JP2005184872A - Stator core of motor - Google Patents

Stator core of motor Download PDF

Info

Publication number
JP2005184872A
JP2005184872A JP2003417557A JP2003417557A JP2005184872A JP 2005184872 A JP2005184872 A JP 2005184872A JP 2003417557 A JP2003417557 A JP 2003417557A JP 2003417557 A JP2003417557 A JP 2003417557A JP 2005184872 A JP2005184872 A JP 2005184872A
Authority
JP
Japan
Prior art keywords
magnetic
core
motor
stator
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003417557A
Other languages
Japanese (ja)
Inventor
Takashi Mogi
尚 茂木
Takashi Hirayama
隆 平山
Masao Yabumoto
政男 籔本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003417557A priority Critical patent/JP2005184872A/en
Publication of JP2005184872A publication Critical patent/JP2005184872A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a relatively inexpensive dust core exhibiting excellent magnetic characteristics, e.g. permeability. <P>SOLUTION: The stator core is formed by arranging electromagnetic steel plates in a core formed of magnetic powder along the circumferential direction of a stator and/or arranging the electromagnetic steel plates along the teeth direction of the core. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は効率改善を図った各種モータのステータ磁心に関し、詳しくはモータのステータにおいて広い周波数領域に渡って磁束密度が高く鉄損が低い特性を実現する技術に関する。   The present invention relates to a stator core of various motors with improved efficiency, and more particularly to a technique for realizing a characteristic of high magnetic flux density and low iron loss over a wide frequency range in a motor stator.

変圧器、電動機、発電機、スピーカ、誘導加熱器、各種アクチュエータ等、我々の周囲には電磁気を利用した製品が多々ある。それらの高性能化、小型化を図る上で永久磁石(硬質磁性体)や軟質磁性体の性能向上が不可欠である。以下では、これらの磁石の内、軟質磁性体の一種である磁心(磁気コア)について説明する。
磁心を磁界中に配設すると、磁力線を集中させて大きな磁束密度を得ることができ、電磁機器の小型化と性能向上を図れる。具体例を挙げると、磁心は、電磁コイル(以降、単にコイルと称する。)中に挿入されて局所的な磁束密度を増大させたり、複数のコイル中に介在させて磁気回路を形成したりする。
There are many products using electromagnetism around us, such as transformers, motors, generators, speakers, induction heaters, and various actuators. In order to achieve higher performance and smaller size, it is essential to improve the performance of permanent magnets (hard magnetic materials) and soft magnetic materials. Below, the magnetic core (magnetic core) which is a kind of soft magnetic body among these magnets is demonstrated.
When the magnetic core is disposed in the magnetic field, the magnetic field lines can be concentrated to obtain a large magnetic flux density, and the electromagnetic device can be reduced in size and improved in performance. For example, the magnetic core is inserted into an electromagnetic coil (hereinafter simply referred to as a coil) to increase the local magnetic flux density, or interposed in a plurality of coils to form a magnetic circuit. .

このような磁心は、磁束密度の増大を図るため、透磁率が大きいことが要求される。加えて、交番磁界中で使用されることが多いため、高周波鉄損が少ないことも要求される。高周波鉄損には、ヒステリシス損失、渦電流損失があるが、ヒステリシス損失は交番磁界の周波数に比例関係であるのに対し、渦電流損失は周波数の2乗に比例するため、特に、渦電流損失の低減が求められる。渦電流損失の低減を図るには、誘導起電力により磁心に流れる電流を少なくする必要があり、言換えれば、磁心の比抵抗を大きくすることが望まれる。   Such a magnetic core is required to have a high magnetic permeability in order to increase the magnetic flux density. In addition, since it is often used in an alternating magnetic field, it is also required that the high-frequency iron loss be small. High-frequency iron loss includes hysteresis loss and eddy current loss. Hysteresis loss is proportional to the frequency of the alternating magnetic field, whereas eddy current loss is proportional to the square of the frequency. Reduction is required. In order to reduce the eddy current loss, it is necessary to reduce the current flowing through the magnetic core due to the induced electromotive force. In other words, it is desired to increase the specific resistance of the magnetic core.

ティースを一方向性電磁鋼板により形成し、しかも一方向性電磁鋼板の磁化容易方向を径方向としているものが特許文献1において開示されている。この文献には無方向性電磁鋼板により形成されている場合と較べて、ティースにおける鉄損を大きく低減できることが開示されている。また、鋼板を積層する工程を省き、コストを抑える方法として、鉄系磁性粉末を焼結させ圧粉磁心として用いる方法もある。   Patent Document 1 discloses a technique in which teeth are formed of a unidirectional electrical steel sheet and the easy magnetization direction of the unidirectional electrical steel sheet is a radial direction. This document discloses that the iron loss in the teeth can be greatly reduced as compared with the case where the non-oriented electrical steel sheet is used. Further, as a method for omitting the step of laminating steel sheets and suppressing the cost, there is a method in which iron-based magnetic powder is sintered and used as a dust core.

