JP3714662B2 - Manufacturing method of powder magnetic core for rotor - Google Patents
Manufacturing method of powder magnetic core for rotor Download PDFInfo
- Publication number
- JP3714662B2 JP3714662B2 JP2000290903A JP2000290903A JP3714662B2 JP 3714662 B2 JP3714662 B2 JP 3714662B2 JP 2000290903 A JP2000290903 A JP 2000290903A JP 2000290903 A JP2000290903 A JP 2000290903A JP 3714662 B2 JP3714662 B2 JP 3714662B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- powder
- rotor
- magnetic field
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0246—Manufacturing of magnetic circuits by moulding or by pressing powder
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Synchronous Machinery (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、磁気異方性を有するロータ用圧粉磁心の製造方法に関するものである。
【0002】
【従来の技術】
圧粉磁心材料は、珪素鋼板の積層材やソフトフエライトと共に、交流磁場中で用いられるノイズフィルター、チョークコイル、トランス等の磁気回路部品として開発及び実用化が進められてきた。圧粉磁心材料は、珪素鋼板の積層材と比較し、磁気特性が等方性で、珪素鋼板では対応不可能な高周波磁場中でも使用可能であることが特長であり、反面、飽和磁束密度や透磁率が低いなどの欠点を持つ。ただし、圧粉磁心材料はソフトフェライトよりは飽和磁束密度や透磁率が高く、磁心の小型化が可能となる。
【0003】
また、高周波用圧粉磁心材料としては、鉄損の低減が課題になり、その改善方法として、磁性粉末表面に施される絶縁被膜を工夫したり(特開平11−251131号)、金属磁性粉末を偏平化処理して形状異方性を付与することで主に渦電流損を小さくしたり(特開平10−83910号)、更に特定のアスペクト比の金属磁性粉末を用い、磁場中で成形してその長軸方向をリング部品の径方向に配向することで主にヒステリシス損を小さくしたり(特開平8−167518号)、と検討が加えられてきた。
【0004】
【発明が解決しようとする課題】
ところが、圧粉磁心材料は鉄損の低減と共にやはり飽和磁束密度の低いことが障害となり、また、従来の磁場中成形は磁性粉末の長軸方向をリング圧粉体の径方向や軸方向に配向するという単純なものであっためその用途には自ずから限界があった。圧粉磁心材料をより一層普及するためには、更なる改善が不可欠であり、特に最近、電気自動車や工作機械等の駆動モータとして注目されているリラクタンストルクやマグネットトルクを利用したモータのロータ等への適用も実現したい。
【0005】
なお、リラクタンスモータの従来ロータ20は、図3(a),(b)に示したように、プレス加工された数十枚のコアシート21がロータ軸22の軸方向に積層され、両側の固定部材23により挟持固定した構造である。このため、従来ロータ20は加工及び組立工数がかかり、自ずと高価になる。このロータには、改善策も色々提案(例えば、特開平11−146615号)されているものの、何れもがコアシート21を積層することを基本とした構造であり、根本的な対策となり得なかった。また、コアシート21は電磁鋼板であり、複数の円弧状スリット24が周囲を4等分する箇所にそれぞれ形成され、該スリット24の存在によりq軸方向のインダクタンスLqとこれと電気角が直交するd軸方向のインダクタンスLdの差を大きくし、磁気的突極性が得られるようになっている。これは、スリット構成以外にもロータに永久磁石を埋込むことでリラクタンストルクとマグネットトルクを利用することもある(詳細は、T.IEE Japan,Vol.117−D,No7,1997「リラクタンストルクの有効利用をめざした多層埋込磁石構造PMモータ」の電気学会論文を参照)。
【0006】
