JP2014240516A - Nanocrystal soft magnetic alloy and magnetic component using the same - Google Patents

Nanocrystal soft magnetic alloy and magnetic component using the same Download PDF

Info

Publication number
JP2014240516A
JP2014240516A JP2013123518A JP2013123518A JP2014240516A JP 2014240516 A JP2014240516 A JP 2014240516A JP 2013123518 A JP2013123518 A JP 2013123518A JP 2013123518 A JP2013123518 A JP 2013123518A JP 2014240516 A JP2014240516 A JP 2014240516A
Authority
JP
Japan
Prior art keywords
alloy
less
flux density
magnetic
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013123518A
Other languages
Japanese (ja)
Other versions
JP6191908B2 (en
Inventor
雄太郎 寺門
Yutaro Terakado
雄太郎 寺門
元基 太田
Motoki Ota
元基 太田
克仁 吉沢
Katsuto Yoshizawa
克仁 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2013123518A priority Critical patent/JP6191908B2/en
Publication of JP2014240516A publication Critical patent/JP2014240516A/en
Application granted granted Critical
Publication of JP6191908B2 publication Critical patent/JP6191908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve iron loss by selectively improving a conventional composition of a nanocrystal soft magnetic alloy and suppressing a coarse crystal grain phase which becomes a barrier due to pinning against magnetization reversal.SOLUTION: A nanocrystal soft magnetic alloy is composed of a structure including fine crystal grains, represented by compositional formula of FeCuBSiSn, in which x, y, z, and d are given by atom%, and exist in ranges of 0.6≤x≤1.6, 7≤y≤20, 0<z≤16, 0.005≤d≤0.2, and 7≤y+z≤24 and having an average crystal grain size of 60 nm or less, dispersed in an amorphous base phase with a volume fraction of 30% or more. The alloy has: saturation flux density of 1.7T or more, coercive force of 8A/m or less, iron loss of 0.30 W/Kg or less at 1.5T and 50 Hz, and iron loss of 250 W/Kg or less at 1.0T and 10 kHz; a ratio of residual magnetic flux density Bto flux density Bat 80A/m of less than 0.9; and a ratio of the flux density Bat 80A/m to the flux density Bat 800A/m of 0.92 or more.

Description

本発明は、各種リアクトル、チョークコイル、パルスパワー磁性部品、トランス、モータ、電流センサなどの磁心材料に好適な高飽和磁束密度で優れた高周波磁気特性とを備えたナノ結晶軟磁性合金とこれを用いた磁性部品に関する。   The present invention relates to a nanocrystalline soft magnetic alloy having high-saturation magnetic flux density suitable for magnetic core materials such as various reactors, choke coils, pulse power magnetic parts, transformers, motors, and current sensors, and excellent high-frequency magnetic characteristics. It relates to the magnetic parts used.

各種リアクトル、チョークコイル、パルスパワー磁性部品、トランス、モータ又は発電機の磁心、電流センサ、磁気センサ、アンテナ磁心、電磁波吸収シート等に用いる軟磁性材としては、けい素鋼、フェライト、Co基非晶質軟磁性合金、Fe基非晶質軟磁性合金及びFe基ナノ結晶軟磁性合金がある。これらのうち、けい素鋼は安価で磁束密度が高いが、高周波では損失が大きく、フェライトは飽和磁束密度が低いので、動作磁束密度が大きな高エネルギー密度の用途には適さない。Co基非晶質軟磁性合金は材料価格が高く、飽和磁束密度が1 T以下と低いので、高エネルギー密度の用途に使用すると部品が大きくなり、また熱的に不安定であるため、温度が高い状態となる用途では、経時変化により損失が増加する課題がある。Fe基非晶質軟磁性合金は飽和磁束密度が1.5〜1.6T程度とまだ低く、また高周波磁気特性もCo基非晶質合金などと比べると十分優れているとは言えない。   Soft magnetic materials used for various reactors, choke coils, pulse power magnetic components, transformers, motor or generator magnetic cores, current sensors, magnetic sensors, antenna cores, electromagnetic wave absorbing sheets, etc. There are crystalline soft magnetic alloys, Fe-based amorphous soft magnetic alloys and Fe-based nanocrystalline soft magnetic alloys. Among these, silicon steel is inexpensive and has a high magnetic flux density, but high frequency has a large loss, and ferrite has a low saturation magnetic flux density, so it is not suitable for high energy density applications with a large operating magnetic flux density. Co-based amorphous soft magnetic alloys are expensive and have a low saturation magnetic flux density of 1 T or less, so when used in high energy density applications, the parts become large and the temperature is unstable due to thermal instability. In applications that are in a high state, there is a problem that loss increases due to aging. The Fe-based amorphous soft magnetic alloy has a low saturation magnetic flux density of about 1.5 to 1.6 T, and it cannot be said that the high-frequency magnetic characteristics are sufficiently superior compared to Co-based amorphous alloys.

Fe基ナノ結晶軟磁性合金の中に特許文献1に開示されたものがある。この合金は、組成式:Fe100-x-y-zCuxByXz(但し、XはSi,S,C,P,Al,Ge,Ga,Beからなる群から選ばれた少なくとも一種の元素であり、x,y及びzはそれぞれ原子%で、0.1≦x≦3、10≦y≦20、0<z≦10、及び10<y+z≦24の条件を満たす数である。)により表され、平均粒径60 nm以下の結晶粒を非晶質母相中に30体積%以上分散した組織を有し、もって1.7 T以上の高い飽和磁束密度を有するFe基ナノ結晶軟磁性合金である。 Among Fe-based nanocrystalline soft magnetic alloys is one disclosed in Patent Document 1. This alloy has the composition formula: Fe 100-xyz Cu x B y X z (where X is at least one element selected from the group consisting of Si, S, C, P, Al, Ge, Ga, Be) , X, y, and z are atomic%, respectively, and are numbers represented by the following conditions: 0.1 ≦ x ≦ 3, 10 ≦ y ≦ 20, 0 <z ≦ 10, and 10 <y + z ≦ 24)) This is an Fe-based nanocrystalline soft magnetic alloy having a structure in which crystal grains having a grain size of 60 nm or less are dispersed in an amorphous matrix at 30 volume% or more and having a high saturation magnetic flux density of 1.7 T or more.

国際公開WO2007/032531号公報International Publication WO2007 / 032531

特許文献1のFe基ナノ結晶軟磁性合金によれば高い飽和磁束密度と低保磁力を得ることができる。これらのFe基ナノ結晶軟磁性合金を単ロール法などの超急冷装置で量産する場合には、広幅の合金薄帯を長時間製造する必要がある。このとき冷却ロ−ルの表面性状の悪化やロ−ル表面温度の上昇などにより、実験室レベルの薄帯製造装置に比べて合金薄帯の温度が製造時間が長くなるに伴い上昇しやすい。また薄帯の広幅化により製造される薄帯幅方向の冷却の違いも顕在化する。このため、合金中に含まれるCuが薄帯表面に拡散し偏析しやすくなり、熱処理前の段階で合金最表面に結晶が形成され、これが原因で表面結晶化が起こり特性に影響を与える。またCu偏析の仕方が薄帯幅方向で異なり、これが特性ばらつきの原因となる。   According to the Fe-based nanocrystalline soft magnetic alloy of Patent Document 1, a high saturation magnetic flux density and a low coercive force can be obtained. When these Fe-based nanocrystalline soft magnetic alloys are mass-produced by an ultra-quenching apparatus such as a single roll method, it is necessary to manufacture a wide alloy ribbon for a long time. At this time, the temperature of the alloy ribbon tends to rise as the production time becomes longer than that of a laboratory-level ribbon production apparatus due to deterioration of the surface properties of the cooling roll or an increase in the roll surface temperature. In addition, the difference in cooling in the width direction of the thin ribbon produced by widening the thin ribbon becomes obvious. For this reason, Cu contained in the alloy is easily diffused and segregated on the surface of the ribbon, and crystals are formed on the outermost surface of the alloy before the heat treatment, which causes surface crystallization and affects the properties. Moreover, the method of Cu segregation differs in the ribbon width direction, which causes variation in characteristics.

さらに、Cu偏析部の表面近傍領域ではCu濃度が減少している。これにナノ結晶化のための熱処理を行うと、最表面の結晶が成長し、結晶粒層が形成されるとともに、そのすぐ内部側のCu濃度が一層減少する。そのため、この領域に形成される結晶粒の粒径が大きくなってしまい、磁化回転や磁壁移動を妨げ磁気飽和性を悪化させ、保磁力の増加や高周波磁気特性の悪化を招いている。即ち、この粗大結晶粒により、実効的な磁気異方性がこの領域で大きくなり、磁化回転が起こり難くなったり、磁壁がピン止めされ磁壁移動し難くくなり、磁気飽和性や高周波磁気特性が悪化したと推察する。磁気飽和性が悪化すると、実際の磁性部品では設計磁束密度(動作磁束密度)を大きくできず部品が大型化する問題がある。また、磁壁がピン止めされ動きにくくなると、磁壁がピン止め位置から動き出した場合、磁化反転の磁壁移動速度が大きくなり渦電流損失が増加し、結果として高周波における鉄損などの高周波磁気特性が劣化する。   Furthermore, the Cu concentration is decreased in the vicinity of the surface of the Cu segregation part. When heat treatment for nanocrystallization is performed on this, the crystal on the outermost surface grows, a crystal grain layer is formed, and the Cu concentration immediately inside thereof is further reduced. For this reason, the grain size of the crystal grains formed in this region becomes large, preventing magnetization rotation and domain wall movement and deteriorating magnetic saturation, leading to an increase in coercive force and a high-frequency magnetic characteristic. That is, this coarse crystal grain increases the effective magnetic anisotropy in this region, making it difficult for magnetization rotation to occur or pinning the domain wall to make it difficult for the domain wall to move. I guess it has deteriorated. When magnetic saturation deteriorates, there is a problem that the actual magnetic component cannot increase the design magnetic flux density (operating magnetic flux density) and the size of the component increases. Also, if the domain wall is pinned and difficult to move, when the domain wall starts moving from the pinned position, the domain wall moving speed of magnetization reversal increases and eddy current loss increases, resulting in degradation of high frequency magnetic characteristics such as iron loss at high frequencies. To do.

特許文献1に開示されたFe基ナノ結晶軟磁性合金では、量産機で製造するときに粗大結晶粒を抑制する手段として、急速昇温する熱処理をすることにより、結晶核の数密度減少を抑え、多数の結晶粒を形成し、且つ結晶粒を微細化することが行われている。しかしながら、急速昇温は磁性部品のサイズが大きい場合、十分な昇温速度が得られないことがあるし、部品の位置により温度差が生じ均一な熱処理が行えず、場所により特性が変動することがある。また、結晶に伴う発熱により温度が上昇しすぎると軟磁性が得られなくなる等の課題があり、昇温速度の影響も緩和する必要がある。
昇温速度条件を緩和させるには、結晶粒成長を抑制するNbやMo 等の置換が有効であり、Fe-Cu-Nb-Si-B系のナノ結晶軟磁性合金が実用化されている。しかし、NbやMo は原子量が大きく非磁性であるため、これらの元素を多量に置換することは飽和磁束密度の低下を招く。結局Fe-Cu-Nb-Si-B系合金の飽和磁束密度は、1.6T以下であり、実用化されているものは1.4T以下がほとんどで、磁性部品の小型化には限界がある。従って、NbやMoを含まない高飽和磁束密度の合金において昇温速度条件が緩和されることは工業的に大きな意味を持つ。
In the Fe-based nanocrystalline soft magnetic alloy disclosed in Patent Document 1, as a means of suppressing coarse crystal grains when manufactured by a mass production machine, a heat treatment that rapidly raises temperature is used to suppress a decrease in the number density of crystal nuclei. Many crystal grains are formed and the crystal grains are refined. However, if the size of the magnetic component is large, rapid temperature increase may not provide a sufficient rate of temperature increase, a temperature difference may occur depending on the position of the component, and uniform heat treatment cannot be performed, and the characteristics may vary depending on the location. There is. In addition, there is a problem that soft magnetism cannot be obtained if the temperature rises too much due to heat generated by the crystal, and it is necessary to mitigate the influence of the temperature rising rate.
Substitution of Nb, Mo 2, etc., which suppresses crystal grain growth, is effective for relaxing the temperature increase rate condition, and Fe—Cu—Nb—Si—B nanocrystalline soft magnetic alloys have been put into practical use. However, since Nb and Mo have a large atomic weight and are non-magnetic, substitution of a large amount of these elements causes a decrease in saturation magnetic flux density. After all, the saturation magnetic flux density of Fe-Cu-Nb-Si-B alloys is 1.6T or less, and most of them are 1.4T or less in practical use, and there is a limit to miniaturization of magnetic parts. Therefore, it is industrially significant that the heating rate condition is relaxed in a high saturation magnetic flux density alloy containing no Nb or Mo.

そこで本発明の目的は、量産装置で製造した場合の粗大結晶粒の形成と磁壁のピン止め現象を抑制し、良好な磁気飽和性と優れた高周波磁気特性を示し、特性ばらつきの小さいナノ結晶軟磁性合金及びこれを用いた高性能な磁性部品を提供することである。   Accordingly, an object of the present invention is to suppress the formation of coarse crystal grains and the pinning phenomenon of the domain wall when manufactured by a mass production apparatus, exhibit good magnetic saturation and excellent high-frequency magnetic characteristics, and have a small characteristic variation. A magnetic alloy and a high-performance magnetic part using the same are provided.

本発明は、Fe-Cu-B-Si系のFe基ナノ結晶軟磁性合金(以下、ナノ結晶軟磁性合金、ナノ結晶合金、単に合金と言うことがある。)において、極微量で且つ適量範囲のSnを添加することにより、表面結晶化と表面近傍の粗大結晶粒の形成を抑制し、磁壁のピン止め現象が抑制され、磁気的飽和性が良好で優れた高周波磁気特性を有し、場所によるばらつきが小さい軟磁性合金が得られることを知見し本発明に想到した。
即ち、本発明は、Fe100-x-y-z-dCuBSiSnここで、x、y、z、dは原子%で、0.6≦x≦1.6、6≦y≦20、0<z≦17、0.005≦d≦0.2、7≦y+z≦24により表され、平均結晶粒径60nm以下の微細結晶粒が非晶質母相中に体積分率で30%以上分散した組織からなる合金である。
The present invention relates to an Fe-Cu-B-Si-based Fe-based nanocrystalline soft magnetic alloy (hereinafter, sometimes referred to as nanocrystalline soft magnetic alloy, nanocrystalline alloy, or simply alloy) in a trace amount and in an appropriate amount range. By adding Sn, the surface crystallization and the formation of coarse grains near the surface are suppressed, the pinning phenomenon of the domain wall is suppressed, the magnetic saturation is excellent, and the high frequency magnetic property is obtained. The inventors have found that a soft magnetic alloy with a small variation due to can be obtained and have arrived at the present invention.
That is, the present invention relates to Fe 100-x-y-zd Cu x B y Si z Sn d, where x, y, z and d are atomic%, and 0.6 ≦ x ≦ 1.6, 6 ≦ y ≦ 20, 0 <Z ≦ 17, 0.005 ≦ d ≦ 0.2, 7 ≦ y + z ≦ 24, and a structure in which fine crystal grains having an average crystal grain size of 60 nm or less are dispersed in an amorphous matrix by 30% or more by volume fraction It is an alloy.