電磁モータの効率の向上、例えば三相同期モータの出力トルクの増大、形状の小型化などを図るためには、ティースやヨークでの鉄損を一層低減しなければならない。また製造コストも抑えなければならない。従来の圧粉磁心は、比抵抗が小さいため、主に直流用コイル中で使用されるに過ぎず、交流コイル中で使用されることは少なかった。その比抵抗の増大を図るために、絶縁性被膜で被覆した鉄系磁性粉末を高圧成形して磁心を製作することが、特許文献2等に開示されている。
特開平7−067272号公報 特表平12−504785号公報
In order to improve the efficiency of the electromagnetic motor, for example, increase the output torque of the three-phase synchronous motor and reduce the size of the shape, the iron loss in the teeth and the yoke must be further reduced. Manufacturing costs must also be kept down. Since the conventional dust core has a small specific resistance, it is mainly used only in a DC coil, and is rarely used in an AC coil. In order to increase the specific resistance, Patent Document 2 discloses that a magnetic core is manufactured by high-pressure molding of an iron-based magnetic powder coated with an insulating coating.
JP 7-067272 A JP-T-12-504785

しかしながら、特許文献2では加圧成形時の成形圧力を大きくできず、低密度の圧粉磁心しか製作できず、透磁率等の磁気的特性が必ずしも十分ではなかった。また、電磁鋼板で形成した磁心では200Hz程度以下の周波数で鉄損は低いが、これ以上の高周波数になると渦電流の増大により鉄損は増加し、圧粉磁心より鉄損が高くなる。こうした問題は、同期モータに限らず、同期発電機などにも共通である。従って、本発明においては、透磁率等の磁気的特性に優れ、かつ比較的低コストな圧粉磁心を提供することが課題である。   However, in Patent Document 2, the molding pressure at the time of pressure molding cannot be increased, and only a low-density powder magnetic core can be produced, and magnetic characteristics such as magnetic permeability are not always sufficient. Moreover, in the magnetic core formed of the electromagnetic steel sheet, the iron loss is low at a frequency of about 200 Hz or less. However, when the frequency is higher than this, the iron loss increases due to an increase in eddy current, and the iron loss becomes higher than that of the dust core. These problems are not limited to synchronous motors but are common to synchronous generators. Accordingly, it is an object of the present invention to provide a dust core having excellent magnetic properties such as magnetic permeability and relatively low cost.

課題を解決するための本発明の具体的な手段は以下の通りである。
(1) 磁性粉末を用いて形成された磁心の中に電磁鋼板を配置したことを特徴とするモータのステータ磁心。
(2) 磁心の周方向に沿って電磁鋼板を配置したことを特徴とする(1)のモータのステータ磁心。
(3) 磁心のティース方向に沿って電磁鋼板を配置したことを特徴とする(1)または(2)のモータのステータ磁心。
(4) (1)ないし(3)のいずれかに記載の磁性粉末と電磁鋼板とからなるステータ磁心を有することを特徴とするモータ。
(5) (4)に記載のモータを搭載したことを特徴とする車両。
Specific means of the present invention for solving the problems are as follows.
(1) A stator core for a motor, wherein an electromagnetic steel plate is disposed in a magnetic core formed using magnetic powder.
(2) The stator magnetic core of the motor according to (1), wherein electromagnetic steel plates are arranged along the circumferential direction of the magnetic core.
(3) The stator magnetic core of the motor according to (1) or (2), wherein electromagnetic steel sheets are arranged along the teeth direction of the magnetic core.
(4) A motor having a stator magnetic core comprising the magnetic powder according to any one of (1) to (3) and an electromagnetic steel plate.
(5) A vehicle comprising the motor according to (4).

本発明によれば、電磁鋼板を周方向やティース方向に沿って配置し、その周りに磁性粉末を充填して形成したステータ磁心を用いることで、低周波から高周波まで鉄損が低く、効率の高いモータを得ることができる。   According to the present invention, by using a stator magnetic core formed by arranging magnetic steel sheets along the circumferential direction or the tooth direction and filling magnetic powder around them, the iron loss is low from low frequency to high frequency, and the efficiency is high. A high motor can be obtained.

すでに述べたように、これまでモータの効率向上、出力トルクの増大、形状の小型化等を図るために、ティースやヨークでの鉄損低減が図られている。本発明者らは電磁鋼板の積層工程を省略し、かつ磁気特性をなるべく劣化させない手法を効果的に実現するため鋭意研究を行った。その結果、圧粉磁心中のヨーク部やティース部に電磁鋼板を配置してステータを構成したところ、従来の圧粉磁心のステータより鉄損の低減が確認され、低周波から高周波にかけて従来の圧粉磁心、または電磁鋼板のみで構成されたステータ磁心より低鉄損でかつ高透磁率のステータ磁心が得られることを知見として得た。   As described above, in order to improve the efficiency of the motor, increase the output torque, reduce the size of the shape, etc., iron loss has been reduced in the teeth and the yoke. The inventors of the present invention have conducted intensive research in order to effectively realize a technique that omits the laminating process of the magnetic steel sheets and does not deteriorate the magnetic characteristics as much as possible. As a result, when the stator was constructed by placing electromagnetic steel sheets in the yoke and teeth in the dust core, it was confirmed that the iron loss was reduced compared to the stator of the conventional dust core, and the conventional pressure was applied from low to high frequencies. It has been found as a knowledge that a stator core having a lower iron loss and a higher permeability can be obtained than a stator core composed only of a powder magnetic core or a magnetic steel sheet.