【課題を解決するための手段】
本発明は、上記した課題を解消したものであり、圧粉磁心をリラクタンストルクやマグネットトルクを利用したモータのロータへの適用可能性を追求する過程で完成されたものである。すなわち、本発明は、ロータ軸用中心軸孔と、該中心軸孔と外周との間にあって周囲方向略等間隔に設けられた複数の永久磁石用装着孔とを有するモータのロータ用圧粉磁心の製造方法であって、表面に絶縁被膜を形成したアスベクト比が2〜15の金属磁性粉末と熱硬化性樹脂とを混合した混合粉末を用いるとともに、内孔周囲側部に周囲方向間隔を保って4以上で偶数個の磁極をS極、N極交互かつ等間隔に配置して隣り合う磁極間で内孔中心に向けて凸湾曲した磁界を形成する成形型を用意し、前記成形型の内孔に、前記混合粉末を充填して、前記磁極により形成される湾曲した磁界に沿って、前記金属磁性粉末の長軸方向が前記装着孔側から前記中心軸孔に向け凸形で、当該装着孔の両側を通る円弧状となるよう配向させた後、磁場中で上下パンチで圧縮成形し、得られた成形体を加熱硬化させることを特徴としている。
以上のような磁場中成形では、得られる圧粉磁心の磁束を集中したい複数箇所に対応する成形型内孔側部、つまりダイ孔を形成しているダイス周囲側部にあって周囲方向間隔を保って複数個の磁極を配し、前記磁極により形成される湾曲した磁界に沿って、金属磁性粉末を配向することから、圧粉磁心として従来考えられない磁性特性が実現されて、圧粉磁心の用途を拡大可能にする。すなわち、この種の圧粉磁心は、例えば、アスペクト比が大きい磁性金属粉末の長手方向には磁束が通り易く、その磁性金属粉末の向きを湾曲に揃えることで、その湾曲した方向に高磁束密度を得ることが可能となる。これは、例えば、次のリラクタンストルクやマグネットトルクを利用したモータのロータに好適なものとなる。
【0007】
リラクタンストルクを利用したモータ(リラクタンスモータやマグネットモータと称されるもの)では、同一電流で発生するトルクを大きくするロータ構成として、上述したように図3の複数スリット構成と永久磁石埋込構成とがある。後者の場合は、同一電流によって発生するトルクを大きくするためには鎖交磁束を大きくするか、d軸とq軸方向のインダクタンスLd、Lqの差(Lq−Ld)を大きくすればよいことが知られている。本発明のロータ用圧粉磁心は、図3の従来積層構造に対し圧粉体のため製造費を大幅に低減可能にし、それに加えて、金属磁性粉末の長軸方向が永久磁石を埋め込む装着孔側からロータ軸用中心軸孔に向け凸形で、装着孔の両側を通る円弧状となるよう配向されているため、)q軸インダクタンスLq、或いは、両インダクタンスLd、Lqの差(Lq−Ld)を大きくでき、トルクを大きくする上で理想的なロータ構造が実現される。
【0008】
【発明の実施の形態】
本発明に係る圧粉磁心の製造方法は、金属磁性粉末と熱硬化性樹脂とを混合した混合粉末を、成形型の内孔に充填した後、磁場中にて上下パンチで圧縮成形した圧粉成形体を加熱硬化させるものである。発明要部は金属磁性粉末構成及び磁場中成形において磁場の形成方法にある。以下、その具体例を詳述する。
ここで、本発明で使用される金属磁性粉末は純鉄、Fe−Si合金やFe−Al合金等の鉄系軟質強磁性合金粉末が好ましく、また、この金属磁性粉末は偏平処理されており、長径が500μm以下であって、アスベクト比が2〜15のものを使用すると、粒内渦電流損は発生するが、その電流経路を偏平化することで抵抗を大きくして渦電流の発生を低減することができ、渦電流損の増加を防止できる。アスペクト比は2より小さいと磁気異方性を付与することができず、アスペクト比15よりも大きくなると成形型への粉末充填が不十分となり良好な圧粉体密度を得ることができない。
【0009】
また、金属磁性粉末に施される絶縁被膜は、請求項2の如くリン酸塩化成処理液に界面活性剤及び防錆剤を添加したものを使用して、所定の膜厚に形成することが好ましい。リン酸塩化成処理液としては、先に開発した特願平8−133239号に記載されているように、リン酸、ほう酸、マグネシウムイオンを主とするものである。界面活性剤を添加すると、リン酸塩化成処理液の濡れ性が向上し、薄く均一な絶縁被膜を形成することができる。また、防錆剤は、金属磁性粉末に形成された絶縁被膜を保護し微小破壊されたときにも錆発生の虞を防ぐ。
【0010】
熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリアミド樹脂等が使用され、通常、樹脂粉末の状態で金属磁性粉末と混合されるが、樹脂粉末を溶媒に溶かした状態で金属磁性粉末と混合してもよい。熱硬化性樹脂粉末の場合は、圧粉磁心の固有抵抗や強度の点から平均粒径が100μm以下の粉末を0.5〜3質量%の範囲で添加することが好ましい。