この合金は、飽和磁束密度が1.7T以上、保磁力が8A/m以下、且つ1.5T、50Hzでの鉄損が0.30W/Kg以下の優れた磁気特性を発現できる。また、10kHz、1Tでの鉄損が250W/Kg以下の優れた高周波磁気特性を発現することができる。   This alloy can exhibit excellent magnetic properties with a saturation magnetic flux density of 1.7 T or more, a coercive force of 8 A / m or less, and an iron loss at 1.5 T and 50 Hz of 0.30 W / Kg or less. In addition, excellent high frequency magnetic characteristics with an iron loss of 250 W / Kg or less at 10 kHz and 1 T can be exhibited.

この合金は、残留磁束密度Brと80A/mでの磁束密度B80との比Br/B80が0.9未満とすることができる。
また、80A/mでの磁束密度B80と800A/mでの磁束密度B800との比B80/B800が0.92以上とすることができる。前記B80/B800は好ましくは0.95以上である。
This alloy can have a ratio B r / B 80 of residual magnetic flux density B r to magnetic flux density B 80 at 80 A / m of less than 0.9.
Further, the ratio B 80 / B 800 between the magnetic flux density B 80 at 80 A / m and the magnetic flux density B 800 at 800 A / m can be 0.92 or more. The B 80 / B 800 is preferably 0.95 or more.

本発明合金において、Feを4原子%以下のPで置換することができる。Pを置換することにより、アモルファス形成能が向上するが、飽和磁束密度が減少するためPの置換量は4原子%以下が好ましい。
また、Feを2原子%以下のCで置換することができる。Cを置換することにより、合金溶湯の粘性が低下し、合金表面性状が改善されるが、C量が2原子%を超えると、熱的安定性が低下するため好ましくない。
In the alloy of the present invention, Fe can be substituted with 4 atomic% or less of P. By substituting P, the amorphous forming ability is improved. However, since the saturation magnetic flux density is decreased, the substitution amount of P is preferably 4 atomic% or less.
Further, Fe can be substituted with 2 atomic% or less of C. By substituting C, the viscosity of the molten alloy is lowered and the surface properties of the alloy are improved. However, if the amount of C exceeds 2 atomic%, the thermal stability is lowered, which is not preferable.

本発明は、上記のナノ結晶軟磁性合金を用いて製造した磁性部品である。この磁性部品は、小型化、低損失化が可能であり高性能な磁性部品を実現することができる。   The present invention is a magnetic component manufactured using the nanocrystalline soft magnetic alloy described above. This magnetic component can be reduced in size and loss, and a high-performance magnetic component can be realized.

本発明によれば、Fe-Cu-B-Si系のナノ結晶軟磁性合金を量産機で製造した場合においても、Cuの表面偏析および表面近傍の粗大結晶粒を抑制し、また磁壁のピン止め現象を抑制することができる。これらにより、磁気的飽和性と高周波特性が良好で特性ばらつきが小さいナノ結晶軟磁性合金およびこれを用いた高性能磁性部品を提供できる。   According to the present invention, even when a Fe-Cu-B-Si nanocrystalline soft magnetic alloy is produced on a mass production machine, Cu surface segregation and coarse grains near the surface are suppressed, and domain wall pinning is performed. The phenomenon can be suppressed. As a result, it is possible to provide a nanocrystalline soft magnetic alloy with good magnetic saturation and high frequency characteristics and small characteristic variations, and a high-performance magnetic component using the same.

液体急冷法による時間の経過と冷却過程を説明する図である。It is a figure explaining progress of time and a cooling process by a liquid quenching method. Snを添加した実施例における組織観察(TEM)写真である。(a)は熱処理前、(b)は熱処理後を示す。It is a structure | tissue observation (TEM) photograph in the Example which added Sn. (A) shows before heat treatment, (b) shows after heat treatment. Snを添加した実施例における各元素の濃度分布を示す図である。It is a figure which shows concentration distribution of each element in the Example which added Sn. Snを添加しない比較例における組織観察(TEM)写真である。(a)は熱処理前、(b)は熱処理後を示す。It is a structure | tissue observation (TEM) photograph in the comparative example which does not add Sn. (A) shows before heat treatment, (b) shows after heat treatment. Snを添加しない比較例における各元素の濃度分布を示す図である。It is a figure which shows concentration distribution of each element in the comparative example which does not add Sn. Snを0.1原子%添加した場合と、Snを添加しない場合のB-H曲線である。It is a BH curve when Sn is added at 0.1 atomic% and when Sn is not added.

先ず本発明を製造過程を例にとって説明する。
本発明のナノ結晶軟磁性合金は、単ロール法等の液体急冷法を用いて製造され得るが、その冷却過程は大きく3段階に分けられる。図1は液体急冷法による時間の経過と冷却過程(相状態の変化)を示している。1次冷却過程では、溶湯は高速で回転するロールに接触し105〜107℃/s と極めて速く短時間で冷却され過冷却状態となる。そのためランダムな原子配列であるアモルファス状態にある。その後、2次冷却過程に入ると、合金が固相と固相の接触により冷却速度は103〜105℃/s程度になる。このときCuはFe-Bのいずれの元素とも非固溶であるため、2次冷却過程においてCuが拡散できるだけの温度と時間があれば、Cuは表面に偏析すると考えられる。その後、3次冷却過程では薄帯温度が100〜300℃程度になったときロールから剥離させるので、固相と気相の接触となり冷却速度は大幅に落ちる。以上によってアモルファス相を主相とする合金薄帯が製造される。
First, the present invention will be described taking a manufacturing process as an example.
The nanocrystalline soft magnetic alloy of the present invention can be manufactured using a liquid quenching method such as a single roll method, but the cooling process is roughly divided into three stages. FIG. 1 shows the passage of time and the cooling process (change in phase state) by the liquid quenching method. In the primary cooling process, the molten metal comes into contact with a roll that rotates at high speed, and is cooled to 10 5 to 10 7 ° C / s very quickly in a short time to be in a supercooled state. Therefore, it is in an amorphous state that is a random atomic arrangement. Thereafter, when the secondary cooling process is started, the cooling rate of the alloy becomes about 10 3 to 10 5 ° C / s due to the contact between the solid phase and the solid phase. At this time, since Cu is insoluble in any element of Fe-B, if the temperature and time allow Cu to diffuse in the secondary cooling process, Cu is considered to segregate on the surface. After that, in the third cooling process, when the ribbon temperature reaches about 100 to 300 ° C., it is peeled off from the roll, so that the solid phase and the gas phase come into contact with each other, and the cooling rate is greatly reduced. Thus, an alloy ribbon having an amorphous phase as a main phase is produced.

Fe-Cu-B-Si系ナノ結晶軟磁性合金において初期微結晶粒は、結晶の不均一核生成サイトとなるCuクラスターが担っている。そして2次冷却過程のとき、Cuは薄帯の表面付近に偏析し易いと考えられる。ところで、特許文献1によればSnを含む各種元素をFeの5原子%以下の割合で置換することにより微結晶粒の生成を促進できるとあり、0.5原子%含ませた例が実施例に記載されている。但し、初期微結晶粒の分散や偏析抑制については開示されていない。そこで本発明者らは、実際にSnを0.2原子%まで含ませた合金と0.5原子%含ませた合金の作製を試みた。その結果、Snを0.5原子%含ませた合金は脆化が著しく、薄帯を巻き取ることが困難であった。一方、0.2原子%以下の極微量のSnを添加した場合は、Cu偏析部およびCu濃度の少ない領域が解消され、薄帯の巻取も可能であった。さらには、熱処理後の粗大結晶粒が抑制され良好な磁気特性が得られた。この極微量のSn添加の作用については、十分明らかにはなっていないが以下のように考えている。   In the Fe-Cu-B-Si nanocrystalline soft magnetic alloy, the initial fine crystal grains are carried by Cu clusters that are heterogeneous nucleation sites of crystals. During the secondary cooling process, Cu is likely to segregate near the surface of the ribbon. By the way, according to Patent Document 1, it is said that the formation of fine crystal grains can be promoted by substituting various elements including Sn at a ratio of 5 atomic% or less of Fe, and an example including 0.5 atomic% is described in the examples. Has been. However, there is no disclosure about dispersion of initial fine crystal grains and suppression of segregation. Therefore, the present inventors tried to produce an alloy containing Sn in an amount of 0.2 atomic% and an alloy containing 0.5 atomic%. As a result, the alloy containing 0.5 atomic% of Sn was extremely brittle and it was difficult to wind up the ribbon. On the other hand, when a very small amount of Sn of 0.2 atomic% or less was added, the Cu segregation part and the region with a low Cu concentration were eliminated, and the ribbon could be wound up. Furthermore, coarse crystal grains after heat treatment were suppressed, and good magnetic properties were obtained. The effect of this very small amount of Sn addition has not been fully clarified, but is considered as follows.

Snは低融点で、且つCuとの結びつきが強い元素である。その為Cuの拡散が抑制されると共に、Cuの表面部分への偏析が抑制されていると考えられる。また、極微量のSnの添加は、Cu濃度の少ない領域が形成されるのを抑制し、表面近傍までCuクラスターを均一に形成させる効果を有していると考えられる。よって、Snを極微量に含む合金は、粗大結晶粒が抑制され表面近傍まで粒径の小さい微細な結晶粒が広い範囲で形成される。その結果、粗大結晶粒の生成が抑制され磁壁のピン止めが生じ難くなり、磁壁移動や磁化回転が容易に起こり磁気飽和性が改善し保磁力も低減する。また、磁壁のピン止めが抑制されているため磁壁移動速度が遅くなり渦電流が抑制され、高周波における鉄損を低減できる。   Sn is an element having a low melting point and a strong bond with Cu. Therefore, it is considered that Cu diffusion is suppressed and segregation to the surface portion of Cu is suppressed. In addition, it is considered that the addition of a very small amount of Sn suppresses the formation of a region with a low Cu concentration and has an effect of uniformly forming a Cu cluster up to the vicinity of the surface. Therefore, in an alloy containing a very small amount of Sn, coarse crystal grains are suppressed and fine crystal grains having a small grain size are formed in a wide range up to the vicinity of the surface. As a result, the generation of coarse crystal grains is suppressed and the domain wall is less likely to be pinned, the domain wall movement and the magnetization rotation are easily performed, the magnetic saturation is improved, and the coercive force is also reduced. In addition, since the pinning of the domain wall is suppressed, the domain wall moving speed is reduced, eddy current is suppressed, and iron loss at high frequency can be reduced.

また、Snの添加によりCuの表面偏析が抑制されるため、Cu濃度の少ない領域ができ難くなり、Cu量の少ないアモルファス単相合金や初期微結晶の少ない合金を熱処理した際にも、微量で適量なSnを適量含むことにより、表面にCu偏析が生じ難くCu濃度の少ない領域の形成も抑制される。Snを微量で適量添加させることで、Cuの拡散挙動が変化するため、急冷時だけでなく熱処理時にもCuの偏析が抑えられるため広いCu含有範囲でSnの効果が得られる。更に、微量のSnを適量含むことにより、量産装置で作製した広幅合金薄帯の場所による冷却速度の違いに起因するCu偏析部やCu濃度の少ない領域でのCu濃度の変動が小さくなり、場所による特性ばらつきを抑えられる。   In addition, since the surface segregation of Cu is suppressed by the addition of Sn, it becomes difficult to form a region with a low Cu concentration, and even when heat-treating an amorphous single-phase alloy with a small amount of Cu or an alloy with a small initial microcrystal, By including an appropriate amount of Sn, Cu segregation hardly occurs on the surface, and formation of a region with a low Cu concentration is also suppressed. By adding an appropriate amount of Sn in a small amount, the diffusion behavior of Cu changes, so that segregation of Cu can be suppressed not only during quenching but also during heat treatment, so the effect of Sn can be obtained in a wide Cu content range. Furthermore, by including an appropriate amount of a small amount of Sn, fluctuations in the Cu concentration in the Cu segregation part and in a region with low Cu concentration due to the difference in the cooling rate due to the location of the wide alloy ribbon produced by the mass production device can be reduced. Variations in characteristics due to can be suppressed.

次に、合金組成および製造方法などを説明する。尚、本明細書で使用する用語のうち、「初期微結晶粒」は、合金溶湯を急冷してなる非晶質母相中に析出した結晶核であって、熱処理により数〜数十ナノの微結晶粒に成長するものを意味し、「微細結晶粒」は前記初期微結晶粒あるいはアモルファス単相から熱処理により成長した結晶粒を意味する。また、体積分率は3次元、数密度は2次元での初期微結晶粒や微細結晶粒の析出量の割合を示すが、後述するように体積分率は顕微鏡写真から線分法で求めた2次元の値と近似的に扱っている。また、数密度は単位面積当たりの微細結晶粒数を目視でカウントしたものである。   Next, an alloy composition, a manufacturing method, etc. are demonstrated. Of the terms used in the present specification, “initial fine crystal grains” are crystal nuclei precipitated in an amorphous matrix formed by rapidly cooling a molten alloy, and are several to several tens of nanometers by heat treatment. The term “fine crystal grain” means a crystal grain grown by heat treatment from the initial fine crystal grain or the amorphous single phase. In addition, the volume fraction indicates the proportion of the initial fine crystal grains and the amount of fine crystal grains precipitated in three dimensions and the number density, but the volume fraction was determined by a line segment method from a micrograph as described later. Approximate treatment with two-dimensional values. The number density is obtained by visually counting the number of fine crystal grains per unit area.

本発明の合金組成は、一般式:Fe100-x-y-z-dCuBSiSnここで、x、y、z、dは原子%で、0.6≦x≦1.6、6≦y≦20、0<z≦17、0.005≦d≦0.2、7≦y+z≦24により表される組成を有する。勿論、上記組成はS、O、N等の不可避的不純物を含んでも良い。高飽和磁束密度(高Bs)を有するためには、bcc-Feの微細結晶(ナノ結晶)を有する組織となる必要があり、そのためにはFe含有量が高い必要がある。特に好ましいFe含有量は78原子%以上である。 Alloy composition of the present invention have the general formula: wherein Fe 100-x-y-zd Cu x B y Si z Sn d, x, y, z, d in atomic%, 0.6 ≦ x ≦ 1.6,6 ≦ y ≦ 20, 0 <z ≦ 17, 0.005 ≦ d ≦ 0.2, 7 ≦ y + z ≦ 24. Of course, the above composition may contain inevitable impurities such as S, O, and N. In order to have a high saturation magnetic flux density (high Bs), it is necessary to have a structure having a fine crystal (nanocrystal) of bcc-Fe, and for that purpose, the Fe content needs to be high. A particularly preferable Fe content is 78 atomic% or more.

この合金は、Fe-B-Si系を基本組成とし、これにFeと非固溶の核生成元素であるCu及びCuと親和性の良いSnを含有させている。Cuの総量xは0.6≦x≦1.6である。Cuが0.6原子%未満では、Cuによる結晶核生成効果が十分でなく粗大結晶粒が生成し、磁気飽和性や軟磁気特性が劣化するため好ましくない。Cu量が1.6原子%を超えると合金作製時に脆化が著しくなり好ましくない。Cu量の下限は好ましくは 0.8原子%であり、さらに好ましくは1.0原子%である。上限は、好ましくは1.5原子%であり、さらに好ましくは1.4原子%である。   This alloy has a Fe-B-Si system as a basic composition, and contains Cu and Cu, which are nucleation elements insoluble in Fe and Fe, and has good affinity for Cu. The total amount x of Cu is 0.6 ≦ x ≦ 1.6. If Cu is less than 0.6 atomic%, the crystal nucleation effect due to Cu is not sufficient, and coarse crystal grains are formed, which deteriorates magnetic saturation and soft magnetic properties. When the amount of Cu exceeds 1.6 atomic%, embrittlement becomes remarkable at the time of alloy preparation, which is not preferable. The lower limit of the amount of Cu is preferably 0.8 atomic%, more preferably 1.0 atomic%. The upper limit is preferably 1.5 atomic%, more preferably 1.4 atomic%.