次に、実施形態を挙げ、本発明をより詳細に説明する。
磁性粉末であるが、この比抵抗は形状に依存しない固有値であり、同形状の圧粉磁心であれば比抵抗が大きいほど、渦電流損失を小さくすることができ、比抵抗ρが0.7μΩm未満では、渦電流損失の十分な低減が図れないため、0.7μΩm以上である磁性粉末を用いることが望ましい。本発明においては、電磁鋼板をコアにするため板を積層し、かしめやボルト締めあるいは溶接などで固定する工程は必要なく、電磁鋼板を配置したあと、周りを磁性粉末で覆い、成形するだけである。
Next, the present invention will be described in more detail with reference to embodiments.
Although it is a magnetic powder, this specific resistance is an eigenvalue that does not depend on the shape. If the powder core has the same shape, the larger the specific resistance, the smaller the eddy current loss, and the specific resistance ρ is 0.7 μΩm. If it is less than 1, eddy current loss cannot be sufficiently reduced. Therefore, it is desirable to use magnetic powder of 0.7 μΩm or more. In the present invention, there is no need to stack the plates to make the magnetic steel plate a core and fix it by caulking, bolting or welding, etc. After the electromagnetic steel plate is placed, the surroundings are covered with magnetic powder and molded. is there.

圧粉磁心は、鋳造または焼結した磁心とは異なり、鉄系磁性粉末の加圧成形体からなる。その粉末の各粒子の結合は、主に塑性変形に伴う機械的結合であって冶金的に結合したものではない。
鉄系磁性粉末は、鉄を主成分とする強磁性の金属粉末である。例えば、鉄系磁性粉末が、純鉄からなる鉄粉末であると好適である。高い磁束密度が得易く、保磁力低下によるヒステリシス損失の低減を図れるからである。その純鉄の純度は、純度99%以上、さらには99.5%以上、99.8%以上であると好適である。このような鉄粉として、例えばヘガネス社製のASC100.29を用いることができる。この鉄粉は、Fe以外の成分がC:0.001、Mn:0.02、O:0.08(単位:質量%)以下と、他の市販鉄粉に比べて不純物が極めて少なく、圧縮性に優れた鉄粉である。
Unlike a cast or sintered magnetic core, the dust core is made of a pressure-formed body of iron-based magnetic powder. The bonding of the particles of the powder is mainly mechanical bonding accompanying plastic deformation and not metallurgical bonding.
The iron-based magnetic powder is a ferromagnetic metal powder mainly composed of iron. For example, the iron-based magnetic powder is preferably an iron powder made of pure iron. This is because a high magnetic flux density can be easily obtained and hysteresis loss can be reduced due to a decrease in coercive force. The purity of the pure iron is preferably 99% or more, more preferably 99.5% or more, and 99.8% or more. As such iron powder, for example, ASC100.29 manufactured by Höganäs can be used. This iron powder has components other than Fe: C: 0.001, Mn: 0.02, O: 0.08 (unit: mass%) or less, and has very few impurities compared to other commercially available iron powders. Iron powder with excellent properties.

鉄系磁性粉末は、磁心材料として適した複数の粉末からなる混合粉末でも良いし、合金粉末でも良い。鉄系磁性粉末は、造粒粉でも、粗粒粉でも良い。酸化鉄の種類は問わないが、例えば、α-Fe、γ-Fe、Fe、FeO等がある。酸化皮膜が鉄系磁性粉末の各粒子の全体を被覆し、その膜厚が厚い程、比抵抗は大きくなる。しかし、その酸化皮膜は鉄に比べて磁性が低いため、その量が多すぎると、各磁場中で得られる磁束密度も小さくなってしまう。 The iron-based magnetic powder may be a mixed powder composed of a plurality of powders suitable as a magnetic core material, or may be an alloy powder. The iron-based magnetic powder may be a granulated powder or a coarse powder. The type of iron oxide is not limited, but examples include α-Fe 2 O 3 , γ-Fe 2 O 3 , Fe 3 O 4 , and FeO. The specific resistance increases as the oxide film covers the entire particles of the iron-based magnetic powder and the film thickness increases. However, since the oxide film has a lower magnetism than iron, if the amount is too large, the magnetic flux density obtained in each magnetic field is also reduced.

モータ磁心のヨークにおいて磁束はモータの周方向に流れるので、電磁鋼板の長手方向は周方向に沿って配置する。反対に電磁鋼板を周方向に対して垂直に配置した場合は鋼板面内に渦電流が流れ、損失が大きくなる。ティースにおいても電磁鋼板の長手方向をティース方向に沿って配置することで同様な効果が得られる。   Since the magnetic flux flows in the circumferential direction of the motor in the yoke of the motor magnetic core, the longitudinal direction of the electromagnetic steel sheet is arranged along the circumferential direction. On the contrary, when the electromagnetic steel sheet is arranged perpendicular to the circumferential direction, an eddy current flows in the steel sheet surface and the loss increases. In the teeth, the same effect can be obtained by arranging the longitudinal direction of the electromagnetic steel sheet along the teeth direction.