【0011】
以上の絶縁被膜付き金属磁性粉末と熱硬化性樹脂粉末とはV型やWコーン型混合機などを用いて混合処理された後、成形型により磁場中で圧縮成形される。磁場中成形では、成形型の内孔周囲で孔軸方向に複数個の磁極を配し、前記磁極により形成される湾曲した磁界に沿って、金属磁性粉末を配向させる。成形型の例としては、図1の如くダイ孔1aを持つダイス1、ロータ軸用及び永久磁石用のコアロッド2,3、上下パンチ4,5を少なくとも有し、複数の磁極6をダイス1の周囲略等分するよう配置し、金属磁性粉末の長軸方向を隣り合う磁極6間で形成した磁界に沿って配向させる。磁極6は、成形型のダイ孔1a周囲に4以上で、4、6、8、10と言うように偶数個をS極、N極交互、つまりダイ孔1aに向く極を順に異なるよう、かつ等間隔に配置し、隣り合う磁極6間で形成されて内孔中心に向けて凸湾曲した磁界7に沿って金属磁性粉末の長軸方向を円弧状に配向させることになる。
【0012】
なお、成形型材料としては、圧縮成形時の磁場に悪影響を及ぼさないようセラミックス等の非磁性材料で構成することが好ましいが、低Co等の超硬合金のように磁性の弱い材料を用いることができる。磁極6は永久磁石、電磁石の何れであってもよい。ダイス1への配置は、図1の例の如くダイス1の成形部に設けられた係合溝1aに磁極6を一体的に組み込む。また、このような磁場中成形では、成形型のうち少なくともダイス1に磁極6を組み込むため高圧力で成形できないことも起こる。その場合には、例えば、磁場中で低圧力で成形した後、該成形型から中間圧粉体を一旦脱型し、高圧力に耐える別の成形型にて再度加圧成形する方法が採用される。試験では、磁場中での加圧が10MPa以上であれば圧縮比は2.5以上確保でき、その後、磁場外にて圧縮比0.4まで再度加圧しても形成された磁気異方性を大きく劣化しないことが確認されている。
【0013】
加圧成形後は、脱型されて、加熱処理されると、所定剛性に硬化された圧粉磁心材料10となる。この圧粉磁心材料10は、図2(a)の拡大部に模式的に示す如に金属磁性粉末の長手方向が前記した磁極6間の磁界に対応して円周を8等分する箇所にあって、それぞれが外周側から中心軸孔10aに向けて凸形で、装着孔10bの両側を通る円弧状のとなるよう配向されている。また、この圧粉磁心材料10は、図2(b)に模式的に示したリラクタンスモータやマグネットモータと称されるモータのロータ(回転子)として用いられるときに、コアロッド2に対応し形成された中心軸孔10aにロータ軸13が軸装され、コアロッド3に対応して形成された装着孔10bに永久磁石11が埋込まれることになる。図中、符号14は模式的に示したステータ(固定子)である。このモータは、8極であるが、4極、6極などであってもよい。また、永久磁石11は1極当たり1個の例であるが、ロータ半径方向に2分割して2個にしてもよい。永久磁石11や装着孔10bの形状はこれをベースにして色々に変形される。このように、上記製造方法にて形成された圧粉磁心材料10を同モータのロータとして使用すると、金属磁性粉末の長軸方向(磁束が通り易い方向)が各永久磁石11の両側からロータ軸13に向け凸形の円弧状となるよう、つまり図1の磁界7に沿って配向される。この配向は、特に、q軸方向のインダクタンスLqの増大に寄与して、同一電流で発生するトルクを大きくする上で理想的なロータ構造を実現可能にする。
【0014】
【実施例】
次に、本発明の製造方法の利点を実施例により明らかにする。この実施例は、金属磁性粉末のアスペクト比のランクに応じ、圧粉成形時における磁場(図1に示す方法での磁場中成形)の有無による磁性特性を調べたときの例である。表1はこの試験結果を一覧表示した。
【0015】
【表1】
【0016】
金属磁性粉末としては、アスペスト比が3〜8(偏平粉末A)及びアスペスト比が6〜15(偏平粉末B)の範囲で分布し、長径が350μm以下の純鉄粉のものと、通常の粒径が150μm以下のアトマイズ鉄粉(通常粉末)のものを使用した。各偏平粉末AとB、通常粉末にはそれぞれ同じく次の条件で絶縁被膜を形成した。リン酸塩化成処理液は、リン酸、ホウ酸、MgOと、それに濡れ性を改善するため界面活性剤としてEF−104(トーケミプロダクツ製)と、鉄粉の酸化を防ぐため防錆剤としてベンゾトリアゾール0.04molを加えたものである。この場合、膜厚が30μmになるように各粉末試料(各偏平粉末AとB、通常粉末)の比表面積より計算したリン酸、ホウ酸、MgOの必要量を水に溶解し、それに界面活性と防錆剤の所要量添加した水溶液を作った。その水溶液を使用して、各粉末試料(各偏平粉末AとB、通常粉末)をそれぞれの容器内で均一に混合した後、200℃で水分を乾燥する工程で処理した。熱硬化性樹脂粉末としては何れもポリアミド樹脂を使用し、各偏平粉末AとB、及び通常粉末にポリアミド樹脂粉末(0.5質量%)を混合処理した。