SnはCu 偏析と表面近傍のCu濃度の少ない領域が形成されるのを抑制し、Cuクラスターが高数密度で均一に形成される。そして熱処理後は、粗大結晶粒の形成を抑制し、表層(最表面から100 nm位)の平均結晶粒径は40 nm未満となる。よって、磁壁のピン止めを抑制し、高周波特性を改善する効果がある。また、量産装置で広幅の合金を作製した際に、場所によるCu偏析の差を低減し特性ばらつきを低減する働きがある。但し、Sn量が0.2原子%を超えると合金が脆化し易くなり合金薄帯の巻取りが困難になる等製造上の問題が生じる。また、Sn量が0.005原子%未満であるとSnによる前記効果が見込めない。よって、Sn量dは0.005≦d≦0.2としている。Sn量の下限は、好ましくは0.01原子%であり、さらに好ましくは0.05原子%である。上限は、好ましくは0.15原子%であり、さらに好ましくは0.1原子%である。   Sn suppresses the segregation of Cu and the formation of regions with low Cu concentration near the surface, and Cu clusters are uniformly formed at a high number density. After the heat treatment, the formation of coarse crystal grains is suppressed, and the average crystal grain size of the surface layer (about 100 nm from the outermost surface) is less than 40 nm. Therefore, there is an effect of suppressing the pinning of the domain wall and improving the high frequency characteristics. In addition, when a wide-width alloy is produced with a mass production device, it works to reduce the difference in Cu segregation depending on the location and to reduce the characteristic variation. However, if the amount of Sn exceeds 0.2 atomic%, the alloy is easily embrittled and manufacturing problems such as difficulty in winding the alloy ribbon occur. Moreover, the said effect by Sn cannot be anticipated that Sn amount is less than 0.005 atomic%. Therefore, the Sn amount d is set to 0.005 ≦ d ≦ 0.2. The lower limit of the Sn amount is preferably 0.01 atomic%, more preferably 0.05 atomic%. The upper limit is preferably 0.15 atomic%, more preferably 0.1 atomic%.

B(ボロン)は非晶質相の形成を促進する元素である。B量が6原子%未満であると非晶質相を主相とする合金薄帯を得るのが困難となり結晶粒径も増大する。B量が20原子%を超えると合金が脆化し、好ましくない。従って、B量yは6≦y≦20としている。B量の下限は、好ましくは10原子%であり、さらに好ましくは12原子%である。上限は、好ましくは18原子%であり、さらに好ましくは16原子%である。   B (boron) is an element that promotes the formation of an amorphous phase. When the amount of B is less than 6 atomic%, it is difficult to obtain an alloy ribbon having an amorphous phase as a main phase, and the crystal grain size increases. If the amount of B exceeds 20 atomic%, the alloy becomes brittle, which is not preferable. Therefore, the B amount y is 6 ≦ y ≦ 20. The lower limit of the amount of B is preferably 10 atomic%, more preferably 12 atomic%. The upper limit is preferably 18 atomic%, more preferably 16 atomic%.

Siの添加により結晶磁気異方性の大きいFe-B化合物相が析出する温度を高めることができ、熱処理温度を高くすることができる。このため、Siを含む合金ではより高温で熱処理を施すことが可能となる。よって、Feを主体に含む微結晶粒の割合を増加させることができるため、飽和磁束密度が増加する。また、Siを含む合金では、薄帯表面の酸化による変質又は変色を抑えることもできる。特にSi量zが1原子%以上であると薄帯の表面にSiを主体とする酸化物層が形成され、Feの酸化を十分に抑制できる。また、Si量zが17原子%を超えると飽和磁束密度(Bs)の著しい低下が起こり好ましくない。Si量の下限は、好ましくは2原子%であり、さらに好ましくは3原子%である。上限は、好ましくは10原子%であり、さらに好ましくは8原子%である。   By adding Si, the temperature at which the Fe—B compound phase having a large magnetocrystalline anisotropy is precipitated can be increased, and the heat treatment temperature can be increased. For this reason, an alloy containing Si can be heat-treated at a higher temperature. Therefore, since the ratio of the microcrystal grains mainly containing Fe can be increased, the saturation magnetic flux density is increased. Moreover, in the alloy containing Si, alteration or discoloration due to oxidation of the ribbon surface can be suppressed. In particular, when the Si amount z is 1 atomic% or more, an oxide layer mainly composed of Si is formed on the surface of the ribbon, and the oxidation of Fe can be sufficiently suppressed. On the other hand, if the Si content z exceeds 17 atomic%, the saturation magnetic flux density (Bs) is significantly lowered, which is not preferable. The lower limit of the Si amount is preferably 2 atomic%, more preferably 3 atomic%. The upper limit is preferably 10 atomic%, more preferably 8 atomic%.

また、必要に応じてFeの一部をMn、V、Cr、Ti、Zr、Nb、Mo、Hf、Ta及びWから選ばれた少なくとも一種の元素Dで置換しても良い。元素Dの含有量は好ましくは2原子%未満であり、より好ましくは1原子%である。最も好ましくは0.01〜0.5原子%である。
D元素は熱処理後も残留する非晶質相を安定化し、Fe含有量の高い微結晶粒の成長を抑制し、微結晶粒の平均粒径を低下させ、もって飽和磁束密度Bs及び軟磁気特性を改善できる。また、Cr、Ti、Nb、Taには耐食性を改善する効果もある。しかし、原子量の大きいこれらの元素が多すぎると、単位重量当たりのFeの含有量が低下して軟磁気特性が悪化するため好ましくない。
If necessary, a part of Fe may be substituted with at least one element D selected from Mn, V, Cr, Ti, Zr, Nb, Mo, Hf, Ta, and W. The content of element D is preferably less than 2 atomic%, more preferably 1 atomic%. Most preferably, it is 0.01-0.5 atomic%.
D element stabilizes the amorphous phase remaining after heat treatment, suppresses the growth of fine crystal grains with high Fe content, reduces the average grain size of fine grains, and thus has a saturation magnetic flux density Bs and soft magnetic properties Can be improved. Cr, Ti, Nb, and Ta also have an effect of improving corrosion resistance. However, too much of these elements having a large atomic weight is not preferable because the Fe content per unit weight is lowered and soft magnetic properties are deteriorated.

また、Feの一部をCo、Niから選ばれた少なくとも1種の元素で置換することができる。CoやNiを置換することにより、誘導磁気異方性の大きさの制御が可能である。また、Coの場合は飽和磁束密度を増加させる効果も有する。好ましいNiの含有量は0.1〜5原子%であり、特に好ましいNiの含有量は0.5〜1原子%である。Niの含有量が0.1原子%未満ではハンドリング性(切断や巻回の加工性)の向上効果が不十分であり、5原子%を超えると飽和磁束密度Bs、80A/mにおける磁束密度B80が低下する。好ましいCoの含有量は、20原子%以下である。特に好ましくは15原子%以下である。この範囲で特に高い飽和磁束密度が得られる。 Further, a part of Fe can be substituted with at least one element selected from Co and Ni. By substituting Co and Ni, the magnitude of the induced magnetic anisotropy can be controlled. Co also has the effect of increasing the saturation magnetic flux density. The preferable Ni content is 0.1 to 5 atomic%, and the particularly preferable Ni content is 0.5 to 1 atomic%. If the Ni content is less than 0.1 atomic%, the effect of improving the handleability (cutting and winding workability) is insufficient, and if it exceeds 5 atomic%, the saturation magnetic flux density Bs and the magnetic flux density B 80 at 80 A / m are descend. The preferable Co content is 20 atomic% or less. Especially preferably, it is 15 atomic% or less. A particularly high saturation magnetic flux density can be obtained in this range.

更に、Feの一部をRe、Y、Zn、As、In、Ag、Sb、白金族元素、Bi、N、O、及び希土類元素から選ばれた少なくとも一種の元素で置換しても良い。これらの元素の含有量は総量で1.5原子%以下が好ましく、0.5原子%以下がより好ましい。特に高い飽和磁束密度を得るためには、これらの元素の総量は1原子%以下が好ましく、0.5原子%以下がより好ましい。特にAgは極微量添加しCuクラスタリングを促進する相乗作用があり、Cuの一部をAgで置換することでCu量を減らすことが出来る。例えば0.005〜0.1原子%の極微量を置換することが好ましい。   Furthermore, a part of Fe may be substituted with at least one element selected from Re, Y, Zn, As, In, Ag, Sb, platinum group elements, Bi, N, O, and rare earth elements. The total content of these elements is preferably 1.5 atomic percent or less, and more preferably 0.5 atomic percent or less. In order to obtain a particularly high saturation magnetic flux density, the total amount of these elements is preferably 1 atomic% or less, and more preferably 0.5 atomic% or less. In particular, Ag has a synergistic effect of adding a very small amount to promote Cu clustering, and the amount of Cu can be reduced by substituting part of Cu with Ag. For example, it is preferable to replace a trace amount of 0.005 to 0.1 atomic%.

合金溶湯は、Fe100-x-y-z-dCuBSiSnで、x、y、z、dは原子%で、0.6≦x≦1.6、6≦y≦20、0<z≦17、0.005≦d≦0.2、7≦y+z≦24により表される組成を有する。 The molten alloy is Fe 100-x-y-zd Cu x B y Si z Sn d , where x, y, z, d are atomic%, 0.6 ≦ x ≦ 1.6, 6 ≦ y ≦ 20, 0 <z ≦ 17, 0.005 ≦ d ≦ 0.2, 7 ≦ y + z ≦ 24.

合金溶湯の急冷は単ロール法により行うことができる。溶湯温度は合金の融点より50〜300℃高いのが好ましく、例えば初期微結晶粒が析出した厚さ数十μmの薄帯を製造する場合、約1250〜1400℃の溶湯をノズルから冷却ロール上に噴出させるのが好ましい。単ロール法における雰囲気は、合金が活性な金属を含まない場合は通常大気中で製造するが、不活性ガス(Arガス等)、窒素ガス又は真空中で製造しても良い。活性な金属を含む合金の場合は不活性ガス(Arガス、Heガス等)、窒素ガス雰囲気中又は真空中で製造する。   Rapid cooling of the molten alloy can be performed by a single roll method. The molten metal temperature is preferably 50 to 300 ° C. higher than the melting point of the alloy. For example, when manufacturing a ribbon having a thickness of several tens of μm on which initial fine crystal grains are precipitated, a molten metal of about 1250 to 1400 ° C. is placed on the cooling roll from the nozzle. It is preferable to be ejected. The atmosphere in the single roll method is usually produced in the atmosphere when the alloy does not contain an active metal, but may be produced in an inert gas (Ar gas or the like), nitrogen gas or vacuum. In the case of an alloy containing an active metal, it is produced in an inert gas (Ar gas, He gas, etc.), nitrogen gas atmosphere or in vacuum.

単ロール法による冷却ロールの周速は、合金薄帯の冷却速度に関係するため、制御することが重要である。ロ-ル周速は、15〜50 m/sが好ましく、20〜40 m/sがより好ましく、25〜35 m/sが最も好ましい。
ロールの材質は、高熱伝導率の純銅、又はCu-Be、Cu-Cr、Cu-Zr、Cu-Zr-Cr、Cu-Ni-Si、Cu-Co-BeやCu-Ni-Be等の銅合金が適している。大量生産の場合、又は厚い及び/又は広幅の薄帯を製造する場合、ロールは水冷式が好ましい。ロールの水冷はアモルファス化や製造中に合金中に生成する初期結晶体積分率に影響するので、ロールの冷却能力(冷却速度と言っても良い)を鋳造当初から終了まで維持する必要がある。
Since the peripheral speed of the cooling roll by the single roll method is related to the cooling speed of the alloy ribbon, it is important to control. The roll peripheral speed is preferably 15 to 50 m / s, more preferably 20 to 40 m / s, and most preferably 25 to 35 m / s.
Roll material is pure copper with high thermal conductivity, or copper such as Cu-Be, Cu-Cr, Cu-Zr, Cu-Zr-Cr, Cu-Ni-Si, Cu-Co-Be and Cu-Ni-Be Alloys are suitable. In the case of mass production, or when producing a thick and / or wide ribbon, the roll is preferably water-cooled. Since the water cooling of the roll affects the amorphization and the initial crystal volume fraction generated in the alloy during production, it is necessary to maintain the roll cooling capacity (which may be referred to as the cooling rate) from the beginning to the end of casting.

初期微結晶粒の体積分率はロールの冷却能力(ロール材質や冷却水路構造、冷却水量等)に影響を受けるため、これらを制御して適正な組織となるように制御する。
また、単ロール法を用いた薄帯の鋳造では、板厚、断面形状、表面起伏などはパドル形状やパドル形状の変動に影響を受ける。パドルの制御には、ノズルとロール間の距離(=ギャップ)を制御したり、出湯圧力を調節する方法が有効である。ギャップ制御はロールとノズル間距離をモニタリングし、常にフィードバックをかけることで行い、合金薄帯の板厚、断面形状、表面起伏等を調整する。ギャップが広すぎると良好な形状の薄帯作製が困難となり、板厚の変動などにより生ずる冷却速度の差によって初期微結晶粒の析出量に差が生じる。好ましいギャップは300μm以下、より好ましくは250μm以下、特に好ましくは200μm以下とすることが有効である。
Since the volume fraction of the initial fine crystal grains is affected by the cooling capacity of the roll (roll material, cooling water channel structure, cooling water amount, etc.), these are controlled so as to obtain an appropriate structure.
Moreover, in the casting of a thin strip using the single roll method, the plate thickness, the cross-sectional shape, the surface undulation, etc. are affected by the paddle shape and the fluctuation of the paddle shape. For controlling the paddle, it is effective to control the distance (= gap) between the nozzle and the roll or adjust the tapping pressure. Gap control is performed by monitoring the distance between the roll and nozzle and constantly applying feedback to adjust the sheet thickness, cross-sectional shape, surface undulation, etc. of the alloy ribbon. If the gap is too wide, it will be difficult to produce a ribbon having a good shape, and the amount of precipitation of the initial fine crystal grains will be different due to the difference in cooling rate caused by variations in the plate thickness. It is effective that the preferred gap is 300 μm or less, more preferably 250 μm or less, particularly preferably 200 μm or less.

薄帯とロールとの間にノズルからガスを吹き付けることにより、薄帯をロールから剥離し薄帯の巻取を行う。薄帯の剥離温度はガスを吹き付けるノズルの位置(剥離位置)を変えることにより調整でき、一般に170〜350℃であり、好ましくは200〜340℃であり、より好ましくは250〜330℃である。
剥離した薄帯は、量産の場合、広幅薄帯で量も多いため直接リールに巻取る必要がある。このため、薄帯が著しく脆化している場合、薄帯が切れて巻取が困難となるため、合金薄帯の脆化をできる限り抑制する必要がある。
By blowing gas from the nozzle between the ribbon and the roll, the ribbon is peeled off from the roll and the ribbon is wound. The stripping temperature of the ribbon can be adjusted by changing the position (peeling position) of the gas blowing nozzle, and is generally 170 to 350 ° C, preferably 200 to 340 ° C, more preferably 250 to 330 ° C.
In the case of mass production, the peeled strip is a wide strip and has a large amount, so it is necessary to wind it directly on a reel. For this reason, when the thin ribbon is remarkably embrittled, the thin strip is cut and winding becomes difficult. Therefore, it is necessary to suppress the embrittlement of the alloy thin strip as much as possible.