次に、磁性粉末の充填工程において電磁鋼板を配置した型に鉄系磁性粉末を入れる。この充填工程が加熱された鉄系磁性粉末と加熱された成型用金型内に充填する工程であると好適である。鉄系磁性粉末と成型用金型との両方が加熱されていると、後続する成型工程において鉄系磁性粉末と高級脂肪酸系潤滑材とが安定して反応し、両者の間に均一な潤滑皮膜が形成されやすい。そこで例えば両者を100℃以上に加熱しておくと好ましい。高級脂肪酸系潤滑剤であるが、これを成型用金型の内面に塗布し、磁性粉末を充填して温間で加工すると成型用金型の内壁と磁性粉末の間の潤滑性が向上し、金型から加圧成型対の貫き圧力の低減が図れる。   Next, in the magnetic powder filling step, the iron-based magnetic powder is put into a mold in which an electromagnetic steel plate is arranged. It is preferable that this filling step is a step of filling the heated iron-based magnetic powder and the heated molding die. When both the iron-based magnetic powder and the molding die are heated, the iron-based magnetic powder and the higher fatty acid-based lubricant react stably in the subsequent molding process, and a uniform lubricating film is formed between the two. Is easily formed. Therefore, for example, it is preferable to heat both to 100 ° C. or higher. Although it is a higher fatty acid-based lubricant, when this is applied to the inner surface of the molding die, filled with magnetic powder and processed warm, the lubricity between the inner wall of the molding die and the magnetic powder improves, It is possible to reduce the penetrating pressure from the mold to the pressure molding pair.

成形工程では温間で加圧し、磁性粉末を金型に合った形に成形する。成形工程における「温間」とは、鉄系磁性粉末、高級脂肪酸系潤滑剤、成形圧力等を考慮した適切な加熱条件の下で成形することを意味する。鉄系磁性粉末と高級脂肪酸系潤滑剤との反応を促進するために、成形温度を100℃以上とし、高級脂肪酸系潤滑剤の変質を防止するために、成形温度を200℃以下とすると好ましい。   In the molding process, pressure is applied warmly, and the magnetic powder is molded into a shape suitable for the mold. “Warm” in the molding process means molding under an appropriate heating condition in consideration of iron-based magnetic powder, higher fatty acid-based lubricant, molding pressure and the like. In order to promote the reaction between the iron-based magnetic powder and the higher fatty acid-based lubricant, the molding temperature is preferably set to 100 ° C. or higher, and in order to prevent deterioration of the higher fatty acid-based lubricant, the molding temperature is preferably set to 200 ° C. or lower.

成形工程における「加圧」の程度も、圧粉磁心の要求特性、鉄系磁性粉末、酸化皮膜および高級脂肪酸系潤滑剤の種類、成形用金型の材質や内面性状等に応じて適宜決定される。但し、本発明の製造方法の場合、従来の成形圧力を超越した成形圧力下で成形可能である。例えば、その成形圧力を700MPa以上とすることができる。   The degree of "pressurization" in the molding process is also appropriately determined according to the required characteristics of the powder magnetic core, the type of iron-based magnetic powder, oxide film and higher fatty acid-based lubricant, the material of the molding die, the internal properties, etc. The However, in the case of the production method of the present invention, the molding can be performed under a molding pressure exceeding the conventional molding pressure. For example, the molding pressure can be 700 MPa or more.

以上が磁性粉末を用いた磁心の作製方法であるが、本発明はこれに電磁鋼板を組み合わせることを特徴とする。50Hz等の低周波域において磁束は磁性粉末より透磁率の高い電磁鋼板に流れる。したがって、本発明のモータ磁心は圧粉磁心単体よりも透磁率が上がり、鉄損は下がる。したがって、トルクは向上する。また高周波特性の良い磁性粉末で電磁鋼板の周りが形成されているため電磁鋼板モータ磁心よりも高い周波数における鉄損が低くなる。したがって、より高い回転数で鉄損の低いモータができる。
以下、実施例にもとづき本発明を説明する。
The above is a method for producing a magnetic core using magnetic powder, and the present invention is characterized by combining this with an electromagnetic steel sheet. In a low frequency region such as 50 Hz, the magnetic flux flows through an electromagnetic steel sheet having a higher permeability than the magnetic powder. Therefore, the magnetic permeability of the motor core of the present invention is higher than that of the dust core alone, and the iron loss is reduced. Therefore, the torque is improved. In addition, since the periphery of the magnetic steel sheet is formed of magnetic powder having good high frequency characteristics, the iron loss at a higher frequency than that of the magnetic steel sheet motor core is reduced. Therefore, a motor with a low iron loss can be achieved at a higher rotational speed.
Hereinafter, the present invention will be described based on examples.