【0017】
これらの各原料粉末を用い、成形型にて磁場を印加した状態と、磁場を印加しない状態で圧粉成形した。圧粉体形状は、内径20mm、外径30mm、厚さ5mmのリング形で、図2(a)のような装着孔を有している。磁場中成形では図1に類似した成形型を使用し、磁場を印加しない成形型(通常成形型)は磁極6を持たないダイス、つまり通常のダイスを使用する以外は図1のものと同じくした。また、磁場を印加しない圧粉成形では圧力686MPaを加えた。磁場を印加する場合は、まず、磁場中で196MPaの圧力で成形した後、通常成形型にて圧力686MPaで再加圧した。得られた各圧粉体試料(各偏平粉末AとB、通常粉末を用いた圧粉体試料)は200℃で1時間加熱し樹脂を硬化した。
【0018】
各圧粉体試料の評価は直流磁性と交流磁性を調べた。直流磁性では、8000A/m(B8000)のときの磁束密度と、最大透磁率(μm)である。交流磁性では、50Hzで1テスラ(T)に励磁したとき(W1/50)の鉄損の値(W/kg)と、15kHzで0.05テスラ(T)に励磁したとき(W0.05/15k)の鉄損の値(W/kg)である。表1から分かるように、通常粉末を用いた場合は磁場中成形による効果が得られないのに対し、偏平粉末AとBを用いた場合は本発明の磁場中成形すると、直流磁性では磁束密度が少し高くなり、最大透磁率が非常に大きくなることが分かる。交流磁性でも鉄損を低減できることが分かる。
【0019】
【発明の効果】
以上説明したように、本発明に係るロータ用圧粉磁心の製造方法では、直流磁性及び交流磁性共に改善でき、その結果、この種の圧粉磁心材料の用途を拡大して、例えば、リラクタンスモータのロータ等としても使用可能にする。製造された圧粉磁心はリラクタンストルク又は/及びマグネットトルクを利用したモータのロータとして最適なものとなり、従来ロータよりも性能を向上しかつ製造費を低減できる。
【図面の簡単な説明】
【図1】 本発明方法に用いられる成形型の構成例を示す模式図である。
【図2】 図1の成形型を使用して得られる圧粉磁心材料及びその製品用途例を示す模式構成図である。
【図3】 従来リラクタンスモータのロータ例を示す模式図である。
【符号の説明】
1…ダイス
2と3…コアロッド
4と5…上下パンチ
6…磁極
10…圧粉磁心材料(圧粉磁心又はロータ)
11…永久磁石
13…ロータ軸
14…ステータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a dust core for a rotor having magnetic anisotropy.
[0002]
[Prior art]
The dust core material has been developed and put into practical use as a magnetic circuit component such as a noise filter, a choke coil, and a transformer used in an alternating magnetic field together with a laminated material of silicon steel plates and soft ferrite. Compared to silicon steel laminates, dust core materials are characterized by isotropic magnetic properties and can be used in high-frequency magnetic fields that cannot be handled by silicon steel plates. It has disadvantages such as low magnetic susceptibility. However, the powder magnetic core material has higher saturation magnetic flux density and magnetic permeability than soft ferrite, and the magnetic core can be downsized.
