication Date
KR20160018013A KR20160018013A (en) 2016-02-17
KR101607483B1 true KR101607483B1 (en) 2016-03-30

Family

ID=55457343

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140101861A KR101607483B1 (en) 2014-08-07 2014-08-07 Fe-based Amorphous Alloy Power And Fe-based Nano-Crystallization Amorphous Compressed Power Core Using the same

Country Status (1)

Country Link
KR (1) KR101607483B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210092701A (en) * 2020-01-16 2021-07-26 코오롱인더스트리 주식회사 Inductor
US11104982B2 (en) 2017-09-29 2021-08-31 Samsung Electro-Mechanics Co., Ltd. Fe-based nanocrystalline alloy and electronic component using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021145741A1 (en) * 2020-01-16 2021-07-22 코오롱인더스트리 주식회사 Alloy composition, alloy powder, alloy ribbon, inductor, and motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5537534B2 (en) * 2010-12-10 2014-07-02 Necトーキン株式会社 Fe-based nanocrystalline alloy powder and manufacturing method thereof, and dust core and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5537534B2 (en) * 2010-12-10 2014-07-02 Necトーキン株式会社 Fe-based nanocrystalline alloy powder and manufacturing method thereof, and dust core and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11104982B2 (en) 2017-09-29 2021-08-31 Samsung Electro-Mechanics Co., Ltd. Fe-based nanocrystalline alloy and electronic component using the same
KR20210092701A (en) * 2020-01-16 2021-07-26 코오롱인더스트리 주식회사 Inductor
KR102690071B1 (en) * 2020-01-16 2024-07-30 코오롱인더스트리 주식회사 Inductor

Also Published As

Publication number Publication date
KR20160018013A (en) 2016-02-17

Similar Documents

Publication Publication Date Title
KR101499297B1 (en) High permeability amorphous powder core and making process using by warm temperarture pressing
KR101470513B1 (en) Soft Magnetic Cores Having Excellent DC Biased Characteristics in High Current and Core Loss Characteristics, and Manufacturing Methods thereof
KR100545849B1 (en) Manufacturing method of iron-based amorphous metal powder and manufacturing method of soft magnetic core using same
US10121586B2 (en) Method for manufacturing Fe-based amorphous metal powder and method for manufacturing amorphous soft magnetic cores using same
KR20050018235A (en) Method for Making Nano Scale Grain Metal Powders Having Excellent High Frequency Characteristics and Method for Making Soft Magnetic Core for High Frequency Using the Same
JP6530164B2 (en) Nanocrystalline soft magnetic alloy powder and dust core using the same
CN109273185B (en) Method for preparing magnetic powder core by using iron-based nanocrystalline alloy powder
JP2007019134A (en) Method of manufacturing composite magnetic material
JPS63304603A (en) Green compact of fe soft-magnetic alloy and manufacture thereof
TW201817895A (en) Soft magnetic alloy and magnetic device
KR101166963B1 (en) Method for the production of magnet cores, magnet core and inductive component with a magnet core
EP2330602B1 (en) Composite magnetic material and process for producing the composite magnetic material
US11276516B2 (en) Magnetic powder for high-frequency applications and magnetic resin composition containing same
KR101607483B1 (en) Fe-based Amorphous Alloy Power And Fe-based Nano-Crystallization Amorphous Compressed Power Core Using the same
JP2016012630A (en) Powder-compact magnetic core
JPWO2019123681A1 (en) MnCoZn ferrite and method for producing the same
US9691529B2 (en) Composite magnetic material and method for manufacturing same
JP6519418B2 (en) Soft magnetic metal dust core
CN105121069A (en) Iron powder for dust core and insulation-coated iron powder for dust core
WO2020196608A1 (en) Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
KR20200129089A (en) Iron-based soft magnetic powder and its manufacturing method, and articles containing iron-based soft magnetic alloy powder, and its manufacturing method
CN109741931A (en) A kind of preparation method of iron based nano crystal powder core magnet ring
KR101387961B1 (en) Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof
KR20190076922A (en) Flat powder and magnetic sheet used in high frequency
JP7387670B2 (en) Soft magnetic powder, dust core containing the same, and method for producing soft magnetic powder

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
N231 Notification of change of applicant
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190213

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191114

Year of fee payment: 5