図1に本発明を適用した永久磁石モータのステータの断面図を示す。図1のモータのステータにおいて、電磁鋼板を中心にヨーク部に沿って配置し、またティース部でも同様にロータ中心に向かって径方向に平行に配置した。そのまわりをヘガネス社製磁性粉末ASC100.29によって包み、200℃の温間で加圧して成型した。
ここで中にロータを入れ、外部から入力した電流と電圧により電力計を用いて鉄損を測定した。周波数は800Hz、ヨークの磁束密度は0−1.2Tとした。比較の対象として、圧粉磁心のみで形成したものと、無方向性電磁鋼板で作製したものを用いた。
FIG. 1 is a sectional view of a stator of a permanent magnet motor to which the present invention is applied. In the motor stator of FIG. 1, the electromagnetic steel sheet is arranged along the yoke part, and the teeth part is also arranged in parallel in the radial direction toward the rotor center. The surroundings were wrapped with magnetic powder ASC 100.29 manufactured by Höganäs, and molded by pressing at a temperature of 200 ° C.
Here, the rotor was put in, and the iron loss was measured using a wattmeter with the current and voltage input from the outside. The frequency was 800 Hz, and the magnetic flux density of the yoke was 0-1.2T. As comparison objects, those formed only with a dust core and those made of a non-oriented electrical steel sheet were used.

圧粉磁心は鉄損が一番高く、1.0Tでは約130W/kgを示した。一方、無方向性電磁鋼板で作製したものは約50W/kgであった。本発明の鉄心において、磁束は圧粉磁心より磁束が通りやすい電磁鋼板に流れるため、圧粉鉄心単体よりも透磁率が上がり、鉄損は下がった(図2)。無方向性電磁鋼板よりも鉄損は高く、両コアの中間の値であるが、圧粉磁心と同様な製造工程で鋼板を積層する必要が無く、製造においてより簡便である。
したがって、透磁率の高い分、トルクは向上し、鉄損が低い分、効率は向上する。また高周波特性の良い磁性粉末で電磁鋼板の周りが形成されているため電磁鋼板よりも高い周波数における鉄損が低くなる。したがって、より高い回転数においても鉄損の低いモータが形成できた。
The dust core had the highest iron loss, and it showed about 130 W / kg at 1.0T. On the other hand, what was produced with the non-oriented electrical steel sheet was about 50 W / kg. In the iron core of the present invention, the magnetic flux flows through the magnetic steel sheet through which the magnetic flux passes more easily than the dust core, so that the magnetic permeability increased and the iron loss decreased compared to the dust core alone (FIG. 2). The iron loss is higher than that of the non-oriented electrical steel sheet, which is an intermediate value between both cores. However, it is not necessary to laminate the steel sheets in the same manufacturing process as the dust core, and it is easier to manufacture.
Therefore, the torque is improved by the high magnetic permeability, and the efficiency is improved by the low iron loss. Moreover, since the circumference | surroundings of an electromagnetic steel plate are formed with the magnetic powder with a favorable high frequency characteristic, the iron loss in a frequency higher than an electromagnetic steel plate becomes low. Therefore, a motor with low iron loss could be formed even at higher rotational speeds.

以下本発明の第2の実施例について、図面を参照しながら説明する。
図3に本発明を適用した永久磁石モータのステータの断面図を示す。モータのステータはヨーク部においては磁性粉末のみを、またティース部では電磁鋼板を中心部に配置した。そのまわりを磁性粉末によって包み、加圧して固定する。圧縮成型して200℃の温間で形成した。
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
FIG. 3 shows a cross-sectional view of a stator of a permanent magnet motor to which the present invention is applied. In the stator of the motor, only the magnetic powder is disposed in the yoke portion, and the electromagnetic steel plate is disposed in the central portion in the tooth portion. The surroundings are wrapped with magnetic powder and fixed by pressing. It was compression molded and formed at a temperature of 200 ° C.

上記の磁心の中心部にロータの代わりとして円形の電磁鋼板を入れ、磁気特性を測定した。磁束は圧粉鉄心より磁束が通りやすい電磁鋼板に流れる。比較材の圧粉のみからなる磁心よりも透磁率が上がり、鉄損は下がった。表1に磁気特性をまとめた。保持力Hcは磁性粉末磁心の1/2で磁束密度B50は磁性粉末磁心より0.16T高い。1.0T、2kHzの鉄損は磁性粉末磁心の約85%である。
また、高周波特性の良い磁性粉末で電磁鋼板の周りが形成されているため、比較材の電磁鋼板磁心よりも高い周波数における鉄損が低くなる。したがって、より高い回転数で鉄損の低いモータができた。
A circular electromagnetic steel sheet was placed in the center of the magnetic core instead of the rotor, and the magnetic properties were measured. The magnetic flux flows through the magnetic steel sheet through which the magnetic flux passes more easily than the dust core. The magnetic permeability increased and the iron loss decreased compared to the magnetic core consisting only of the comparison material powder. Table 1 summarizes the magnetic properties. Coercive force Hc is the magnetic flux density B 50 in half of the magnetic powder core is 0.16T higher magnetic powder core. The iron loss at 1.0 T and 2 kHz is about 85% of the magnetic powder core.
Moreover, since the circumference | surroundings of an electromagnetic steel plate are formed with the magnetic powder with a favorable high frequency characteristic, the iron loss in a frequency higher than the electromagnetic steel plate magnetic core of a comparison material becomes low. Therefore, a motor with a lower iron loss at a higher rotational speed was obtained.