[0003]
Further, as a dust core material for high frequency, reduction of iron loss becomes a problem, and as an improvement method thereof, an insulating coating applied to the surface of magnetic powder is devised (Japanese Patent Laid-Open No. 11-251131), or metal magnetic powder. The eddy current loss is mainly reduced by flattening the material to impart shape anisotropy (Japanese Patent Laid-Open No. 10-83910), or metal magnetic powder having a specific aspect ratio is used and molded in a magnetic field. Thus, studies have been made to reduce the hysteresis loss mainly by orienting the major axis direction in the radial direction of the ring component (Japanese Patent Laid-Open No. 8-167518).
[0004]
[Problems to be solved by the invention]
However, the core material of the dust core is also obstructed by low iron loss and low saturation magnetic flux density, and the conventional molding in a magnetic field orients the major axis direction of the magnetic powder in the radial direction or axial direction of the ring compact. Because it was a simple thing to do, its use was naturally limited. In order to further spread the powder magnetic core material, further improvement is indispensable, and in particular, a rotor of a motor using a reluctance torque or a magnet torque which has recently been attracting attention as a drive motor for an electric vehicle, a machine tool, etc. I want to realize this.
[0005]
In the
[0006]
[Means for Solving the Problems]
The present invention eliminates the above-described problems and has been completed in the process of pursuing the applicability of a dust core to a motor rotor using reluctance torque or magnet torque. That is, the present invention provides a dust core for a rotor of a motor having a central shaft hole for the rotor shaft and a plurality of permanent magnet mounting holes provided between the central shaft hole and the outer periphery at substantially equal intervals in the circumferential direction. a method of manufacturing, with a mixed powder Asubekuto ratio forming an insulating film on the surface was mixed with 2 to 15 of the metallic magnetic powder and thermosetting resin, keeping the circumferential spacing on the inner bore periphery side And forming an even number of magnetic poles with an even number of S poles and N poles at equal intervals and forming a magnetic field that is convexly curved toward the center of the inner hole between adjacent magnetic poles . Filling the inner hole with the mixed powder, along the curved magnetic field formed by the magnetic pole, the major axis direction of the metal magnetic powder is convex from the mounting hole side toward the central axis hole, and After aligning to form an arc passing through both sides of the mounting hole, magnetic field In compression molded at upper and lower punches, it is characterized by cured by heating the resulting molded article.
In the molding in the magnetic field as described above, the circumferential interval is set at the side of the inner side of the mold corresponding to the plurality of locations where the magnetic flux of the obtained dust core is to be concentrated, that is, the side of the die surrounding the die hole. Maintaining a plurality of magnetic poles and orienting the metal magnetic powder along the curved magnetic field formed by the magnetic poles, magnetic properties that have not previously been considered as a dust core are realized, and the dust core The use of can be expanded. That is, this type of powder magnetic core, for example, allows magnetic flux to easily pass in the longitudinal direction of a magnetic metal powder having a large aspect ratio, and by aligning the direction of the magnetic metal powder to be curved, a high magnetic flux density is achieved in the curved direction. Can be obtained. This is suitable for a rotor of a motor using the following reluctance torque or magnet torque, for example.
[0007]
In a motor using reluctance torque (referred to as a reluctance motor or a magnet motor), as described above, the multiple slit configuration and permanent magnet embedded configuration in FIG. There is. In the latter case, in order to increase the torque generated by the same current, the flux linkage may be increased or the difference (Lq-Ld) between the inductances Ld and Lq in the d-axis and q-axis directions may be increased. Are known. The powder magnetic core for a rotor of the present invention is a powder compact compared to the conventional laminated structure of FIG. 3, so that the manufacturing cost can be greatly reduced, and in addition, the mounting hole in which the long axis direction of the metal magnetic powder embeds the permanent magnet Since it is convex from the side toward the central shaft hole for the rotor shaft and oriented so as to form an arc shape passing through both sides of the mounting hole, the q-axis inductance Lq or the difference between the inductances Ld and Lq (Lq−Ld) ) And an ideal rotor structure can be realized for increasing the torque.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The method of manufacturing a powder magnetic core according to the present invention includes a method in which a mixed powder obtained by mixing a metal magnetic powder and a thermosetting resin is filled in an inner hole of a mold and then compression-molded by upper and lower punches in a magnetic field. The molded body is heat-cured. The main part of the invention resides in the method of forming a magnetic field in the metal magnetic powder structure and in-field molding. Specific examples thereof will be described in detail below.