初期微結晶が合金薄帯作製時に含まれる合金では、平均粒径が30 nm以下の超微細な初期微結晶粒が非晶質母相中に、30体積%未満の割合で分散した組織を有する。初期微結晶合金における初期微結晶粒の体積分率が、30体積%を超えると薄帯は十分な靭性を有さず、後工程でのハンドリングが難しくなるため、初期微結晶粒の体積分率は30%未満が好ましい。   In alloys in which initial microcrystals are included in the production of alloy ribbons, ultrafine initial microcrystal grains having an average grain size of 30 nm or less have a structure dispersed in an amorphous matrix at a ratio of less than 30% by volume. . If the volume fraction of the initial microcrystalline grains in the initial microcrystalline alloy exceeds 30% by volume, the ribbon does not have sufficient toughness and it becomes difficult to handle in the subsequent process, so the volume fraction of the initial microcrystalline grains Is preferably less than 30%.

また、本発明において初期微結晶は、急冷作製状態で必ずしも形成している必要性はなく、熱処理過程の一部の期間に形成させることも可能である。すなわち、作製状態では、初期微結晶が存在しない合金薄帯であっても、SnのCu偏析や平均的なCu濃度が少ない領域が形成され難くなる効果により、昇温過程においてもCu濃度が減少した領域が形成され難くなり、微量なSnを含ませることにより、結晶粒の不均一核生成サイトとしてCuクラスターの数密度の少ない領域が形成されるのを抑制し、Cuクラスターを合金中に均一に分布させ、クラスターの数密度が減少する領域を減らし、熱処理後は均一微細な結晶粒が合金全体に形成するようになり、磁気飽和性と軟磁気特性に優れた合金が実現されていると考えられる。   Further, in the present invention, the initial microcrystal is not necessarily formed in the rapid cooling state, and can be formed during a part of the heat treatment process. In other words, in the fabricated state, even in the case of an alloy ribbon in which no initial microcrystals exist, the Cu concentration is reduced even during the temperature rising process due to the effect that it is difficult to form a region with a small amount of Cu segregation and average Cu concentration By adding a small amount of Sn, the formation of regions with low number density of Cu clusters as the heterogeneous nucleation sites of crystal grains is suppressed, and the Cu clusters are uniformly formed in the alloy. The number of clusters decreases in the area where the number density decreases, and after heat treatment, uniform fine crystal grains are formed in the entire alloy, and an alloy with excellent magnetic saturation and soft magnetic properties has been realized. Conceivable.

一方、Snを含まない合金の場合、液相中で均一に分布していたCuが過冷却液体状態で、拡散して、表面にCuが偏析し、その内部側ではCu濃度が減少する。このため、このCu濃度が減少した領域は、不均一核生成サイトとしてCuクラスターの数密度が少なくなり、熱処理を行うとこの領域に粗大結晶粒を形成し、磁気飽和性、軟磁気特性や高周波磁気特性を劣化させる。
本発明によれば、Sn を含まない状態に比べて、Cuの表面への偏析が熱処理の際も起こりにくくなり、熱処理時の昇温速度条件を緩和できるため、熱処理においても好ましい効果が得られる。
On the other hand, in the case of an alloy that does not contain Sn, Cu that has been uniformly distributed in the liquid phase diffuses in the supercooled liquid state and segregates on the surface, and the Cu concentration decreases on the inner side. For this reason, in the region where the Cu concentration is reduced, the number density of Cu clusters decreases as a heterogeneous nucleation site, and when heat treatment is performed, coarse crystal grains are formed in this region, and magnetic saturation, soft magnetic properties and high frequency Deteriorates magnetic properties.
According to the present invention, as compared with a state containing no Sn, segregation on the surface of Cu is less likely to occur during the heat treatment, and the temperature increase rate condition during the heat treatment can be relaxed. .

本発明の初期微結晶合金の熱処理は、通常350℃以上500℃以下の温度に保持して行う。保持時間は好ましくは30秒〜4時間である。熱処理の際の平均の昇温速度は0.1〜200℃/分が好ましく、より好ましくは、0.1〜100℃/分である。また、熱処理の際の平均冷却速度は、0.1〜200℃/分が好ましく、より好ましくは、0.1〜100℃/分である。
本発明の初期微結晶を含まない合金の熱処理は、通常400℃以上600℃以下の温度まで急加熱し保持あるいは保持なしで冷却して行う。保持時間は好ましくは30分以下、より好ましくは5分以下、特に好ましくは30秒以下である。熱処理の際の平均の昇温速度は200℃/分〜10000℃/分が好ましく、より好ましくは、500〜10000℃/分である。また、熱処理の際の平均冷却速度は、1000〜10000℃/分が好ましく、より好ましくは、2000〜8000℃/分である。
The heat treatment of the initial microcrystalline alloy of the present invention is usually performed while maintaining a temperature of 350 ° C. or higher and 500 ° C. or lower. The holding time is preferably 30 seconds to 4 hours. The average rate of temperature increase during the heat treatment is preferably from 0.1 to 200 ° C./min, and more preferably from 0.1 to 100 ° C./min. The average cooling rate during the heat treatment is preferably 0.1 to 200 ° C./min, more preferably 0.1 to 100 ° C./min.
The heat treatment of the alloy containing no initial microcrystals of the present invention is usually performed by rapidly heating to a temperature of 400 ° C. or more and 600 ° C. or less and cooling with or without holding. The holding time is preferably 30 minutes or less, more preferably 5 minutes or less, and particularly preferably 30 seconds or less. The average rate of temperature increase during the heat treatment is preferably 200 ° C./min to 10000 ° C./min, more preferably 500 to 10,000 ° C./min. The average cooling rate during the heat treatment is preferably 1000 to 10,000 ° C./min, and more preferably 2000 to 8000 ° C./min.

熱処理雰囲気は大気中でも可能であるが、Arガスなどの不活性ガス雰囲気や窒素ガス雰囲気中が望ましい。熱処理に用いる雰囲気ガスの露点は表面結晶化を抑制する観点から−30℃以下が好ましく、−60℃以下がより好ましい。また、熱処理を真空中で行うこともできる。   The heat treatment atmosphere can be performed in the air, but an inert gas atmosphere such as Ar gas or a nitrogen gas atmosphere is desirable. The dew point of the atmospheric gas used for the heat treatment is preferably −30 ° C. or less, more preferably −60 ° C. or less from the viewpoint of suppressing surface crystallization. Moreover, heat processing can also be performed in a vacuum.

また、磁場中熱処理により誘導磁気異方性を付与し、B-Hループ形状を制御したり、特性を改善することができる。熱処理の昇温中、最高温度の保持中及び冷却中の少なくとも一部の期間において軟磁性合金を飽和させるのに十分な強さの磁場を印加することにより誘導磁気異方性を付与できる。必要な最低磁場強度は薄帯の幅方向(環状磁心の場合、高さ方向)や長手方向(環状磁心の場合、円周方向)に印加するかにより異なる。一般に反磁界が大きい方向に印加する場合は大きな磁場を必要とする。環状磁心の円周方向(磁路方向)に磁場を印加する場合は、一般的には400A/m以上の磁場を印加する。環状磁心の高さ方向に磁場を印加する場合は形状にもよるが、磁心が飽和する程度のより大きい磁場を印加する。一般的に環状磁心の高さ方向に印加する磁場は40kA/m以上であり、通常の環状磁心では80kA/m以上印加する。印加する磁場は直流磁場、交流磁場、パルス磁場のいずれでも良い。磁場中熱処理により高角形比又は低角形比の直流ヒステリシスループを有する合金薄帯や磁心が得られる。磁場を印加しない熱処理の場合、合金薄帯や磁心は中程度の角形比のラウンドタイプの直流ヒステリシスループを示す。
また、本合金では、、張力を印加しながら熱処理することによっても、誘導磁気異方性を付与可能である。
In addition, induced magnetic anisotropy can be imparted by heat treatment in a magnetic field to control the BH loop shape and improve characteristics. The induced magnetic anisotropy can be imparted by applying a magnetic field having a strength sufficient to saturate the soft magnetic alloy during the temperature rise of the heat treatment, during the holding of the maximum temperature and during at least a part of the cooling. The required minimum magnetic field strength differs depending on whether it is applied in the width direction of the ribbon (in the case of an annular magnetic core, the height direction) or in the longitudinal direction (in the case of an annular magnetic core, the circumferential direction). In general, when a demagnetizing field is applied in a large direction, a large magnetic field is required. When a magnetic field is applied in the circumferential direction (magnetic path direction) of the annular magnetic core, a magnetic field of 400 A / m or more is generally applied. When a magnetic field is applied in the height direction of the annular magnetic core, depending on the shape, a magnetic field larger than the saturation of the magnetic core is applied. In general, the magnetic field applied in the height direction of the annular magnetic core is 40 kA / m or more, and for a normal annular magnetic core, 80 kA / m or more is applied. The applied magnetic field may be any of a DC magnetic field, an AC magnetic field, and a pulse magnetic field. An alloy ribbon or magnetic core having a DC hysteresis loop with a high squareness ratio or a low squareness ratio can be obtained by heat treatment in a magnetic field. In the case of heat treatment without applying a magnetic field, the alloy ribbon and magnetic core show a round type DC hysteresis loop with a medium squareness ratio.
In addition, in this alloy, induced magnetic anisotropy can be imparted also by heat treatment while applying tension.

上記合金薄帯に、必要に応じてSiO2、MgO、Al2O3等の酸化物被膜を形成しても良い。酸化物被膜を形成することにより、本合金から形成した巻磁心や積層磁心の層間抵抗が高くなり、渦電流が減少するため高周波における鉄損を更に減少させることができる。また、必要に応じてこの薄帯からなる磁心を樹脂含浸、硬化させ磁心を作製することもできる。 If necessary, an oxide film such as SiO 2 , MgO, Al 2 O 3 may be formed on the alloy ribbon. By forming the oxide film, the inter-layer resistance of the wound magnetic core and laminated magnetic core formed from this alloy is increased, and the eddy current is reduced, so that the iron loss at high frequency can be further reduced. If necessary, a magnetic core made of a thin ribbon can be impregnated with resin and cured to produce a magnetic core.

熱処理後の合金は、平均粒径60 nm以下の体心立方(bcc)構造の微結晶粒が30%以上の体積分率で非晶質母相中に分散した組織を有する。微結晶粒の平均粒径が60 nmを超えると軟磁気特性が著しく劣化する。微結晶粒の体積分率が30%未満では、非晶質の割合が多すぎ、飽和磁束密度が低い。熱処理後の微結晶粒の平均粒径は40
nm以下が好ましく、30 nm以下がより好ましい。特に好ましい微結晶粒の平均粒径は20nm以下である。また、熱処理後の微結晶粒の体積分率は40%以上が好ましく、50%以上がより好ましい。60 nm以下の平均粒径及び30%以上の体積分率で、Fe基非晶質合金より磁歪が低く軟磁性に優れた合金が得られる。同組成のFe基非晶質合金薄帯は比較的大きな磁歪を有するが、bcc-Feを主体とする微結晶粒が分散した本ナノ結晶軟磁性合金は、Fe基アモルファス合金の約1/2以下の低い飽和磁歪定数λsであり、磁気飽和性が良好である。
The heat-treated alloy has a structure in which microcrystal grains having a body-centered cubic (bcc) structure with an average grain size of 60 nm or less are dispersed in an amorphous matrix with a volume fraction of 30% or more. When the average grain size of the fine crystal grains exceeds 60 nm, the soft magnetic properties are significantly deteriorated. When the volume fraction of the microcrystal grains is less than 30%, the amorphous ratio is too large and the saturation magnetic flux density is low. The average grain size of the crystallites after heat treatment is 40
nm or less is preferable, and 30 nm or less is more preferable. A particularly preferable average crystal grain size is 20 nm or less. Further, the volume fraction of the fine crystal grains after the heat treatment is preferably 40% or more, and more preferably 50% or more. With an average particle size of 60 nm or less and a volume fraction of 30% or more, an alloy having lower magnetostriction and superior soft magnetism than an Fe-based amorphous alloy can be obtained. The Fe-based amorphous alloy ribbon with the same composition has a relatively large magnetostriction, but this nanocrystalline soft magnetic alloy with dispersed fine crystal grains mainly composed of bcc-Fe is about 1/2 of the Fe-based amorphous alloy. It has the following low saturation magnetostriction constant λs and good magnetic saturation.

本発明は、合金薄帯だけでなく合金粉末においても同様の効果が得られ、本発明に同様な組成の合金粉末も含めことができる。粉砕やアトマイズ法などで粉末を製造する場合、合金薄帯と同様、Snを含まない場合は最表面にCuが偏析し、その内側の表面近傍では、Cu濃度が減少した領域ができ、熱処理後に不均一核生成サイトの数が不足し、粗大な結晶粒ができるため軟磁気特性が劣化する。粉末でもSnを微量添加することで、表面近傍の初期微結晶が不足する範囲においても、微細な組織が得られ、大幅に軟磁気特性を改善させられる。粉末の熱処理後のナノ構造のばらつきを減らすことができ、歩留まり、作業効率を大きく向上することができる。   In the present invention, the same effect can be obtained not only in the alloy ribbon but also in the alloy powder, and the present invention can also include an alloy powder having the same composition. When producing powder by grinding or atomizing method, as with alloy ribbon, Cu does not segregate on the outermost surface when Sn is not included, and a region with reduced Cu concentration is formed near the inner surface, after heat treatment Since the number of heterogeneous nucleation sites is insufficient and coarse crystal grains are formed, soft magnetic properties are deteriorated. By adding a small amount of Sn even in the powder, a fine structure can be obtained even in the range where the initial fine crystals near the surface are insufficient, and the soft magnetic characteristics can be greatly improved. Variations in nanostructure after heat treatment of the powder can be reduced, yield and work efficiency can be greatly improved.

もう一つの本発明は、上記ナノ結晶軟磁性合金を用いた高性能磁性部品である。本発明合金は、設計する動作磁束密度を大きくできる。このため、高動作磁束密度設計が要求される高エネルギー密度の用途に好適であり、磁性部品は、例えばアノードリアクトル等の大電流用リアクトル、アクティブフィルタ用チョークコイル、平滑用チョークコイル、レーザ電源や加速器等に用いられるパルスパワー磁性部品、各種トランス、モータ又は発電機の磁心等に適する。また、この磁性部品は、λsが大きいFe基アモルファス合金を使用した磁性部品よりも騒音が低減し好ましい結果が得られる。この他に、通信用パルストランス、電流センサ、磁気センサ、アンテナ磁心、電磁波吸収シートや磁気シールドシートなどに使用することもできる。また、合金薄帯を複数積層して積層体となし、これらの積層体をさらに積層して一旦積層構造としたのち、ステップラップやオーバラップ状に巻いた変圧器用の鉄心としても適用できる。   Another aspect of the present invention is a high-performance magnetic component using the nanocrystalline soft magnetic alloy. The alloy of the present invention can increase the operating magnetic flux density to be designed. For this reason, it is suitable for high energy density applications where high operating magnetic flux density design is required. Magnetic components include, for example, high current reactors such as anode reactors, choke coils for active filters, choke coils for smoothing, laser power supplies, Suitable for pulse power magnetic parts used in accelerators, various transformers, motors or generator cores. Further, this magnetic part has a lower noise and a preferable result as compared with a magnetic part using an Fe-based amorphous alloy having a large λs. In addition, it can be used for a pulse transformer for communication, a current sensor, a magnetic sensor, an antenna magnetic core, an electromagnetic wave absorbing sheet, a magnetic shield sheet, and the like. Also, a plurality of alloy ribbons can be laminated to form a laminated body, and these laminated bodies can be further laminated to form a laminated structure, and then applied as an iron core for a transformer wound in a step wrap or an overlap.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。尚、剥離温度、微結晶粒の平均粒径及び体積分率、元素濃度、磁気特性は下記の方法により求めた。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. The peeling temperature, the average grain size and volume fraction of the fine crystal grains, the element concentration, and the magnetic properties were determined by the following methods.

ノズルから吹き付ける窒素ガスにより冷却ロールから剥離するときの合金薄帯の温度を放射温度計(アピステ社製、型式:FSV-7000E)により測定し、剥離温度とした。   The temperature of the alloy ribbon when peeling from the cooling roll by nitrogen gas blown from the nozzle was measured with a radiation thermometer (Apiste Co., model: FSV-7000E) to obtain the peeling temperature.

微結晶粒(初期微結晶粒も同じ)の平均粒径は、各試料の透過型電子顕微鏡(TEM)写真等から任意に選択したn個(30個以上)の微結晶粒の長径DL及び短径DSを測定し、Σ(DL+DS)/2nの式に従って平均することにより求めた。また各試料のTEM写真等に長さLtの任意の直線を引き、各直線が微結晶粒と交差する部分の長さの合計Lcを求め、各直線に沿った結晶粒の割合LL=Lc/Ltを計算した。この操作を5回繰り返し、LLを平均することにより微結晶粒の体積分率を求めた。ここで、体積分率VL=Vc/Vt(Vcは微結晶粒の体積の総和であり、Vtは試料の体積である。)は、VL≒Lc3/Lt3=LL 3と近似的に扱った。
また、数密度については、各試料のTEM写真(日立製作所製
2万倍)において、目視で確認できるおよそ3〜5nm以上の微結晶粒の数を単位面積(μm2)当たりで求めた。
The average grain size of the microcrystalline grains (same as the initial microcrystalline grains) is the major axis D L of n (30 or more) microcrystalline grains arbitrarily selected from a transmission electron microscope (TEM) photograph of each sample. The minor axis D S was measured and obtained by averaging according to the formula Σ (D L + D S ) / 2n. Also, draw an arbitrary straight line of length Lt on the TEM photograph etc. of each sample, find the total length Lc of the part where each straight line intersects with the fine crystal grains, and the ratio of crystal grains along each straight line L L = Lc / Lt was calculated. This operation was repeated 5 times, and the volume fraction of fine crystal grains was determined by averaging L L. Here, the volume fraction V L = Vc / Vt (Vc is the sum of the volume of the fine crystal grains and Vt is the volume of the sample) is approximated as V L ≒ Lc 3 / Lt 3 = L L 3 Treated.
For the number density, a TEM photograph of each sample (manufactured by Hitachi, Ltd.
20,000 times), the number of fine crystal grains of about 3 to 5 nm or more that can be visually confirmed was determined per unit area (μm 2 ).

合金薄帯の表面から内部に向かう各元素の濃度分布をグロー放電発光分析(GDOES:Glow Discharge
Optical Emission Spectroscopy)(株式会社堀場製作所製)を用いて測定した。元素濃度は表面をスパッタリングした時の各元素の発光強度を調べることにより深さ方向の濃度分布として測定した。尚、各元素の発光強度は濃度とスパッタリング速度に関係するので、縦軸に発光強度(元素濃度に対応)、横軸にスパッタ時間(深さに対応)をとっている。
Glow discharge emission analysis (GDOES: Glow Discharge) of the concentration distribution of each element from the surface to the inside of the alloy ribbon
Optical Emission Spectroscopy (manufactured by Horiba, Ltd.) was used for measurement. The element concentration was measured as a concentration distribution in the depth direction by examining the emission intensity of each element when the surface was sputtered. Since the light emission intensity of each element is related to the concentration and the sputtering rate, the vertical axis represents the light emission intensity (corresponding to the element concentration) and the horizontal axis represents the sputtering time (corresponding to the depth).

120mm単板試料を直流磁化自動記録装置(メトロン技研社製)により、B-H曲線を求め、80 A/mにおける磁束密度
B80 、800 A/mにおける磁束密度
B800 、8000 A/m における磁束密度 B8000(ほぼ飽和磁束密度Bsと同じ)及び残留磁束密度Brを測定し、B80/B800、Br/B80を求めた。尚、ここでB800 をとったのは、本発明に係る合金ではこのB800領域の飽和性が悪くなる傾向にある。そこでB80/B800の比が1 に近いほど、この領域の飽和性が良いことを示す指標になるからである。
鉄損については、120mm単板試料を交流磁気特性評価装置(東英工業製)により、1.5 T、50 Hz における鉄損P1.5/50(W/Kg)、皮相電力S(励磁VA)の測定を行った。
Obtain a BH curve from a 120mm single plate sample using a direct current magnetization automatic recorder (Metron Giken Co., Ltd.) and obtain a magnetic flux density at 80 A / m.
Magnetic flux density at B 80 and 800 A / m
The magnetic flux density B 8000 (substantially the same as the saturation magnetic flux density Bs) and the residual magnetic flux density Br at B 800 and 8000 A / m were measured, and B 80 / B 800 and B r / B 80 were obtained. Incidentally, the reason why B 800 is taken here is that the saturation of the B 800 region tends to be deteriorated in the alloy according to the present invention. This is because the closer the B 80 / B 800 ratio is to 1, the better the saturation of this region becomes.
For iron loss, a 120mm single plate sample was measured with an AC magnetic property evaluation device (manufactured by Toei Kogyo) for iron loss P 1.5 / 50 (W / Kg) and apparent power S (excitation VA) at 1.5 T, 50 Hz. Went.

(実施例1)
FebalCu1.3B12Si4Sn0.1のナノ結晶軟磁性合金薄帯を下記により製造した。また、比較のためSnを添加しないFebalCu1.3B12Si4のナノ結晶軟磁性合金薄帯も同様に製造した。
上記の各組成(原子%)となした合金溶湯(1300℃)を銅合金製の冷却ロール(幅:168mm、周速:27m/s、冷却水の入口温度:約60℃、出口温度:約70℃)を用いて、大気中で超急冷し、250℃の薄帯温度でロールから剥離し、幅25mm、厚さ約22μm、長さ約10000mの非晶質相が主相である初期微結晶合金の薄帯を作製した。
この際、Sn量が0.1原子%の場合でも巻取りは行えて最後まで製造ができた。また、任意箇所で初期微結晶粒の平均粒径と体積分率を測定した結果、両薄帯とも非晶質母相中に平均粒径30nm以下の初期微結晶粒が30体積%未満の割合で分散した組織を有することが確認された。
その後、それぞれの薄帯から採取した120mm単板試料を熱処理炉に投入し、約15分で410℃まで昇温した後、1時間保持する低温低速の熱処理を施し、ナノ結晶軟磁性合金の薄帯を作製した。
Example 1
A nanocrystalline soft magnetic alloy ribbon of Fe bal Cu 1.3 B 12 Si 4 Sn 0.1 was prepared as follows. For comparison, a Fe bal Cu 1.3 B 12 Si 4 nanocrystalline soft magnetic alloy ribbon without addition of Sn was also produced.
A molten alloy (1300 ° C) having the above composition (atomic%) is a copper alloy cooling roll (width: 168mm, peripheral speed: 27m / s, cooling water inlet temperature: about 60 ° C, outlet temperature: about 70 ° C), which is supercooled in the atmosphere, peeled off from the roll at a strip temperature of 250 ° C, and an initial fine phase whose main phase is an amorphous phase with a width of 25 mm, a thickness of about 22 µm, and a length of about 10,000 m. A ribbon of crystalline alloy was prepared.
At this time, even when the Sn amount was 0.1 atomic%, the winding could be performed and the production was completed. In addition, as a result of measuring the average particle size and volume fraction of the initial fine crystal grains at an arbitrary location, the ratio of the initial fine crystal grains having an average particle size of 30 nm or less in the amorphous matrix to less than 30% by volume in both thin ribbons It was confirmed to have a dispersed structure.
Thereafter, a 120 mm single plate sample taken from each ribbon is put into a heat treatment furnace, heated to 410 ° C. in about 15 minutes, and then subjected to low-temperature low-speed heat treatment for 1 hour, thereby thinning the nanocrystalline soft magnetic alloy. A strip was made.

両試料について熱処理前と熱処理後のロール面の組織観察(TEM)を行った。図2にSnを0.1原子%添加した実施例の表面付近の観察像を、図4にSn添加無しの比較例の表面付近の観察像を示す。図2、図4の(a)は熱処理前、(b)は熱処理後をそれぞれ示している。
次に、GDOESによる各元素の濃度分布について、図3にSnを0.1原子%添加した実施例を、図5にSn添加無しの比較例の場合を示す。
尚、熱処理前の初期微結晶粒の平均粒径及び体積分率と数密度、熱処理後の微細結晶粒の体積分率及び軟磁気特性等については後述する表1、2に示している。
Both samples were subjected to microstructure observation (TEM) of the roll surface before and after heat treatment. FIG. 2 shows an observation image near the surface of an example in which Sn is added at 0.1 atomic%, and FIG. 4 shows an observation image near the surface in a comparative example without addition of Sn. 2 and FIG. 4A show before heat treatment, and FIG. 4B shows after heat treatment, respectively.
Next, regarding the concentration distribution of each element by GDOES, FIG. 3 shows an example in which 0.1 atomic% of Sn was added, and FIG. 5 shows a comparative example without Sn addition.
The average grain size and volume fraction and number density of the initial fine crystal grains before the heat treatment, the volume fraction of the fine crystal grains after the heat treatment, the soft magnetic characteristics, and the like are shown in Tables 1 and 2 described later.

ナノ結晶軟磁性合金の軟磁気特性の発現には、微細結晶粒の粒径が小さいことが非常に重要な要素として知られているが、それと同様に組織が均質で、且つFeを主体とする微結晶粒が密に詰まっていることが重要となる。ここで図2と図4を比較してみると、Snを添加していない図4(a)では極僅かではあるが表面付近に結晶が介在した偏析部が見られた。この偏析部は図5の濃度分布からCu濃度のピークに相当していると考えられる。即ち、表面付近にはCu偏析部が生じ、Cu偏析部の内側にはCu濃度が低い領域が存在する。これはCuが拡散し最表面に移動してCu偏析部を形成したためであると考えられる。一方、本発明の図2(a)では表面付近には偏析など何ら見当たらない。図3によればCu濃度のピークが無くなっており、Cu偏析部が存在せず、表面付近までCu濃度がほぼ一定であることが分かる。即ち、Snの添加により表面付近のCu濃度変動が解消された。また、図2(b)と図4(b)を比べると、Snを添加した図2(b)の方がより結晶粒は小さく内部まで均一に分散していることが分かる。以上のことから極微量のSn添加には表面付近のCu偏析部を解消し、平均的なCu濃度を深さ方向でほぼ一定にする効果があり、これによりCuクラスターの数密度を深さ方向でほぼ一定で組織を均一にし、粗大結晶形成を抑制する働きがあることが確認された。   It is known as a very important factor for the development of soft magnetic properties of nanocrystalline soft magnetic alloys that the fine grain size is small, but similarly the structure is homogeneous and mainly Fe. It is important that the fine crystal grains are densely packed. When FIG. 2 and FIG. 4 are compared with each other, in FIG. 4A in which Sn is not added, a segregation portion in which crystals are present is observed in the vicinity of the surface, though very little. This segregation part is considered to correspond to the peak of Cu concentration from the concentration distribution of FIG. That is, a Cu segregation portion is generated near the surface, and a region having a low Cu concentration exists inside the Cu segregation portion. This is probably because Cu diffused and moved to the outermost surface to form a Cu segregation part. On the other hand, in FIG. 2A of the present invention, no segregation or the like is found near the surface. According to FIG. 3, it can be seen that the Cu concentration peak disappears, the Cu segregation portion does not exist, and the Cu concentration is substantially constant up to the vicinity of the surface. That is, the fluctuation of Cu concentration near the surface was eliminated by the addition of Sn. Further, comparing FIG. 2B and FIG. 4B, it can be seen that in FIG. 2B to which Sn is added, the crystal grains are smaller and uniformly dispersed to the inside. From the above, the addition of a very small amount of Sn has the effect of eliminating the Cu segregation near the surface and making the average Cu concentration almost constant in the depth direction, which makes the number density of Cu clusters in the depth direction. Thus, it was confirmed that there is a function of making the structure uniform and uniform, and suppressing the formation of coarse crystals.

(実施例2)
表1に示す組成についてSn量を変えたナノ結晶軟磁性合金薄帯を実施例1と同様の方法と条件で製造した。薄帯の厚みは約17〜30μmの範囲として冷却速度を出来るだけ合わせるようにした。ただし、Sn量が0.5原子%の場合は、薄帯の脆化が激しく巻き取ることは困難であった。一方、Sn量が0.1原子%以下の場合は、出湯直後で巻取り前段階の薄帯は、曲げ半径0.5mmまで或いは密着するまで破断することなく180度曲げが可能であり巻取りが出来た。これらの結果から、Sn量が0.2原子%以下であれば薄帯を巻き取ることは可能であると判断できた。
(Example 2)
Nanocrystalline soft magnetic alloy ribbons with different Sn contents for the compositions shown in Table 1 were produced by the same method and conditions as in Example 1. The thickness of the ribbon was in the range of about 17-30 μm so that the cooling rate was matched as much as possible. However, when the Sn content was 0.5 atomic%, the ribbon was so brittle that it was difficult to wind up. On the other hand, when the Sn content is 0.1 atomic% or less, the ribbon at the stage before winding immediately after pouring can be bent by 180 degrees without breaking until the bending radius reaches 0.5 mm or until it comes into close contact. . From these results, it was determined that the ribbon could be wound up if the Sn content was 0.2 atomic% or less.

次に、各試料について初期微結晶粒の平均粒径と体積分率を測定した結果、各薄帯とも非晶質母相中に平均結晶粒径30nm以下の初期微結晶粒が30体積%未満の割合で分散した組織を有することが確認された。また、熱処理前の初期微結晶粒の体積分率と数密度、及び熱処理後の微結晶粒について表面近傍と母相部(深さ5μm)の平均結晶粒径と体積分率を測定した。
また、熱処理後のナノ結晶軟磁性合金の単板試料によりB-H曲線を求めた。磁束密度B80とB800、飽和磁束密度B8000及びBと、保磁力Hc(A/m)及び1.5T、50Hzでの鉄損P1.5/50(W/Kg)、皮相電力S(VA/Kg)を測定した。
以上の測定結果を表1、表2に示す。尚、飽和磁束密度B8000はBsと記し、*を付したものが実施例である(以下同様)。
Next, as a result of measuring the average particle size and volume fraction of the initial fine crystal grains for each sample, the initial fine crystal grains having an average crystal grain size of 30 nm or less were less than 30% by volume in the amorphous matrix in each thin ribbon. It was confirmed to have a structure dispersed at a rate of. In addition, the volume fraction and number density of the initial fine crystal grains before the heat treatment, and the average crystal grain size and volume fraction in the vicinity of the surface and the parent phase part (depth 5 μm) of the fine crystal grains after the heat treatment were measured.
In addition, the BH curve was obtained from a single plate sample of the nanocrystalline soft magnetic alloy after the heat treatment. The magnetic flux density B 80 and B 800, and the saturation magnetic flux density B 8000 and B r, the coercive force Hc (A / m) and 1.5T, iron loss P 1.5 / 50 (W / Kg ) at 50 Hz, the apparent power S (VA / Kg) was measured.
The above measurement results are shown in Tables 1 and 2. The saturation magnetic flux density B 8000 is described as Bs and marked with * is an example (the same applies hereinafter).

表1より熱処理後の組織は何れの合金組成でも表面近傍では内部の母相よりも平均結晶粒径は大きくなる傾向が見られる。但し、Sn入りの場合と無い場合を比べると、Sn入りの場合は表面近傍と母相部分の粒径の差が小さく平均結晶粒径自体も小さい。また、熱処理前の組織をみてもSn入りの場合は、初期微結晶粒の数密度が高く結晶粒径も小さいことが分かる。以上より、Snを適量だけ添加したものは表面近傍から合金内部まで微細で緻密な組織が形成され磁気飽和性の向上と軟磁気特性向上が実現されている。   From Table 1, it can be seen that the average crystal grain size tends to be larger in the vicinity of the surface than in the internal matrix in any alloy composition after heat treatment. However, comparing the case with Sn and the case without Sn, in the case with Sn, the difference in the grain size between the vicinity of the surface and the parent phase is small, and the average crystal grain size itself is also small. It can also be seen from the structure before heat treatment that the number density of the initial fine crystal grains is high and the crystal grain size is small when Sn is contained. As described above, when an appropriate amount of Sn is added, a fine and dense structure is formed from the vicinity of the surface to the inside of the alloy, and an improvement in magnetic saturation and an improvement in soft magnetic characteristics are realized.

次に、Sn無しの比較例(No.1)では保磁力が16A/mと比較的高いが、Sn入りの場合は、0.05原子%の極微量でも保磁力は7.6A/mまで減少し、磁束密度B80は1.64T以上となっている。さらに、Snを0.1原子%添加した場合は、保磁力は5.0A/mまで減少し、B80は1.68Tとなった。但し、Snを0.5原子%添加すると保磁力が高くなる傾向にあり、上述の通り靭性が低く生産性の面で問題がある。また、Sn無しの比較例では、結晶粒が大きめであり保磁力や鉄損にもその影響が出ている。よって、Snを適量含有した方が保磁力や鉄損が低く優れた軟磁気特性が得られた。即ち、Snの添加量が0.5原子%未満の場合は、80A/mでの磁束密度B80と800A/mでの磁束密度B800との比B80/B800が0.92以上であり、1.7T以上の飽和磁束密度を維持し、且つ8A/m以下の保磁力と、1.5T、50Hzでの鉄損を0.3W/Kg以下にすることができている。また、皮相電力Sは、Snを適量含有した場合は概ね0.5VA/Kg以下に収まっている。尚、Cu量を0.6〜1.6原子%とした場合も、Snが添加されることで保磁力は減少し、磁束密度B80は上昇する傾向にあることが確認された。 Next, the comparative example (No. 1) without Sn has a relatively high coercive force of 16 A / m, but with Sn, the coercive force is reduced to 7.6 A / m even with a very small amount of 0.05 atomic%. the magnetic flux density B 80 is equal to or greater than 1.64T. Furthermore, the case of adding Sn 0.1 atomic%, the coercive force was reduced to 5.0A / m, B 80 became 1.68T. However, when 0.5 atomic% of Sn is added, the coercive force tends to increase, and as described above, there is a problem in terms of productivity due to low toughness. Further, in the comparative example without Sn, the crystal grains are larger, and the coercive force and iron loss are also affected. Therefore, an excellent soft magnetic property was obtained when the Sn content was appropriate and the coercive force and iron loss were low. That is, when the addition amount of Sn is less than 0.5 atomic%, the ratio B 80 / B 800 between the magnetic flux density B 80 at 80 A / m and the magnetic flux density B 800 at 800 A / m is 0.92 or more, and 1.7 T The above saturation magnetic flux density is maintained, the coercive force is 8 A / m or less, and the iron loss at 1.5 T and 50 Hz can be 0.3 W / Kg or less. In addition, the apparent power S is approximately 0.5 VA / Kg or less when an appropriate amount of Sn is contained. Even when the amount of Cu and 0.6 to 1.6 atomic%, the coercive force by Sn is added is decreased, the magnetic flux density B 80 was confirmed to tend to rise.

次に、Sn入りの場合と無い場合のB-H曲線を併記したものを図6に示す。Sn無しの比較例(No.1)を点線で、Sn量が0.1原子%の実施例(No.3)を実線で示している。
このB-H曲線をみると、Sn無しの場合のB-H曲線は高磁束密度領域でカーブが膨らんでピン角となり、いわゆるピン止めサイトを形成していることが分かる。このピン止めサイトの領域は異方性が強く磁気的飽和性が悪くなる。組織の磁化過程に起因して現れていると考えられるが、この領域が存在することで減磁過程におけるH=0A/m以下の磁束密度の減少の仕方が異なる。即ち、Sn入りの場合は減磁カーブが緩やかであるのに対し、Sn無しの場合はピン止角sから急峻に減少する。図6では若干分かり難いが、点線の方が角が立っておりピン止めsから急に立下っている。急峻な分だけ磁化過程における磁壁の移動速度が速くなることを意味する。渦電流損Peは、磁束密度Bの変化速度に比例(Pe∝dB/dt)するので磁束密度の変化速度dB/dtが大きくなるほど渦電流損は増加し、これは結果的に鉄損の増大につながる。実際、1.5T、50Hzの鉄損P1.5/50は、Snを0.05原子%入れた実施例(No.2)で0.29 W/kg、実施例(No.3)で0.21W/kgであるが、Sn無しの比較例(No.1)で0.58W/kg、比較例(No.7)で0.52W/kgと増加している。尚、比較例(No.5)は0.31W/Kgと比較的小さいが、これは板厚が比較的厚く、初期微結晶の数密度が高い可能性がある。また、B-H曲線上では角形性に反映され、比較例ではB80/B800は0.90以上と飽和性は高いが、Br/B80も0.9以上となり角形性の増加を抑えることができていない結果となっている。即ち、ピン止角が立ち、ピン止め作用が働いて磁壁の移動を妨げていると言える。
Next, FIG. 6 shows the BH curve with and without Sn. A comparative example (No. 1) without Sn is indicated by a dotted line, and an example (No. 3) in which the Sn amount is 0.1 atomic% is indicated by a solid line.
Looking at this BH curve, it can be seen that the BH curve without Sn forms a pin angle by bulging in the high magnetic flux density region to form a so-called pinning site. This pinning site region has strong anisotropy and poor magnetic saturation. Although it is thought that it appears due to the magnetization process of the tissue, the presence of this region differs in the way of decreasing the magnetic flux density below H = 0 A / m in the demagnetization process. In other words, the demagnetization curve is gentle when Sn is entered, whereas it sharply decreases from the pin stop angle s when Sn is not present. Although it is a little difficult to understand in FIG. 6, the dotted line has a corner and is abruptly falling from the pinning s. This means that the moving speed of the domain wall in the magnetization process is increased by a steep amount. Since the eddy current loss Pe is proportional to the change rate of the magnetic flux density B (Pe∝dB / dt), the eddy current loss increases as the change rate of the magnetic flux density dB / dt increases, which results in an increase in iron loss. Leads to. Actually, the iron loss P 1.5 / 50 of 1.5T, 50Hz is 0.29 W / kg in the example (No. 2) in which 0.05 atomic% of Sn is added, and 0.21 W / kg in the example (No. 3). In the comparative example (No. 1) without Sn, it increased to 0.58 W / kg, and in the comparative example (No. 7), it increased to 0.52 W / kg. The comparative example (No. 5) is comparatively small at 0.31 W / Kg, but this may have a relatively large plate thickness and a high number density of initial microcrystals. In addition, it is reflected in the squareness on the BH curve, and in the comparative example, B 80 / B 800 is 0.90 or higher and the saturation is high, but B r / B 80 is also 0.9 or more and the increase in squareness cannot be suppressed. It is the result. That is, it can be said that the pin stop angle stands and the pin stop action works to prevent the domain wall from moving.

さらに、比較例(No.1)及び実施例(No.2)の合金について、薄帯のフォトエッチングにより外径25mm、内径20mmのリング試料を作製し、同様な熱処理を行った後、このリング試料を10枚積層し1T、10kHzにおける高周波鉄損を測定した。その結果、実施例(No.2)の鉄損は98W/Kgであったが、Sn無しの比較例(No.1)の鉄損は270W/Kgであった。このように実施例では高周波磁気特性も大幅に改善されていることが確認された。   Further, for the alloys of Comparative Example (No. 1) and Example (No. 2), a ring sample having an outer diameter of 25 mm and an inner diameter of 20 mm was prepared by photoetching of a ribbon and subjected to the same heat treatment. Ten samples were stacked and the high-frequency iron loss at 1 T and 10 kHz was measured. As a result, the iron loss of the example (No. 2) was 98 W / Kg, but the iron loss of the comparative example (No. 1) without Sn was 270 W / Kg. As described above, it was confirmed that the high-frequency magnetic characteristics were greatly improved in the examples.

(実施例3)
実施例1と同様な方法により、Febal.CuxB12Si4Snd
(0.6≦x≦1.0、0≦d≦0.1)の組成の非晶質合金薄帯を作製した。この組成の合金は非晶質単相であった。但し、非晶質であるが初期微結晶粒の核は存在している。次に、この合金薄帯を切断し、幅25mm、長さ120mmの試料を作製し、アルゴンガス雰囲気中の赤外線集中加熱炉で50 ℃/s の急速昇温熱処理を行った。急速昇温熱処理は、300℃から保持温度までの平均昇温速度(温度上昇の時間に対する傾き) が 50℃/s
になるように設定し、450℃で10秒保持の熱処理を施し、その後冷却して熱処理済みの試料を得た。各試料について微結晶粒の平均粒径と体積分率を測定した結果、各試料とも非晶質母相中に平均結晶粒径60nm以下の微結晶粒が30体積%以上の割合で分散した組織を有することが確認された。表層(最表面から約100nm程度)の平均粒径と、これらの磁束密度B80、B800、B8000、保磁力Hc及び1.5T、50Hzでの鉄損P1.5/50を測定した。
以上の測定結果を表3に示す。
Example 3
In the same manner as in Example 1, Fe bal. Cu x B 12 Si 4 Sn d
An amorphous alloy ribbon having a composition (0.6 ≦ x ≦ 1.0, 0 ≦ d ≦ 0.1) was produced. The alloy of this composition was an amorphous single phase. However, although it is amorphous, nuclei of initial fine crystal grains are present. Next, the alloy ribbon was cut to prepare a sample having a width of 25 mm and a length of 120 mm, and subjected to a rapid temperature raising heat treatment at 50 ° C./s in an infrared intensive heating furnace in an argon gas atmosphere. Rapid heat-up heat treatment has an average rate of temperature rise from 300 ° C to the holding temperature (gradient of temperature rise time) of 50 ° C / s
The sample was heat-treated at 450 ° C. for 10 seconds, and then cooled to obtain a heat-treated sample. As a result of measuring the average grain size and volume fraction of the fine crystal grains for each sample, each sample has a structure in which fine crystal grains having an average grain diameter of 60 nm or less are dispersed in an amorphous matrix at a ratio of 30% by volume or more. It was confirmed to have The average particle diameter of the surface layer (about 100 nm from the outermost surface) and the magnetic flux density B 80 , B 800 , B 8000 , coercive force Hc and 1.5 T, iron loss P 1.5 / 50 at 50 Hz were measured.
The above measurement results are shown in Table 3.

表3に示すように、50 ℃/sの昇温速度の熱処理の場合、Sn無しの比較例では磁束密度B80、保磁力Hc及びB80/B800共に磁気特性は不十分であった。これらの比較例では、初期微結晶粒の核の数密度が減り、数少ない結晶粒が盛んに粒成長し、それぞれの結晶粒が粗大化したことが要因である。これは液相中で均一に分布していたCu が過冷却液体状態にあり、凝集し始めた状態でアモルファス相(固相)にクエンチされたためと考えられる。急冷作製状態において、潜在的にCu の濃度揺らぎを有しており、熱処理過程では、それらを核に初期微結晶粒が生成すると考えられる。しかし過飽和に達していないこの状態では、核が不足しており、保磁力 Hc は大きくなり目的とする軟磁気特性が得られない。一方、Snを入れた場合は、上記で初期微結晶粒がなかった領域に高い数密度のナノ結晶粒が現れていた。これはSn を添加したことで、急冷状態におけるCu の濃度揺らぎが抑制され、Cu の拡散、クラスタリング、核生成、初期微結晶析出、結晶粒成長の行程が起こるため、高い数密度の核が得られたと考えられる。bccFe結晶粒の数密度が高ければ、残留アモルファス相中の
Fe 濃度は減少し、アモルファス相が安定化するため結晶粒成長が抑制される。軟磁気特性はNo.11よりもNo.12が、またNo.14よりもNo.15が、それぞれSn及びCu
の増加とともに、B80、Hc、B80/B800共に向上している。
As shown in Table 3, in the case of heat treatment at a heating rate of 50 ° C./s, the magnetic properties of the magnetic flux density B 80 , coercive force Hc and B 80 / B 800 were insufficient in the comparative example without Sn. In these comparative examples, the number density of the nuclei of the initial fine crystal grains is reduced, few crystal grains are actively grown, and each crystal grain is coarsened. This is presumably because Cu, which was uniformly distributed in the liquid phase, was in a supercooled liquid state and was quenched into an amorphous phase (solid phase) in a state where it began to aggregate. In the rapid cooling preparation state, there is a potential fluctuation of Cu concentration, and it is thought that in the heat treatment process, initial fine crystal grains are generated using them as nuclei. However, in this state in which the supersaturation is not reached, the nucleus is insufficient, the coercive force Hc is increased, and the intended soft magnetic property cannot be obtained. On the other hand, when Sn was added, high number density nanocrystal grains appeared in a region where the initial fine crystal grains were not present. The addition of Sn suppresses Cu concentration fluctuations in the quenching state and causes Cu diffusion, clustering, nucleation, initial microcrystal precipitation, and grain growth, resulting in high number density nuclei. It is thought that it was done. If the number density of bccFe grains is high, the residual amorphous phase
Fe concentration decreases and the amorphous phase stabilizes, so crystal grain growth is suppressed. The soft magnetic properties are No. 12 than No. 11, and No. 15 than No. 14, Sn and Cu, respectively.
B 80 , Hc, and B 80 / B 800 are all improved.

(実施例4)
次に、昇温速度を変えた場合の影響を調べた。
Febal.Cu1.0B12Si4、Febal.Cu1.0B12Si4Sn0.1の組成の合金薄帯を実施例1と同様の条件で作製した。各薄帯とも非晶質母相中に平均結晶粒径30nm以下の初期微結晶粒が30体積%未満の割合で分散した組織を有することが確認された。この合金薄帯に対し 10 ℃/s、50
℃/s、100 ℃/sの昇温速度で、450℃まで急速昇温し1分間保持する熱処理を施した。これらの表層の平均粒径と、磁束密度B80、B800、B8000、保磁力Hc及び1.5T、50Hzでの鉄損P1.5/50を測定した。結果を表4に示す。
Example 4
Next, the effect of changing the heating rate was examined.
An alloy ribbon having a composition of Fe bal. Cu 1.0 B 12 Si 4 and Fe bal. Cu 1.0 B 12 Si 4 Sn 0.1 was produced under the same conditions as in Example 1. It was confirmed that each thin ribbon had a structure in which initial fine crystal grains having an average crystal grain size of 30 nm or less were dispersed in an amorphous matrix at a ratio of less than 30% by volume. 10 ℃ / s for this alloy ribbon, 50
A heat treatment was performed at a rate of temperature increase of 450 ° C./s at a rate of 100 ° C./s. The average particle diameter of these surface layers, magnetic flux density B 80 , B 800 , B 8000 , coercive force Hc and iron loss P 1.5 / 50 at 1.5 T, 50 Hz were measured. The results are shown in Table 4.

表4に示すように、Sn 無しの比較例では100 ℃/s
の熱処理を施した場合には、磁束密度と保磁力の改善が見られる。これに対してSn入りの実施例では、10 ℃/s でも、保磁力減少の効果が見られ、50 ℃/s 以上では極めて高い保磁力の減少効果が現れる。保磁力は組織の微細化に依存するところが大きいが、Sn を添加したことにより、核の数密度が増したことに由来している。昇温速度が遅くて核生成に至るまでのCuの拡散時間が長い場合には、一旦、数密度がピークに達したのち、減少に転じるため、昇温速度が遅すぎると核が減り過ぎてしまい、微細で高数密度のナノ結晶粒組織は得られなくなる。しかしSn を微量で適量含むことで、急冷作製状態のCu
の分布がより均質になるため、昇温速度が遅い場合でも、十分なCuクラスターの数密度が確保され、組織の微細化に寄与する。よって、昇温速度依存性が小さくなり熱処理の際の昇温速度条件を大幅に改善でき、熱処理の難易度が解消されることが見出された。
As shown in Table 4, in the comparative example without Sn, 100 ° C / s
When the heat treatment is performed, the magnetic flux density and the coercive force are improved. On the other hand, in the example containing Sn, the effect of reducing the coercive force is observed even at 10 ° C./s, and the effect of reducing the coercive force is extremely high at 50 ° C./s or more. The coercive force largely depends on the refinement of the structure, but it is derived from the increase in the number density of nuclei by adding Sn. When the diffusion time of Cu until the temperature rise rate is slow and nucleation is long, the number density once reaches a peak and then starts to decrease, so if the temperature rise rate is too slow, the number of nuclei decreases too much. As a result, a fine and high-density nanocrystal grain structure cannot be obtained. However, by containing a small amount of Sn in an appropriate amount, Cu in a rapidly cooled state is prepared.
This makes the distribution of Cu more uniform, so that even when the heating rate is slow, a sufficient number density of Cu clusters is ensured, contributing to the refinement of the structure. Therefore, it has been found that the temperature rise rate dependency is reduced, the temperature rise rate condition during the heat treatment can be greatly improved, and the difficulty of the heat treatment is eliminated.

(実施例5)
表5に示す組成で実施例1と同様な方法により厚さ約20〜22μm、幅50mmの合金薄帯を作製した。次に、この合金薄帯を幅5mmにスリットした試料No.6-1〜6-14を作製した。このとき幅50mm薄帯の端部から5mmの位置と、25mmの位置に夫々スリット薄帯の中央がくるような試料C5、C25を作製した。さらに、この試料C5、C25は鋳造開始した薄帯先端から約100mの位置と、約7500mの位置からそれぞれ採取した。比較のためSnを含まないFebalCu1.0Si3B12合金を同様な方法で作製し比較例とした。尚、中央が5mm位置となるようにスリットした試料をC5、同じく25mm位置となるようにスリットした資料をC25と表記する。
これらの試料(熱処理前)についてグロー放電発光分析によりCu偏析部の有無を確認したところ、Sn無しのNo.5-15〜5-18のC5、C25の試料は共にCu偏析が起こっており、C25の方がより顕著であった。これに対しSnを含むNo.5-1〜5-14はC5、C25の試料と共に顕著なCu偏析部は認められなかった。
(Example 5)
An alloy ribbon having a composition shown in Table 5 and a thickness of about 20 to 22 μm and a width of 50 mm was produced in the same manner as in Example 1. Next, sample Nos. 6-1 to 6-14 were produced by slitting the alloy ribbon to a width of 5 mm. At this time, Samples C5 and C25 were prepared so that the center of the slit ribbon was located at a position 5 mm from the end of the ribbon 50 mm in width and a position 25 mm, respectively. Further, Samples C5 and C25 were taken from a position about 100 m from the tip of the ribbon where casting started and a position about 7500 m, respectively. For comparison, a Fe bal Cu 1.0 Si 3 B 12 alloy containing no Sn was prepared in the same manner as a comparative example. In addition, the sample slit so that the center is at the 5 mm position is denoted as C5, and the material slit so that the center is also at the 25 mm position is denoted as C25.
For these samples (before heat treatment), the presence or absence of a Cu segregation part was confirmed by glow discharge emission analysis. As a result, Cu segregation occurred in both the C5 and C25 samples of No. 5-15 to 5-18 without Sn. C25 was more prominent. On the other hand, in Nos. 5-1 to 5-14 containing Sn, a remarkable Cu segregation part was not recognized together with the C5 and C25 samples.

次に、これらの合金薄帯試料を外径15.5mm、内径15mmに巻き、巻磁心を作製し、実施例3と同様な熱処理を行った。熱処理後、平均結晶粒径15nm程度の均一微細なbcc構造のFeを主に含む結晶粒が非晶質母相中に30体積%以上分散した組織となっていることが確認された。尚、No.5-1〜5-18の各試料ともに巻磁心は2個作製し、1つの巻磁心試料は、合金のミクロ構造や元素濃度分布を解析し、もう1つの巻磁心試料は、飽和磁束密度Bs、磁気飽和性の指標となるB80/B800及び1T、10kHzの高周波における鉄損P1/10kを測定した。得られた結果を表5に示す。 Next, these alloy ribbon samples were wound around an outer diameter of 15.5 mm and an inner diameter of 15 mm to produce a wound core, and the same heat treatment as in Example 3 was performed. After the heat treatment, it was confirmed that the crystal grains mainly containing uniform fine bcc Fe having an average crystal grain size of about 15 nm were dispersed in an amorphous matrix at 30 volume% or more. In each sample No.5-1 to 5-18, two wound cores were prepared, one wound core sample analyzed the microstructure and element concentration distribution of the alloy, and the other wound core sample was Saturation magnetic flux density Bs, iron loss P 1 / 10k at high frequency of 10 kHz, B 80 / B 800 and 1T, which are indicators of magnetic saturation, were measured. The results obtained are shown in Table 5.

表5の結果より、微量のSnを適量含む本発明例は、Snを含まない比較例よりも磁気飽和性が良好で、高周波領域で低鉄損であることが分かる。また、薄帯の場所による特性差が小さく、特性ばらつきが小さいことが確認された。   From the results of Table 5, it can be seen that the present invention example containing an appropriate amount of a small amount of Sn has better magnetic saturation than the comparative example containing no Sn and low iron loss in the high frequency region. In addition, it was confirmed that the difference in characteristics depending on the location of the ribbon is small and the characteristic variation is small.

さらに、比較のために100μm厚さの6.5mass%けい素鋼の1T、10kHzにおける鉄損P1/10kを測定した。P1/10kは600W/kgあり、本発明合金の方が低い高周波鉄損値を示し、高周波特性に優れていることが確認された。 Further, for comparison, the iron loss P 1 / 10k of a 6.5 mass% silicon steel with a thickness of 100 μm at 1 T and 10 kHz was measured. P 1 / 10k is 600 W / kg. The alloy of the present invention showed a lower high-frequency iron loss value and was confirmed to be excellent in high-frequency characteristics.

(実施例6)
表6に示す組成で実施例1と同様な方法により厚さ20〜22μm、幅50mmの合金薄帯を作製した。次に、これらの合金薄帯の面粗さを測定した。また、これらの合金薄帯から外径25mm、内径20mmのリング試料を作製し、実施例3と同様な熱処理を行った。熱処理後、平均結晶粒径15nm程度の均一微細なbcc構造のFeを主に含む結晶粒が非晶質母相中に30体積%以上分散した組織となっていることが確認された。その後、飽和磁束密度Bs、磁気飽和性の指標となるB80/B800及び1T、10kHzの高周波における鉄損P1/10kを測定した。得られた結果を表6に示す。
(Example 6)
An alloy ribbon having a composition shown in Table 6 and a thickness of 20 to 22 μm and a width of 50 mm was produced in the same manner as in Example 1. Next, the surface roughness of these alloy ribbons was measured. Further, a ring sample having an outer diameter of 25 mm and an inner diameter of 20 mm was produced from these alloy ribbons, and the same heat treatment as in Example 3 was performed. After the heat treatment, it was confirmed that the crystal grains mainly containing uniform fine bcc Fe having an average crystal grain size of about 15 nm were dispersed in an amorphous matrix at 30 volume% or more. Thereafter, the saturation magnetic flux density Bs, B 80 / B 800 and 1 T, which are indicators of magnetic saturation, and iron loss P 1/10 k at a high frequency of 10 kHz were measured. The results obtained are shown in Table 6.

表6の結果より、微量のSnを適量含む本発明例は、磁気飽和性が良好で高周波における鉄損が低く優れている。更にCを含む合金は面粗さが小さく表面状態が向上している。これに対してSnを含まない比較例は、磁気飽和性が劣り、高周波の鉄損も大きく本発明よりも特性が劣っていることが確認された。   From the results of Table 6, the present invention example containing an appropriate amount of a small amount of Sn is excellent in magnetic saturation and low in iron loss at high frequencies. Further, the alloy containing C has a small surface roughness and an improved surface condition. On the other hand, it was confirmed that the comparative example not containing Sn was inferior in magnetic saturation and high-frequency iron loss and inferior in characteristics to the present invention.

(実施例7)
表7に示す組成についてSn量を一定とし、Cu、B、Si等を変えたナノ結晶軟磁性合金薄帯を実施例1と同様の方法と条件で製造した。薄帯の厚みは約17〜30μmの範囲として冷却速度を出来るだけ合わせるようにした。
この合金薄帯に対し 50 ℃/sの昇温速度で、450℃まで急速昇温し1分間保持する熱処理を施した。各試料とも非晶質母相中に平均結晶粒径60nm以下の微結晶粒が30体積%以上の割合で分散した組織を有することが確認された。これら試料の表層の平均粒径と、磁束密度B80、B8000、保磁力Hc、B80/B800及び1.5T、50Hzでの鉄損P1.5/50を測定した。結果を表7に示す。
表7の結果より、Cu、B、Si等を変えた場合でもSn添加の効果があることが分かった。
(Example 7)
Nanocrystalline soft magnetic alloy ribbons having a constant Sn content and varying Cu, B, Si, etc. for the compositions shown in Table 7 were produced by the same method and conditions as in Example 1. The thickness of the ribbon was in the range of about 17-30 μm so that the cooling rate was matched as much as possible.
The alloy ribbon was subjected to a heat treatment in which the temperature was rapidly raised to 450 ° C. at a rate of 50 ° C./s and held for 1 minute. Each sample was confirmed to have a structure in which fine crystal grains having an average crystal grain size of 60 nm or less were dispersed in an amorphous matrix at a ratio of 30% by volume or more. The average particle diameter of the surface layer of these samples, the magnetic flux densities B 80 and B 8000 , the coercive force Hc, B 80 / B 800 and 1.5 T, and the iron loss P 1.5 / 50 at 50 Hz were measured. The results are shown in Table 7.
From the results in Table 7, it was found that the effect of Sn addition was obtained even when Cu, B, Si, etc. were changed.

また、本発明はFe-B-Si系の非晶質母相中に不均一核生成サイトとして振る舞うCuクラスターを利用して効果的な微結晶組織を発現させることを趣旨とするものであり、Snを適量添加することにより、Cuの表面偏析やCu濃度の少ない領域を減少させ、Cuクラスターを合金中に均一に分布させて、熱処理により結晶化させた際に、均一微細にナノ結晶粒を非晶質母相中に分散させ優れた特性を実現した。微量なSn添加により同一の効果が発現する合金であれば本発明を適用することができる。
In addition, the present invention is intended to express an effective microcrystalline structure using Cu clusters that act as heterogeneous nucleation sites in the Fe-B-Si amorphous matrix, By adding an appropriate amount of Sn, the surface segregation of Cu and the region with low Cu concentration are reduced, and when Cu clusters are uniformly distributed in the alloy and crystallized by heat treatment, nanocrystal grains are uniformly and finely formed. Dispersed in the amorphous matrix to achieve excellent characteristics. The present invention can be applied to any alloy that exhibits the same effect by adding a small amount of Sn.

Claims (9)

組成式:Fe100-x-y-z-dCuBSiSnここで、x、y、z、dは原子%で、0.6≦x≦1.6、6≦y≦20、0<z≦17、0.005≦d≦0.2、7≦y+z≦24により表され、平均結晶粒径60nm以下の微細結晶粒が非晶質母相中に体積分率で30%以上分散した組織からなる合金であることを特徴とするナノ結晶軟磁性合金。 Composition formula: Fe 100-x-y-zd Cu x B y Si z Sn d where x, y, z and d are atomic%, 0.6 ≦ x ≦ 1.6, 6 ≦ y ≦ 20, 0 <z ≦ 17, 0.005 ≦ d ≦ 0.2, 7 ≦ y + z ≦ 24, an alloy having a structure in which fine crystal grains having an average crystal grain size of 60 nm or less are dispersed in an amorphous matrix by 30% or more by volume fraction A nanocrystalline soft magnetic alloy characterized by that. 飽和磁束密度が1.7T以上、保磁力が8A/m以下、且つ1.5T、50Hzでの鉄損が0.30W/Kg以下であることを特徴とする請求項1に記載のナノ結晶軟磁性合金。 2. The nanocrystalline soft magnetic alloy according to claim 1, wherein the saturation magnetic flux density is 1.7 T or more, the coercive force is 8 A / m or less, and the iron loss at 1.5 T and 50 Hz is 0.30 W / Kg or less. 1.0T、10kHzでの鉄損が250W/Kg以下であることを特徴とする請求項1または2に記載のナノ結晶軟磁性合金。 The nanocrystalline soft magnetic alloy according to claim 1 or 2, wherein an iron loss at 1.0 T and 10 kHz is 250 W / Kg or less. 残留磁束密度Brと80A/mでの磁束密度B80との比Br/B80が0.9未満であることを特徴とする請求項1〜3の何れか1項に記載のナノ結晶軟磁性合金。 4. The nanocrystalline soft magnetism according to claim 1, wherein the ratio B r / B 80 of the residual magnetic flux density B r to the magnetic flux density B 80 at 80 A / m is less than 0.9. 5. alloy. 80A/mでの磁束密度B80と800A/mでの磁束密度B800との比B80/B800が0.92以上であることを特徴とする請求項1〜4の何れか1項に記載のナノ結晶軟磁性合金。 5. The ratio B 80 / B 800 between the magnetic flux density B 80 at 80 A / m and the magnetic flux density B 800 at 800 A / m is 0.92 or more, according to claim 1. Nanocrystalline soft magnetic alloy. Feを4原子%以下のPで置換したことを特徴とする請求項1〜5の何れか1項に記載のナノ結晶軟磁性合金。 The nanocrystalline soft magnetic alloy according to any one of claims 1 to 5, wherein Fe is substituted with 4 atomic% or less of P. Feを2原子%以下のCで置換したことを特徴とする請求項1〜6の何れか1項に記載のナノ結晶軟磁性合金。 The nanocrystalline soft magnetic alloy according to any one of claims 1 to 6, wherein Fe is substituted with 2 atomic% or less of C. 平均結晶粒径30nm以下の初期微結晶粒が非晶質母相中に体積分率で30%未満の割合で分散した組織からなる初期微結晶合金を熱処理することにより得られることを特徴とする請求項1〜7の何れか1項に記載のナノ結晶軟磁性合金。 It is obtained by heat-treating an initial microcrystalline alloy having a structure in which initial microcrystalline grains having an average crystal grain size of 30 nm or less are dispersed in an amorphous matrix at a volume fraction of less than 30%. The nanocrystalline soft magnetic alloy according to any one of claims 1 to 7. 請求項1〜8の何れか1項に記載のナノ結晶軟磁性合金を用いて製造した磁性部品。


A magnetic component manufactured using the nanocrystalline soft magnetic alloy according to claim 1.


JP2013123518A 2013-06-12 2013-06-12 Nanocrystalline soft magnetic alloy and magnetic component using the same Active JP6191908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013123518A JP6191908B2 (en) 2013-06-12 2013-06-12 Nanocrystalline soft magnetic alloy and magnetic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013123518A JP6191908B2 (en) 2013-06-12 2013-06-12 Nanocrystalline soft magnetic alloy and magnetic component using the same

Publications (2)

Publication Number Publication Date
JP2014240516A true JP2014240516A (en) 2014-12-25
JP6191908B2 JP6191908B2 (en) 2017-09-06

Family

ID=52139904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013123518A Active JP6191908B2 (en) 2013-06-12 2013-06-12 Nanocrystalline soft magnetic alloy and magnetic component using the same

Country Status (1)

Country Link
JP (1) JP6191908B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095500A (en) * 2013-11-11 2015-05-18 Necトーキン株式会社 Nanocrystalline alloy strip and magnetic core using the same
WO2016112010A1 (en) 2015-01-07 2016-07-14 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
WO2017006868A1 (en) * 2015-07-03 2017-01-12 国立大学法人東北大学 Layered magnetic core and method for manufacturing same
CN106373690A (en) * 2016-10-10 2017-02-01 大连理工大学 Nanocrystal magnetically soft alloy with high processing property and high saturation magnetic induction strength, and preparation method therefor
KR20170103845A (en) * 2015-01-07 2017-09-13 메트글라스, 인코포레이티드 Magnetic core based on a nanocrystalline magnetic alloy background
WO2018025931A1 (en) 2016-08-04 2018-02-08 トヨタ自動車株式会社 Method for producing soft magnetic material
WO2018105473A1 (en) * 2016-12-07 2018-06-14 パナソニック株式会社 Iron core and motor
CN108701530A (en) * 2016-02-29 2018-10-23 日立金属株式会社 Block core, stacking block and the manufacturing method that block is laminated is laminated
JP6429055B1 (en) * 2018-03-09 2018-11-28 Tdk株式会社 Soft magnetic metal powder, dust core and magnetic parts
JP6429056B1 (en) * 2018-03-09 2018-11-28 Tdk株式会社 Soft magnetic metal powder, dust core and magnetic parts
WO2019208766A1 (en) * 2018-04-27 2019-10-31 日立金属株式会社 Alloy powder, fe-based nanocrystalline alloy powder, and magnetic core
WO2019235574A1 (en) * 2018-06-08 2019-12-12 日立金属株式会社 Powder for magnetic core, and magnetic core and coil component using same
JP2020070469A (en) * 2018-10-31 2020-05-07 Tdk株式会社 Soft magnetic alloy ribbon and magnetic component
WO2020196608A1 (en) * 2019-03-26 2020-10-01 日立金属株式会社 Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
WO2020194109A1 (en) * 2019-03-22 2020-10-01 3M Innovative Properties Company Electronic assembly, electronic apparatus including the same and method for fabricating electronic assembly
JP2021086941A (en) * 2019-11-28 2021-06-03 日立金属株式会社 Fe-BASED SOFT MAGNETIC ALLOY, THIN STRIP, POWDER, MAGNETIC CORE, AND COIL COMPONENT
JP2021153107A (en) * 2020-03-24 2021-09-30 Tdk株式会社 Alloy thin strip and magnetic core
JPWO2021200600A1 (en) * 2020-03-31 2021-10-07
JP7524664B2 (en) 2019-08-26 2024-07-30 株式会社プロテリアル Fe-based alloy composition, powder and magnetic core of the Fe-based alloy composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107096A (en) * 2005-09-16 2007-04-26 Hitachi Metals Ltd Soft magnetic alloy, its production method and magnetic component
JP2008231463A (en) * 2007-03-16 2008-10-02 Hitachi Metals Ltd Fe-BASED SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY STRIP, AND MAGNETIC COMPONENT
US20100265028A1 (en) * 2006-02-21 2010-10-21 Carnegie Mellon Univesity Soft magnetic alloy and uses thereof
JP2012012699A (en) * 2010-03-23 2012-01-19 Nec Tokin Corp ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND METHOD FOR PRODUCING THE Fe-BASED NANOCRYSTALLINE ALLOY, AND MAGNETIC COMPONENT
WO2012102379A1 (en) * 2011-01-28 2012-08-02 日立金属株式会社 Rapidly quenched fe-based soft magnetic alloy ribbon, method of manufacturing the alloy ribbon, and iron core
JP2012174824A (en) * 2011-02-21 2012-09-10 Hitachi Metals Ltd MELT-QUENCHED Fe-BASED SOFT MAGNETIC ALLOY THIN BAND AND MAGNETIC CORE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107096A (en) * 2005-09-16 2007-04-26 Hitachi Metals Ltd Soft magnetic alloy, its production method and magnetic component
US20100265028A1 (en) * 2006-02-21 2010-10-21 Carnegie Mellon Univesity Soft magnetic alloy and uses thereof
JP2008231463A (en) * 2007-03-16 2008-10-02 Hitachi Metals Ltd Fe-BASED SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY STRIP, AND MAGNETIC COMPONENT
JP2012012699A (en) * 2010-03-23 2012-01-19 Nec Tokin Corp ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND METHOD FOR PRODUCING THE Fe-BASED NANOCRYSTALLINE ALLOY, AND MAGNETIC COMPONENT
WO2012102379A1 (en) * 2011-01-28 2012-08-02 日立金属株式会社 Rapidly quenched fe-based soft magnetic alloy ribbon, method of manufacturing the alloy ribbon, and iron core
JP2012174824A (en) * 2011-02-21 2012-09-10 Hitachi Metals Ltd MELT-QUENCHED Fe-BASED SOFT MAGNETIC ALLOY THIN BAND AND MAGNETIC CORE

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095500A (en) * 2013-11-11 2015-05-18 Necトーキン株式会社 Nanocrystalline alloy strip and magnetic core using the same
KR102358247B1 (en) * 2015-01-07 2022-02-04 메트글라스, 인코포레이티드 Magnetic core based on a nanocrystalline magnetic alloy
US11264156B2 (en) 2015-01-07 2022-03-01 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy
CN107532267B (en) * 2015-01-07 2020-09-04 梅特格拉斯公司 Nanocrystalline magnetic alloy and heat treatment method thereof
KR20170102938A (en) * 2015-01-07 2017-09-12 메트글라스, 인코포레이티드 Nanocrystalline magnetic alloy and its heat treatment method
KR20170103845A (en) * 2015-01-07 2017-09-13 메트글라스, 인코포레이티드 Magnetic core based on a nanocrystalline magnetic alloy background
CN107210108A (en) * 2015-01-07 2017-09-26 梅特格拉斯公司 Magnetic core based on nano-crystal magnetic alloy
CN107532267A (en) * 2015-01-07 2018-01-02 梅特格拉斯公司 Nanocrystal magnetic alloy and its heat treatment method
US11230754B2 (en) 2015-01-07 2022-01-25 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
JP2018507322A (en) * 2015-01-07 2018-03-15 メトグラス・インコーポレーテッド Nanocrystalline magnetic alloy and method of heat treatment thereof
JP2018508978A (en) * 2015-01-07 2018-03-29 メトグラス・インコーポレーテッド Magnetic cores based on nanocrystalline magnetic alloys
WO2016112010A1 (en) 2015-01-07 2016-07-14 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
CN107210108B (en) * 2015-01-07 2021-03-16 梅特格拉斯公司 Magnetic core based on nanocrystalline magnetic alloy
EP3243206A4 (en) * 2015-01-07 2018-07-11 Metglas, Inc. Magnetic core based on a nanocrystalline magnetic alloy background
EP3242961A4 (en) * 2015-01-07 2018-07-11 Metglas, Inc. Nanocrystalline magnetic alloy and method of heat-treatment thereof
KR102377214B1 (en) * 2015-01-07 2022-03-22 메트글라스, 인코포레이티드 Nanocrystalline magnetic alloy and heat treatment method thereof
JPWO2017006868A1 (en) * 2015-07-03 2018-05-24 株式会社東北マグネットインスティテュート Laminated magnetic core and manufacturing method thereof
US11232901B2 (en) 2015-07-03 2022-01-25 Tohoku Magnet Institute Co., Ltd. Method for producing laminated magnetic core
WO2017006868A1 (en) * 2015-07-03 2017-01-12 国立大学法人東北大学 Layered magnetic core and method for manufacturing same
CN108701530A (en) * 2016-02-29 2018-10-23 日立金属株式会社 Block core, stacking block and the manufacturing method that block is laminated is laminated
US11322281B2 (en) 2016-02-29 2022-05-03 Hitachi Metals, Ltd. Multilayer block core, multilayer block, and method for producing multilayer block
EP3441993A4 (en) * 2016-02-29 2019-09-25 Hitachi Metals, Ltd. Multilayer block core, multilayer block, and method for producing multilayer block
CN108701530B (en) * 2016-02-29 2022-07-08 日立金属株式会社 Laminated block core, laminated block, and method for manufacturing laminated block
WO2018025931A1 (en) 2016-08-04 2018-02-08 トヨタ自動車株式会社 Method for producing soft magnetic material
US11352677B2 (en) 2016-08-04 2022-06-07 Toyota Jidosha Kabushiki Kaisha Method of producing soft magnetic material
CN106373690A (en) * 2016-10-10 2017-02-01 大连理工大学 Nanocrystal magnetically soft alloy with high processing property and high saturation magnetic induction strength, and preparation method therefor
WO2018105473A1 (en) * 2016-12-07 2018-06-14 パナソニック株式会社 Iron core and motor
JPWO2018105473A1 (en) * 2016-12-07 2018-12-20 パナソニック株式会社 Iron core and motor
JP6429055B1 (en) * 2018-03-09 2018-11-28 Tdk株式会社 Soft magnetic metal powder, dust core and magnetic parts
JP6429056B1 (en) * 2018-03-09 2018-11-28 Tdk株式会社 Soft magnetic metal powder, dust core and magnetic parts
JP2019157184A (en) * 2018-03-09 2019-09-19 Tdk株式会社 Soft magnetic metal powder, powder magnetic core, and magnetic component
JP2019157185A (en) * 2018-03-09 2019-09-19 Tdk株式会社 Soft magnetic metal powder, powder magnetic core, and magnetic component
EP3785824A4 (en) * 2018-04-27 2021-11-17 Hitachi Metals, Ltd. Alloy powder, fe-based nanocrystalline alloy powder, and magnetic core
US11484942B2 (en) 2018-04-27 2022-11-01 Hitachi Metals, Ltd. Alloy powder, fe-based nanocrystalline alloy powder and magnetic core
CN112004625A (en) * 2018-04-27 2020-11-27 日立金属株式会社 Alloy powder, Fe-based nanocrystalline alloy powder, and magnetic core
JPWO2019208766A1 (en) * 2018-04-27 2021-02-12 日立金属株式会社 Alloy powder, Fe-based nanocrystalline alloy powder and magnetic core
WO2019208766A1 (en) * 2018-04-27 2019-10-31 日立金属株式会社 Alloy powder, fe-based nanocrystalline alloy powder, and magnetic core
JP6693603B1 (en) * 2018-06-08 2020-05-13 日立金属株式会社 Powder for magnetic core, magnetic core and coil parts using the powder
WO2019235574A1 (en) * 2018-06-08 2019-12-12 日立金属株式会社 Powder for magnetic core, and magnetic core and coil component using same
JP2020070469A (en) * 2018-10-31 2020-05-07 Tdk株式会社 Soft magnetic alloy ribbon and magnetic component
US11355453B2 (en) 2019-03-22 2022-06-07 3M Innovative Properties Company Electronic assembly, electronic apparatus including the same and method for fabricating electronic assembly
US10985111B2 (en) 2019-03-22 2021-04-20 3M Innovative Properties Company Electronic assembly, electronic apparatus including the same and method for fabricating electronic assembly
JP2022526888A (en) * 2019-03-22 2022-05-27 スリーエム イノベイティブ プロパティズ カンパニー Electronic assembly, electronic device including electronic assembly, and manufacturing method of electronic assembly
WO2020194109A1 (en) * 2019-03-22 2020-10-01 3M Innovative Properties Company Electronic assembly, electronic apparatus including the same and method for fabricating electronic assembly
US12068258B2 (en) 2019-03-22 2024-08-20 3M Innovative Properties Company Method for fabricating electronic assembly including a magnetic field shielding film
CN113365764A (en) * 2019-03-26 2021-09-07 日立金属株式会社 Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
CN113365764B (en) * 2019-03-26 2023-06-16 株式会社博迈立铖 Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy powder magnetic core, and method for producing nanocrystalline alloy powder magnetic core
WO2020196608A1 (en) * 2019-03-26 2020-10-01 日立金属株式会社 Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
JPWO2020196608A1 (en) * 2019-03-26 2021-11-25 日立金属株式会社 Amorphous alloy strip, amorphous alloy powder, nanocrystalline alloy dust core, and nanocrystal alloy dust core manufacturing method
JP7148876B2 (en) 2019-03-26 2022-10-06 日立金属株式会社 Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
TWI820323B (en) * 2019-03-26 2023-11-01 日商博邁立鋮股份有限公司 Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core and method for manufacturing nanocrystalline alloy dust core
JP7524664B2 (en) 2019-08-26 2024-07-30 株式会社プロテリアル Fe-based alloy composition, powder and magnetic core of the Fe-based alloy composition
JP2021086941A (en) * 2019-11-28 2021-06-03 日立金属株式会社 Fe-BASED SOFT MAGNETIC ALLOY, THIN STRIP, POWDER, MAGNETIC CORE, AND COIL COMPONENT
JP7400578B2 (en) 2020-03-24 2023-12-19 Tdk株式会社 Alloy ribbon and magnetic core
JP2021153107A (en) * 2020-03-24 2021-09-30 Tdk株式会社 Alloy thin strip and magnetic core
CN115362039A (en) * 2020-03-31 2022-11-18 株式会社村田制作所 Soft magnetic alloy powder, magnetic core, magnetic application component, and noise suppression sheet
JP7416212B2 (en) 2020-03-31 2024-01-17 株式会社村田製作所 Soft magnetic alloy powder, magnetic core, magnetic application parts, and noise suppression sheets
JPWO2021200600A1 (en) * 2020-03-31 2021-10-07
WO2021200600A1 (en) * 2020-03-31 2021-10-07 株式会社村田製作所 Soft magnetic alloy powder, magnetic core, magnetism application component, and noise suppression sheet

Also Published As

Publication number Publication date
JP6191908B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP6191908B2 (en) Nanocrystalline soft magnetic alloy and magnetic component using the same
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
JP5316921B2 (en) Fe-based soft magnetic alloy and magnetic component using the same
JP5327074B2 (en) Soft magnetic alloy ribbon, method of manufacturing the same, and magnetic component having soft magnetic alloy ribbon
JP5327075B2 (en) Soft magnetic alloy ribbon, method of manufacturing the same, and magnetic component having soft magnetic alloy ribbon
JP5339192B2 (en) Amorphous alloy ribbon, nanocrystalline soft magnetic alloy, magnetic core, and method for producing nanocrystalline soft magnetic alloy
JP6237630B2 (en) Ultracrystalline alloy ribbon, microcrystalline soft magnetic alloy ribbon and magnetic parts using the same
KR101162080B1 (en) Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP6080094B2 (en) Winding core and magnetic component using the same
JP5429613B2 (en) Nanocrystalline soft magnetic alloys and magnetic cores
JP6041207B2 (en) Nanocrystalline soft magnetic alloy and magnetic component using the same
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP2008231462A (en) Magnetic alloy, amorphous alloy strip and magnetic component
JP2018508978A (en) Magnetic cores based on nanocrystalline magnetic alloys
JP6003899B2 (en) Fe-based early microcrystalline alloy ribbon and magnetic parts
JP2010150602A (en) Fe-BASED SOFT MAGNETIC THIN STRIP AND HIGH-FREQUENCY MAGNETIC CORE USING THE SAME
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP4217038B2 (en) Soft magnetic alloy
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JP2008150637A (en) Magnetic alloy, amorphous alloy ribbon and magnetic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170727

R150 Certificate of patent or registration of utility model

Ref document number: 6191908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350