Figure 2005184872
Figure 2005184872

以上のように本発明のステータ磁心の例について説明したが、次に実施例3として本発明のステータ磁心を用いた埋込磁石同期モータ(IPM)を説明する。
図4は本実施形態の埋込磁石同期モータ1の概略構成を示している。ステータ2はステータ内に埋め込まれた電磁鋼板3とその周りを固定する磁性粉末4からなる。電磁鋼板はステータの外形に沿うように曲率を持たせて配置してある。磁性粉末によって形成されたティースの周りには巻線5が施されている。
このように、電磁鋼板を磁性粉末で固定した構造をもつステータ磁心によれば、低周波から高周波励磁において高透磁率で低い鉄損特性を持ち、高効率化を図ることができる。
なお、ロータの構造は従来のものと同様であるので、詳しい説明を省略する。
The example of the stator core of the present invention has been described above. Next, an embedded magnet synchronous motor (IPM) using the stator core of the present invention will be described as a third embodiment.
FIG. 4 shows a schematic configuration of the embedded magnet synchronous motor 1 of the present embodiment. The stator 2 includes an electromagnetic steel plate 3 embedded in the stator and a magnetic powder 4 that fixes the periphery thereof. The electromagnetic steel sheet is arranged with a curvature along the outer shape of the stator. Windings 5 are provided around the teeth formed of magnetic powder.
As described above, according to the stator magnetic core having a structure in which the magnetic steel sheet is fixed with the magnetic powder, it has high magnetic permeability and low iron loss characteristics in low frequency to high frequency excitation, and high efficiency can be achieved.
Since the structure of the rotor is the same as that of the conventional one, detailed description is omitted.

次に、本実施形態の埋込磁石同期モータの性能を評価するために出力60kWクラスの埋込磁石同期モータを製作した。比較例として電磁鋼板がステータ内にないことを除いて形状が同じである磁性粉末のみからなるステータ磁心を製作し、そのステータの中心部にロータを組み込んだモータについても性能を評価した。そして、本実施形態の埋込磁石同期モータと比較例としてのモータの性能を比較した。   Next, in order to evaluate the performance of the embedded magnet synchronous motor of this embodiment, an embedded magnet synchronous motor with an output of 60 kW class was manufactured. As a comparative example, a stator magnetic core made only of magnetic powder having the same shape except that there is no electromagnetic steel sheet in the stator was manufactured, and the performance of a motor in which a rotor was incorporated at the center of the stator was evaluated. And the performance of the internal magnet synchronous motor of this embodiment and the motor as a comparative example were compared.

具体的には10000rpm(回転/分)、60kWでの効率を比較したところ、本実施形態の埋込磁石同期モータの方が比較例と比べて効率が上回っていた。このような結果の主な要因は、電磁鋼板を埋込んだステータ磁心による低周波から高周波(50−2000Hz)の透磁率が高く、かつ鉄損が低く、巻線の銅損も低減したためであることがわかった。   Specifically, when the efficiency at 10,000 rpm (rotation / min) and 60 kW was compared, the efficiency of the embedded magnet synchronous motor of this embodiment was higher than that of the comparative example. The main cause of such a result is that the magnetic permeability from the low frequency to the high frequency (50-2000 Hz) by the stator core embedded with the magnetic steel sheet is high, the iron loss is low, and the copper loss of the winding is also reduced. I understood it.

なお、以上の説明では図4の埋込磁石同期モータを例にとって説明したが、埋込磁石型の回転機に本発明を適用することが出来ることは明らかである。すなわち、本発明は同期モータ以外の電動機にも適用することもでき、また、高速回転性が要求されている発電機にも適用することができる。   In the above description, the embedded magnet synchronous motor of FIG. 4 has been described as an example. However, it is apparent that the present invention can be applied to an embedded magnet type rotating machine. That is, the present invention can be applied to electric motors other than synchronous motors, and can also be applied to generators that require high-speed rotation.

以上のように、本実施形態によれば、遠心力に対する耐性が強く、高速回転可能なステータ磁心が実現できる。また、本実施の形態の埋込磁石同期モータによれば、性能を悪化させること無く、高速回転可能なモータを実現することが出来る。   As described above, according to the present embodiment, a stator magnetic core that is highly resistant to centrifugal force and can be rotated at high speed can be realized. Further, according to the embedded magnet synchronous motor of the present embodiment, it is possible to realize a motor capable of high-speed rotation without deteriorating performance.

次に本発明の車両について説明する。本発明のロータを搭載した車両はEV(電気自動車)、HEV(ハイブリッド電気自動車)、またはFCV(燃料電池自動車)である。本実施形態では、EVを例にとって説明する。
図5は本実施形態にかかわるEVを模式的に示している。図6に示されるEV(電気自動車)21は、上記実施例3で説明したステータ磁心を有する埋込磁石同期モータ20によりトランスミッション22およびデファレンシャルギヤ23を介してトルクを分配してタイヤ24を駆動している。
Next, the vehicle of the present invention will be described. A vehicle equipped with the rotor of the present invention is an EV (electric vehicle), HEV (hybrid electric vehicle), or FCV (fuel cell vehicle). In the present embodiment, an explanation will be given by taking EV as an example.
FIG. 5 schematically shows an EV according to the present embodiment. An EV (electric vehicle) 21 shown in FIG. 6 drives a tire 24 by distributing torque via a transmission 22 and a differential gear 23 by an embedded magnet synchronous motor 20 having a stator magnetic core described in the third embodiment. ing.