Here, the metal magnetic powder used in the present invention is preferably pure iron, an iron-based soft ferromagnetic alloy powder such as an Fe-Si alloy or an Fe-Al alloy, and the metal magnetic powder is flattened. When a long diameter of 500 μm or less and an aspect ratio of 2 to 15 are used, intra-grain eddy current loss occurs, but by flattening the current path, resistance is increased and generation of eddy current is reduced. And increase in eddy current loss can be prevented. When the aspect ratio is smaller than 2, magnetic anisotropy cannot be imparted, and when the aspect ratio is larger than 15, the powder filling into the mold is insufficient and a good green density cannot be obtained.
[0009]
The insulating coating is applied to the metal magnetic powder is that using a material obtained by adding to the phosphatization solution as in claim 2 a surfactant and antirust agent to form a predetermined film thickness preferable. The phosphate chemical conversion treatment liquid mainly contains phosphoric acid, boric acid, and magnesium ions as described in Japanese Patent Application No. 8-133239 developed previously. When a surfactant is added, the wettability of the phosphate chemical conversion treatment liquid is improved, and a thin and uniform insulating film can be formed. In addition, the rust preventive agent protects the insulating coating formed on the metal magnetic powder and prevents the occurrence of rust even when it is microdestructed.
[0010]
As the thermosetting resin, epoxy resin, phenol resin, polyamide resin, etc. are used. Usually, the resin powder is mixed with the metal magnetic powder, but the resin powder is mixed with the metal magnetic powder in a solvent. May be. In the case of a thermosetting resin powder, it is preferable to add a powder having an average particle size of 100 μm or less in the range of 0.5 to 3% by mass from the viewpoint of the specific resistance and strength of the dust core.
[0011]
The metal magnetic powder with the insulating coating and the thermosetting resin powder are mixed using a V-type or W-cone mixer, and then compression-molded in a magnetic field by a molding die. In the molding in a magnetic field, a plurality of magnetic poles are arranged around the inner hole of the molding die in the direction of the hole axis, and the metal magnetic powder is oriented along the curved magnetic field formed by the magnetic poles. As an example of the mold, as shown in FIG. 1, the
[0012]
The mold material is preferably made of a non-magnetic material such as ceramics so as not to adversely affect the magnetic field during compression molding. However, a weak magnetic material such as a cemented carbide such as low Co should be used. Can do. The
[0013]
After the pressure forming, when the mold is removed and heat treatment is performed, the powder
[0014]
【Example】
Next, advantages of the manufacturing method of the present invention will be clarified by examples. This example is an example of examining the magnetic characteristics depending on the presence or absence of a magnetic field during compacting (forming in a magnetic field by the method shown in FIG. 1) according to the rank of the aspect ratio of the metal magnetic powder. Table 1 lists the test results.
[0015]
[Table 1]
[0016]
As the metal magnetic powder, pure iron powder having an aspect ratio of 3 to 8 (flat powder A) and an aspect ratio of 6 to 15 (flat powder B) and having a major axis of 350 μm or less, and ordinary grains Atomized iron powder (usually powder) having a diameter of 150 μm or less was used. An insulating coating was formed on each of the flat powders A and B and the normal powder under the same conditions. Phosphate chemical treatment solution includes phosphoric acid, boric acid, MgO, EF-104 (manufactured by Tokemi Products) as a surfactant to improve wettability, and benzoic acid as a rust inhibitor to prevent oxidation of iron powder. Triazole 0.04 mol is added. In this case, the necessary amounts of phosphoric acid, boric acid and MgO calculated from the specific surface area of each powder sample (each flat powder A and B, normal powder) so that the film thickness is 30 μm are dissolved in water, and the surface activity is obtained. And an aqueous solution with the required amount of rust inhibitor added. Using the aqueous solution, each powder sample (each flat powder A and B, normal powder) was uniformly mixed in each container, and then processed in a step of drying moisture at 200 ° C. Polyamide resin was used as the thermosetting resin powder, and each flat powder A and B and normal powder were mixed with polyamide resin powder (0.5% by mass).
[0017]
Using these raw material powders, compacting was performed in a state where a magnetic field was applied with a molding die and in a state where no magnetic field was applied. The green compact shape is a ring shape having an inner diameter of 20 mm, an outer diameter of 30 mm, and a thickness of 5 mm, and has a mounting hole as shown in FIG. In the magnetic field molding, a molding die similar to that in FIG. 1 is used, and the molding die to which no magnetic field is applied (normal molding die) is the same as that in FIG. 1 except that a die having no
[0018]
Evaluation of each green compact sample examined DC magnetism and AC magnetism. The DC magnetic, and the magnetic flux density in the 8000A / m (B8000), a maximum permeability (mu m). For AC magnetism, the iron loss value (W / kg) when excited to 1 Tesla (T) at 50 Hz (W1 / 50) and when excited to 0.05 Tesla (T) at 15 kHz (W0.05 / 15 k) The iron loss value (W / kg). As can be seen from Table 1, when normal powder is used, the effect of forming in a magnetic field cannot be obtained, whereas when flat powders A and B are used, forming in the magnetic field of the present invention results in a magnetic flux density of DC magnetism. It becomes clear that the maximum permeability becomes very large. It can be seen that iron loss can be reduced even with AC magnetism.
[0019]
【The invention's effect】
As described above, in the method of manufacturing a magnetic powder core for a rotor according to the present invention, both DC magnetism and AC magnetism can be improved. As a result, the application of this type of powder magnetic core material is expanded, for example, a reluctance motor. It can be used as a rotor or the like. The manufactured dust core is optimal as a rotor of a motor using reluctance torque and / or magnet torque, and can improve performance and reduce manufacturing costs compared to conventional rotors.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a configuration example of a mold used in the method of the present invention.
FIG. 2 is a schematic configuration diagram showing a dust core material obtained using the mold of FIG.
FIG. 3 is a schematic diagram showing an example of a rotor of a conventional reluctance motor.
[Explanation of symbols]
DESCRIPTION OF
11 ...
Claims (3)
表面に絶縁被膜を形成したアスベクト比が2〜15の金属磁性粉末と熱硬化性樹脂とを混合した混合粉末を用いるとともに、
内孔周囲側部に周囲方向間隔を保って4以上で偶数個の磁極をS極、N極交互かつ等間隔に配置して隣り合う磁極間で内孔中心に向けて凸湾曲した磁界を形成する成形型を用意し、
前記成形型の内孔に、前記混合粉末を充填して、前記磁極により形成される湾曲した磁界に沿って、前記金属磁性粉末の長軸方向が前記装着孔側から前記中心軸孔に向け凸形で、当該装着孔の両側を通る円弧状となるよう配向させた後、磁場中で上下パンチで圧縮成形し、
得られた成形体を加熱硬化させることを特徴とするロータ用圧粉磁心の製造方法。 A method of manufacturing a dust core for a rotor of a motor having a central shaft hole for a rotor shaft and a plurality of permanent magnet mounting holes provided between the central shaft hole and the outer periphery at substantially equal intervals in the circumferential direction. ,
Asubekuto ratio forming an insulating coating with a mixed powder obtained by mixing a 2 to 15 of the metallic magnetic powder and thermosetting resin on the surface,
An even number of magnetic poles with an interval of 4 or more are maintained on the side around the inner hole, and an even number of magnetic poles are arranged alternately and at equal intervals to form a magnetic field that is convexly curved toward the center of the inner hole between adjacent magnetic poles. Prepare the mold to be
The mixed powder is filled in the inner hole of the mold, and the major axis direction of the metal magnetic powder protrudes from the mounting hole side toward the central axis hole along the curved magnetic field formed by the magnetic pole. After being oriented so that it has an arc shape passing through both sides of the mounting hole, it is compression molded with a vertical punch in a magnetic field ,
A method for producing a dust core for a rotor, wherein the obtained compact is heat-cured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000290903A JP3714662B2 (en) | 2000-09-25 | 2000-09-25 | Manufacturing method of powder magnetic core for rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000290903A JP3714662B2 (en) | 2000-09-25 | 2000-09-25 | Manufacturing method of powder magnetic core for rotor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002100522A JP2002100522A (en) | 2002-04-05 |
JP3714662B2 true JP3714662B2 (en) | 2005-11-09 |
Family