しかしながら、本発明の車両はこの場合に限られない。トランスミッション機械を持っていないタイプ、モータ2つでそれぞれ独立に車輪を駆動するタイプ、車輪の内部にモータを取り付けたホイールインモータによってタイヤを独立駆動するタイプなど、種々のタイプの車両に利用することが出来ることはもちろんである。
本実施形態の車両によれば、高速回転性能の高い埋込磁石型モータを駆動力源として用いているので、駆動部分の機械強度に優れ、かつ高速回転領域を含む広範囲にわたっての出力運転を容易に達成する車両を提供できる。
However, the vehicle of the present invention is not limited to this case. Used for various types of vehicles, such as a type that does not have a transmission machine, a type that drives two wheels independently with two motors, and a type that independently drives tires with a wheel-in motor with a motor installed inside the wheels. Of course you can.
According to the vehicle of this embodiment, since the embedded magnet type motor with high high-speed rotation performance is used as the driving force source, the drive portion has excellent mechanical strength and can easily perform output operation over a wide range including the high-speed rotation region. A vehicle that achieves the above can be provided.

以上の通り、本発明の好適な実施形態を説明したが、本発明はこれらの場合に限られるものではなく、当業者によって種々の追加、あるいは変形が可能であることはいうまでもない。
たとえば、上記の説明ではステータ用材料としてヘガネス社製磁性粉末ABC100,20を使用する場合を示したが、本発明はこの場合に限らない。たとえば、三菱マテリアル製MBS100等を使用する場合にも適用することが出来る。
As described above, the preferred embodiments of the present invention have been described, but the present invention is not limited to these cases, and it goes without saying that various additions or modifications can be made by those skilled in the art.
For example, in the above description, the case where the magnetic powder ABC100, 20 manufactured by Höganäs is used as the stator material is shown, but the present invention is not limited to this case. For example, the present invention can also be applied when using Mitsubishi Materials MBS100 or the like.

ヨーク部に電磁鋼板を配置したステータ磁心を示す図である。It is a figure which shows the stator magnetic core which has arrange | positioned the electromagnetic steel plate in the yoke part. 本発明のステータ磁心の鉄損を示す図である。It is a figure which shows the iron loss of the stator magnetic core of this invention. ティース部に電磁鋼板を配置したステータ磁心を示す図である。It is a figure which shows the stator magnetic core which has arrange | positioned the electromagnetic steel plate in the teeth part. 本発明のステータ磁心を有する埋込磁石同期モータ(IPM)の一例を示す図である。It is a figure which shows an example of the interior magnet synchronous motor (IPM) which has a stator magnetic core of this invention. 本発明の車両の一例を示す図である。It is a figure which shows an example of the vehicle of this invention.

符号の説明Explanation of symbols

1 埋込磁石同期モータ 2 ステータ
3 電磁鋼板 4 磁性粉末
5 巻線 20 埋込磁石同期モータ
21 EV(電気自動車) 22 トランスミッション
23 デファレンシャルギヤ 24 タイヤ
DESCRIPTION OF SYMBOLS 1 Embedded magnet synchronous motor 2 Stator 3 Magnetic steel plate 4 Magnetic powder 5 Winding 20 Embedded magnet synchronous motor 21 EV (electric vehicle) 22 Transmission 23 Differential gear 24 Tire

Claims (5)

磁性粉末を用いて形成された鉄心の中に電磁鋼板を配置したことを特徴とするモータのステータ磁心。 A stator core for a motor, wherein an electromagnetic steel plate is disposed in an iron core formed using magnetic powder. 鉄心のモータのヨーク部において周方向に沿って電磁鋼板を配置したことを特徴とする請求項1記載のモータのステータ磁心。 2. A stator core for a motor according to claim 1, wherein an electromagnetic steel plate is disposed along a circumferential direction in a yoke portion of the iron core motor. 鉄心のモータのティース部においてティース方向に沿って電磁鋼板を配置したことを特徴とする請求項1または2記載のモータのステータ磁心。 The stator magnetic core of the motor according to claim 1 or 2, wherein an electromagnetic steel sheet is disposed along a tooth direction in a tooth portion of the iron motor. 請求項1ないし3のいずれかに記載の磁性粉末と電磁鋼板とからなるモータのステータ磁心を有することを特徴とするモータ。 A motor comprising a stator magnetic core of a motor comprising the magnetic powder according to claim 1 and a magnetic steel sheet. 請求項4に記載のモータを搭載したことを特徴とする車両。 A vehicle comprising the motor according to claim 4.
JP2003417557A 2003-12-16 2003-12-16 Stator core of motor Pending JP2005184872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003417557A JP2005184872A (en) 2003-12-16 2003-12-16 Stator core of motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003417557A JP2005184872A (en) 2003-12-16 2003-12-16 Stator core of motor

Publications (1)

Publication Number Publication Date
JP2005184872A true JP2005184872A (en) 2005-07-07

Family

ID=34780019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003417557A Pending JP2005184872A (en) 2003-12-16 2003-12-16 Stator core of motor

Country Status (1)

Country Link
JP (1) JP2005184872A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278623A (en) * 2007-04-27 2008-11-13 Nippon Steel Corp Highly efficient and low-noise motor
JP2013138531A (en) * 2011-12-28 2013-07-11 Hitachi Appliances Inc Permanent magnet motor and compressor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564342U (en) * 1979-06-25 1981-01-16
JPS61154014A (en) * 1984-12-27 1986-07-12 Toshiba Corp Dust core
JP2000261998A (en) * 1999-03-08 2000-09-22 Toshiba Corp Manufacture of motor and magnetic wedge used therefor
JP2001157390A (en) * 1999-11-22 2001-06-08 Shinko Electric Co Ltd High heat resistant rotary electric machine
JP2001230116A (en) * 1999-12-09 2001-08-24 Sumitomo Electric Ind Ltd Electromagnetic actuator
JP2001292542A (en) * 2000-04-05 2001-10-19 Nissan Motor Co Ltd Manufacturing method for stator core of motor and stator
JP2001332411A (en) * 2000-05-19 2001-11-30 Daido Steel Co Ltd Composite magnetic material
JP2003143781A (en) * 2001-11-02 2003-05-16 Toyota Motor Corp Stator core of rotary machine
JP2003244873A (en) * 2002-02-18 2003-08-29 Jfe Steel Kk Stator core for motor of superior noise characteristics
JP2003274581A (en) * 2002-03-12 2003-09-26 Nippon Steel Corp Synchronous machine
JP2003297624A (en) * 2002-04-02 2003-10-17 Toyota Central Res & Dev Lab Inc Dust core and its manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564342U (en) * 1979-06-25 1981-01-16
JPS61154014A (en) * 1984-12-27 1986-07-12 Toshiba Corp Dust core
JP2000261998A (en) * 1999-03-08 2000-09-22 Toshiba Corp Manufacture of motor and magnetic wedge used therefor
JP2001157390A (en) * 1999-11-22 2001-06-08 Shinko Electric Co Ltd High heat resistant rotary electric machine
JP2001230116A (en) * 1999-12-09 2001-08-24 Sumitomo Electric Ind Ltd Electromagnetic actuator
JP2001292542A (en) * 2000-04-05 2001-10-19 Nissan Motor Co Ltd Manufacturing method for stator core of motor and stator
JP2001332411A (en) * 2000-05-19 2001-11-30 Daido Steel Co Ltd Composite magnetic material
JP2003143781A (en) * 2001-11-02 2003-05-16 Toyota Motor Corp Stator core of rotary machine
JP2003244873A (en) * 2002-02-18 2003-08-29 Jfe Steel Kk Stator core for motor of superior noise characteristics
JP2003274581A (en) * 2002-03-12 2003-09-26 Nippon Steel Corp Synchronous machine
JP2003297624A (en) * 2002-04-02 2003-10-17 Toyota Central Res & Dev Lab Inc Dust core and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278623A (en) * 2007-04-27 2008-11-13 Nippon Steel Corp Highly efficient and low-noise motor
JP2013138531A (en) * 2011-12-28 2013-07-11 Hitachi Appliances Inc Permanent magnet motor and compressor

Similar Documents

Publication Publication Date Title
JP4719568B2 (en) Powder magnet and rotating machine using the same
MXPA05008223A (en) Efficient high-speed electric device using low-loss materials.
JP2006320036A (en) Motor
JP2009153356A (en) Self-initiating permanent-magnet synchronous electric motor
JP2004153977A (en) Motor
JP5843124B2 (en) Core manufacturing method
KR101289289B1 (en) Motor having one-body type stator core
JP4970899B2 (en) Manufacturing method of high resistance powder magnetic core
Villani High performance electrical motors for automotive applications–status and future of motors with low cost permanent magnets
JP5249897B2 (en) Iron core manufacturing method
JP2009055750A (en) Claw pole type pm motor and its manufacturing method
JP3714662B2 (en) Manufacturing method of powder magnetic core for rotor
JP4701641B2 (en) Composite bond magnet, method for producing composite bond magnet, rotor of DC brushless motor equipped with composite bond magnet.
US20110204744A1 (en) Rotor core and electric motor
JP2010183692A (en) Magnet for motor, rotor for ipm motor, and ipm motor
JP2010252417A (en) Outer rotor type ipm motor, and rotor thereof
JP2005184872A (en) Stator core of motor
JP4238588B2 (en) Motor, motor rotor and composite anisotropic magnet
JP2011174103A (en) Magnetic material for iron core, method for producing the same, and iron core
JP5732716B2 (en) Motor core
CN114301194A (en) Stator, manufacturing method of stator, motor and electric automobile
JP6712518B2 (en) Polar anisotropic magnet, manufacturing method thereof, and permanent magnet type motor generator
JP6925838B2 (en) Iron core and motor equipped with it
JP2017093277A (en) Device
WO2012031086A2 (en) Electrical traction motor, a stator used in an electrical motor or generator and a method of manufacturing an electrical traction motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210