ID=18774062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000290903A Expired - Fee Related JP3714662B2 (en) | 2000-09-25 | 2000-09-25 | Manufacturing method of powder magnetic core for rotor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3714662B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11588359B2 (en) | 2020-09-17 | 2023-02-21 | Kabushiki Kaisha Toshiba | Rotating electric machine |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004346757A (en) * | 2003-05-20 | 2004-12-09 | Daikin Ind Ltd | Compressor and air conditioner |
JP2005020991A (en) * | 2003-06-04 | 2005-01-20 | Hitachi Metals Ltd | Rotor and manufacturing method therefor |
WO2005101614A1 (en) * | 2004-04-06 | 2005-10-27 | Hitachi Metals, Ltd. | Rotor and process for manufacturing the same |
JP2007209198A (en) * | 2005-03-18 | 2007-08-16 | Hitachi Industrial Equipment Systems Co Ltd | Claw pole type motor |
KR100624730B1 (en) * | 2005-04-04 | 2006-09-20 | 엘지전자 주식회사 | Motor |
JP2013121262A (en) * | 2011-12-07 | 2013-06-17 | Mazda Motor Corp | Rotor of rotary electric machine and method for manufacturing the same |
DE102012202019A1 (en) * | 2012-02-10 | 2013-08-14 | Ksb Aktiengesellschaft | Manufacturing process for a rotor and rotor |
WO2013147157A1 (en) * | 2012-03-30 | 2013-10-03 | 日本ピストンリング株式会社 | Rotating electrical machine |
GB2506683A (en) * | 2012-10-08 | 2014-04-09 | Vacuumschmelze Gmbh & Co Kg | Anisotropic soft magnetic article and method for its production |
GB2506681A (en) * | 2012-10-08 | 2014-04-09 | Vacuumschmelze Gmbh & Co Kg | Soft anisotropic magnetic material article and method for its production |
WO2018037511A1 (en) * | 2016-08-24 | 2018-03-01 | 三菱電機株式会社 | Electric motor and air conditioner |
-
2000
- 2000-09-25 JP JP2000290903A patent/JP3714662B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11588359B2 (en) | 2020-09-17 | 2023-02-21 | Kabushiki Kaisha Toshiba | Rotating electric machine |
Also Published As
Publication number | Publication date |
---|---|
JP2002100522A (en) | 2002-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100908424B1 (en) | Parts for magnetic circuits and manufacturing method thereof | |
US7981359B2 (en) | Rotor and process for manufacturing the same | |
US7967919B2 (en) | Process for producing self-assembled rare earth-iron bonded magnet and motor utilizing the same | |
JP4900775B2 (en) | Rotor for motor and manufacturing method thereof | |
JP3714662B2 (en) | Manufacturing method of powder magnetic core for rotor | |
WO2006064589A1 (en) | Rotor for motor and manufacturing method of the same | |
WO2012090841A1 (en) | Arc-shaped magnet having polar-anisotropy orientation, method of manufacturing for same, and die for manufacturing same | |
JP2005020991A (en) | Rotor and manufacturing method therefor | |
KR100981218B1 (en) | Permanent magnet rotor and motor using the same | |
WO2007141489A2 (en) | Magnetic core of an electric machine having anisotropic material embedded in isotropic material | |
JP2009111418A (en) | Die, molding machine and method used for manufacturing anisotropic magnet, and magnet manufactured thereby | |
JP5249897B2 (en) | Iron core manufacturing method | |
JP4425682B2 (en) | Mold, molding machine, method and magnet obtained for manufacturing anisotropic magnet | |
US8893375B1 (en) | Methods of manufacturing a stator core | |
JP4238588B2 (en) | Motor, motor rotor and composite anisotropic magnet | |
KR100937843B1 (en) | Method of Producing Cylinder Type Back Yoke Formed of Amorphous Alloy, and Method of Producing Slotless Motor Using the Same | |
JP2006180677A (en) | Integrated skew magnetic rotor with core, and its manufacturing method | |
JP2004140951A (en) | Permanent magnet-embedded motor | |
KR101406360B1 (en) | Motor core | |
Pennander | Recent development of soft magnetic composite materials and its application | |
JP6712518B2 (en) | Polar anisotropic magnet, manufacturing method thereof, and permanent magnet type motor generator | |
US20240039349A1 (en) | Rotary electric machine and manufacturing method therefor | |
JP5130131B2 (en) | Oriented dust core | |
KR101406640B1 (en) | Motor core | |
CN114530960B (en) | Motor with a motor housing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050822 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080902 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090902 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100902 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110902 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110902 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120902 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120902 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130902 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |