JP6314020B2 - Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof - Google Patents

Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof Download PDF

Info

Publication number
JP6314020B2
JP6314020B2 JP2014077978A JP2014077978A JP6314020B2 JP 6314020 B2 JP6314020 B2 JP 6314020B2 JP 2014077978 A JP2014077978 A JP 2014077978A JP 2014077978 A JP2014077978 A JP 2014077978A JP 6314020 B2 JP6314020 B2 JP 6314020B2
Authority
JP
Japan
Prior art keywords
soft magnetic
powder
alloy powder
magnetic alloy
metal fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014077978A
Other languages
Japanese (ja)
Other versions
JP2015201481A (en
Inventor
悠 金森
悠 金森
芳 佐竹
芳 佐竹
浦田 顕理
顕理 浦田
美帆 千葉
美帆 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2014077978A priority Critical patent/JP6314020B2/en
Publication of JP2015201481A publication Critical patent/JP2015201481A/en
Application granted granted Critical
Publication of JP6314020B2 publication Critical patent/JP6314020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、トランス、チョークコイル、リアクトル等のインダクタに用いられる、ナノ結晶軟磁性合金粉末を用いた圧粉磁芯とその製造方法に関する。   The present invention relates to a dust core using a nanocrystalline soft magnetic alloy powder and a method for manufacturing the same, which are used in inductors such as transformers, choke coils, and reactors.

アモルファス相の軟磁性合金粉末と絶縁性のバインダーを用いた圧粉磁芯は、飽和磁束密度が大きく比透磁率が高い優れた軟磁気特性を有するので、磁芯の小型化とコア損失の低減が可能である。   Dust cores using amorphous-phase soft magnetic alloy powder and insulating binder have excellent soft magnetic properties with high saturation magnetic flux density and high relative magnetic permeability. Therefore, downsizing of magnetic core and reduction of core loss are achieved. Is possible.

特許文献1では、非晶質軟磁性合金からなる粉末Aと軟磁性合金微細粉末Bと結合材とを混合し、加圧成形して得られる圧粉磁芯において、粉末Aの粒度分布の最頻値が粉末Bのそれの5倍以上であり、かつ粉末Aと粉末Bの体積の和全体に対する粉末Bの体積百分率が3%以上50%以下とすることにより、金型の耐久性の問題から大きな成形圧が適用できなかった複雑な形状においても、成形圧を低下させつつ成形密度を高くし、高飽和磁束密度、低損失の圧粉磁芯を得る技術が開示されている。   In Patent Document 1, in a powder magnetic core obtained by mixing powder A made of an amorphous soft magnetic alloy, soft magnetic alloy fine powder B, and a binder and press-molding, the maximum particle size distribution of powder A is obtained. The frequency value is 5 times or more than that of powder B, and the volume percentage of powder B with respect to the total sum of the volume of powder A and powder B is 3% or more and 50% or less. Therefore, there is disclosed a technique for obtaining a dust core having a high saturation magnetic flux density and a low loss by increasing the molding density while reducing the molding pressure even in a complicated shape to which a large molding pressure cannot be applied.

特開2001−196216号公報JP 2001-196216 A

熱処理によってアモルファス相中に微細なαFe(−Si)結晶相を析出させるナノ結晶軟磁性合金粉末を圧粉磁芯に使用する場合、アモルファス相の軟磁性合金粉末と軟磁性金属微粉末をバインダーと共に混合して加圧成形した後に、微細なαFe(−Si)結晶相を析出させる熱処理を行う必要がある。   When nanocrystalline soft magnetic alloy powder that precipitates fine αFe (-Si) crystal phase in amorphous phase by heat treatment is used for dust core, amorphous phase soft magnetic alloy powder and soft magnetic metal fine powder together with binder After mixing and pressure forming, it is necessary to perform heat treatment for precipitating a fine αFe (-Si) crystal phase.

軟磁性金属微粉末は、αFe(−Si)結晶相の析出に伴って発生する熱の放散性を改善するが、ナノ結晶軟磁性合金粉末と比較して粒子サイズに起因するヒステリシス損失が大きいため、多量に混合すると、圧粉磁芯全体のコア損失が増加する問題がある。   Soft magnetic metal fine powder improves the dissipation of heat generated with the precipitation of αFe (-Si) crystal phase, but has higher hysteresis loss due to particle size than nanocrystalline soft magnetic alloy powder. When mixed in a large amount, there is a problem that the core loss of the entire dust core increases.

したがって、コア損失を増加させないためには、軟磁性金属微粉末の量は少ない方が良いが、一方でαFe(−Si)結晶相の析出に伴って発生する熱の放散性が悪くなるため、過加熱や熱暴走によってFe−B相やFe−P相などの化合物相が析出し易くなり、軟磁気特性が劣化してコア損失が増加する問題がある。   Therefore, in order not to increase the core loss, it is better that the amount of the soft magnetic metal fine powder is small, but on the other hand, the heat dissipation generated with the precipitation of the αFe (-Si) crystal phase is deteriorated. There is a problem that compound phases such as Fe-B phase and Fe-P phase are likely to be precipitated due to overheating and thermal runaway, soft magnetic properties are deteriorated, and core loss is increased.

本発明の課題は、ナノ結晶軟磁性合金粉末を用いたコア損失の小さい圧粉磁芯とその製造方法を提供することである。   An object of the present invention is to provide a dust core having a small core loss using a nanocrystalline soft magnetic alloy powder and a method for producing the same.

上記の目的を達成するため、本発明は、αFe(−Si)結晶相を有するナノ結晶軟磁性合金粉末と、前記ナノ結晶軟磁性合金粉末よりも平均粒子径が小さい軟磁性金属微粉末と、バインダーを含む圧粉磁芯であって、前記圧粉磁芯の断面において、前記軟磁性金属微粉末の平均粒子径を直径とする円が、前記ナノ結晶軟磁性合金粉末の粒子断面の外周に密接して配列できる最大数をNsとし、前記ナノ結晶軟磁性合金粉末の前記粒子断面の外周から前記ナノ結晶軟磁性合金粉末の前記粒子断面の円相当径の0.2倍の長さの距離範囲に、少なくとも一部が含まれる前記軟磁性金属微粉末の粒子の数をNとしたとき、N/Nsの平均値が0.5以上0.9以下であることを特徴とする。   To achieve the above object, the present invention provides a nanocrystalline soft magnetic alloy powder having an αFe (-Si) crystal phase, a soft magnetic metal fine powder having an average particle size smaller than that of the nanocrystalline soft magnetic alloy powder, A powder magnetic core containing a binder, wherein a circle having a diameter of an average particle diameter of the soft magnetic metal fine powder in the cross section of the powder magnetic core is on the outer periphery of the particle cross section of the nanocrystalline soft magnetic alloy powder. The maximum number that can be closely arranged is Ns, and the distance from the outer circumference of the particle cross section of the nanocrystalline soft magnetic alloy powder is 0.2 times the equivalent circle diameter of the particle cross section of the nanocrystalline soft magnetic alloy powder The average value of N / Ns is 0.5 or more and 0.9 or less, where N is the number of particles of the soft magnetic metal fine powder at least partly included in the range.

本発明では、前記ナノ結晶軟磁性合金粉末の平均粒子径に対する前記軟磁性金属微粉末の平均粒子径の比が、0.04以上0.15以下であることが望ましい。   In the present invention, the ratio of the average particle diameter of the soft magnetic metal fine powder to the average particle diameter of the nanocrystalline soft magnetic alloy powder is preferably 0.04 or more and 0.15 or less.

また本発明では、前記ナノ結晶軟磁性合金粉末の平均粒子径は、40μmを超え60μm未満であることが望ましい。   In the present invention, the average particle size of the nanocrystalline soft magnetic alloy powder is preferably more than 40 μm and less than 60 μm.

さらに本発明では、前記ナノ結晶軟磁性合金粉末の含有量に対する前記軟磁性金属微粉末の添加量が、質量比において1mass%を超え15mass%未満であることが望ましい。   Furthermore, in the present invention, it is desirable that the addition amount of the soft magnetic metal fine powder with respect to the content of the nanocrystalline soft magnetic alloy powder is more than 1 mass% and less than 15 mass% in mass ratio.

本発明においては、前記軟磁性金属微粉末の主たる成分が、Feであることが望ましい。   In the present invention, it is desirable that the main component of the soft magnetic metal fine powder is Fe.

また、前記ナノ結晶軟磁性合金粉末の組成が、組成式FeSiCuで表され、79.0≦a≦86.0、5.0≦b≦13.0、0.0≦c≦8.0、1.0≦x≦10.0、0.0≦y≦5.0、0.4≦z≦1.4および0.06≦z/x≦1.20で、Feの一部をTi、Zr、Hf、Nb、Ta、Mo、W、Cr、Co、Ni、Al、Mn、Zn、S、Sn、As、Sb、Bi、N、O、Ca、V、Mgおよび希土類元素、貴金属元素のうち1種類以上の元素で、組成全体の3at%以下を置換し、Feとの合計が79.0at%以上、86.0at%以下であることが望ましい。 The composition of the nanocrystalline soft magnetic alloy powder is represented by a composition formula Fe a B b Si c P x C y Cu z, 79.0 ≦ a ≦ 86.0,5.0 ≦ b ≦ 13.0 0.0 ≦ c ≦ 8.0, 1.0 ≦ x ≦ 10.0, 0.0 ≦ y ≦ 5.0, 0.4 ≦ z ≦ 1.4 and 0.06 ≦ z / x ≦ 1 .20, a part of Fe is Ti, Zr, Hf, Nb, Ta, Mo, W, Cr, Co, Ni, Al, Mn, Zn, S, Sn, As, Sb, Bi, N, O, Ca. It is desirable that 3 at% or less of the whole composition is substituted with one or more elements of V, Mg, rare earth elements and noble metal elements, and the total with Fe is 79.0 at% or more and 86.0 at% or less .

本発明の圧粉磁芯の製造方法は、熱処理によりナノ結晶を析出させるアモルファス相の軟磁性合金粉末と、バインダーを混合して前記軟磁性合金粉末の表面に前記バインダーを付着させ、前記バインダーを付着させた前記軟磁性合金粉末と、前記軟磁性合金粉末よりも平均粒子径が小さい軟磁性金属微粉末とを混合して、前記軟磁性合金粉末の粒子表面に前記バインダーを介して前記軟磁性金属微粉末を付着させ、前記軟磁性金属微粉末が付着した前記軟磁性合金粉末に、バインダーを追加し、混合して造粒粉を作製し、前記造粒粉を金型に充填して加圧成形により圧粉体を作製し、前記圧粉体を熱処理して前記軟磁性合金粉末にαFe(−Si)結晶相を析出させることを特徴とする。   The method for producing a dust core according to the present invention comprises mixing a binder with an amorphous phase soft magnetic alloy powder on which nanocrystals are precipitated by heat treatment, and attaching the binder to the surface of the soft magnetic alloy powder. The adhering soft magnetic alloy powder and soft magnetic metal fine powder having an average particle diameter smaller than that of the soft magnetic alloy powder are mixed, and the soft magnetic alloy powder is mixed with the soft magnetic alloy powder on the particle surface via the binder. A metal fine powder is adhered, and a binder is added to the soft magnetic alloy powder to which the soft magnetic metal fine powder is adhered and mixed to prepare a granulated powder. The granulated powder is filled in a mold and added. A green compact is produced by pressure forming, and the green compact is heat-treated to precipitate an αFe (-Si) crystal phase in the soft magnetic alloy powder.

本発明の圧粉磁芯は、ナノ結晶軟磁性合金粉末の粒子が、軟磁性金属微粉末で囲まれている構造を有し、断面におけるN/Nsの平均値を、0.5以上0.9以下とすることで、αFe(−Si)結晶相の析出による発熱量の効果的な放散を可能とする。これにより過加熱や熱暴走が起こりにくくなって化合物相の析出が抑制され、ナノ結晶軟磁性合金粉末が有している優れた軟磁性特性が得られる。   The dust core of the present invention has a structure in which particles of nanocrystalline soft magnetic alloy powder are surrounded by soft magnetic metal fine powder, and the average value of N / Ns in the cross section is 0.5 or more and 0.00. By setting it to 9 or less, it is possible to effectively dissipate the calorific value due to the precipitation of the αFe (-Si) crystal phase. As a result, overheating and thermal runaway are unlikely to occur, the precipitation of the compound phase is suppressed, and the excellent soft magnetic properties of the nanocrystalline soft magnetic alloy powder can be obtained.

また本発明の圧粉磁芯の製造方法は、最初にアモルファス相の軟磁性合金粉末の粒子表面をバインダーで覆い、次いで軟磁性金属微粉末を添加して混合することでアモルファス相の軟磁性合金粉末の粒子表面に軟磁性金属微粉末を付着させる工程を有することを特徴とする。これにより、断面におけるN/Nsの平均値が0.5以上0.9以下の圧粉磁芯が、質量比で1mass%を超え15mass%未満の少量の軟磁性金属微粉末の添加で得られるため、軟磁性金属微粉末によるヒステリシス損失の増加が抑制できる。   The method for producing a dust core according to the present invention includes firstly covering the particle surface of the amorphous soft magnetic alloy powder with a binder, and then adding and mixing the soft magnetic metal fine powder to mix the amorphous soft magnetic alloy. It has the process of attaching soft-magnetic metal fine powder to the particle | grain surface of powder. As a result, a dust core having an average value of N / Ns in the cross section of 0.5 to 0.9 can be obtained by adding a small amount of soft magnetic metal fine powder having a mass ratio of more than 1 mass% and less than 15 mass%. Therefore, an increase in hysteresis loss due to the soft magnetic metal fine powder can be suppressed.

さらに、ナノ結晶軟磁性合金粉末の周囲に、軟磁性金属微粉末の粒子が存在することによって、ナノ結晶軟磁性合金粉末の粒子同士が密接し難くなるため、ナノ結晶軟磁性合金粉末の粒子間に距離を持たせることができる。このため、軟磁性金属微粉末の粒子とバインダーとを介して熱の放散がより容易となり、過加熱や熱暴走がより起こりにくくなって化合物相の析出が抑制され、本来有している優れた軟磁性特性が得られる。   In addition, the presence of soft magnetic metal fine powder particles around the nanocrystalline soft magnetic alloy powder makes it difficult to bring the nanocrystalline soft magnetic alloy powder into close contact with each other. Can have a distance. For this reason, heat dissipation becomes easier through the particles of the soft magnetic metal fine powder and the binder, overheating and thermal runaway are less likely to occur, and precipitation of the compound phase is suppressed, which is inherently excellent. Soft magnetic properties can be obtained.

以上述べた様に、本発明の圧粉磁芯とその製造方法によれば、αFe(−Si)結晶相の析出を行う熱処理時の過加熱や熱暴走を防止し、Fe−B相やFe−P相などの化合物相の析出が抑制され、コア損失の小さい優れた軟磁気特性を有する圧粉磁芯を得ることができる。   As described above, according to the dust core of the present invention and the manufacturing method thereof, overheating and thermal runaway during the heat treatment for precipitating the αFe (-Si) crystal phase are prevented, and the Fe-B phase and Fe Precipitation of a compound phase such as a -P phase is suppressed, and a dust core having excellent soft magnetic characteristics with small core loss can be obtained.

本発明による圧粉磁芯の、走査型電子顕微鏡(SEM)による断面写真を示す図。The figure which shows the cross-sectional photograph by the scanning electron microscope (SEM) of the powder magnetic core by this invention. 本発明による圧粉磁芯のN/Nsを測定する方法を示す概念図。図2(a)は、Nsを求める方法を示す概念図。図2(b)は、Nを求める方法を示す概念図。The conceptual diagram which shows the method of measuring N / Ns of the powder magnetic core by this invention. FIG. 2A is a conceptual diagram showing a method for obtaining Ns. FIG. 2B is a conceptual diagram showing a method for obtaining N.

本発明の圧粉磁芯は、ナノ結晶軟磁性合金粉末の粒子が、軟磁性金属微粉末で囲まれている構造を有し、N/Nsの平均値が0.5以上0.9以下で、コア損失の小さい軟磁気特性が得られる。図2に、N/Nsの測定方法についての概念図を示す。まず、図2(a)において、任意に選択した1個のナノ結晶軟磁性合金粉末1の粒子断面の外周2に、軟磁性金属微粉末の平均粒子径を直径とする円3が、密接して配列できる最大数をNsとする。   The dust core of the present invention has a structure in which particles of nanocrystalline soft magnetic alloy powder are surrounded by soft magnetic metal fine powder, and the average value of N / Ns is 0.5 or more and 0.9 or less. As a result, soft magnetic characteristics with small core loss can be obtained. In FIG. 2, the conceptual diagram about the measuring method of N / Ns is shown. First, in FIG. 2A, a circle 3 whose diameter is the average particle diameter of the soft magnetic metal fine powder is in close contact with the outer periphery 2 of the particle cross section of one arbitrarily selected nanocrystalline soft magnetic alloy powder 1. The maximum number that can be arranged is Ns.

次に、図2(b)において、ナノ結晶軟磁性合金粉末1の粒子断面の外周2の円相当径を求め、粒子断面の外周2から円相当径の0.2倍の長さ4の距離範囲5に含まれる軟磁性金属微粉末6の個数をNとし、N/Nsを得る。   Next, in FIG. 2B, the equivalent circle diameter of the outer periphery 2 of the particle cross section of the nanocrystalline soft magnetic alloy powder 1 is obtained, and the distance 4 is 0.2 times the equivalent circle diameter from the outer periphery 2 of the particle cross section. The number of soft magnetic metal fine powders 6 included in the range 5 is N, and N / Ns is obtained.

上述の作業を、任意の10個のナノ結晶軟磁性合金粉末1に対して行い、任意の10個のN/Nsの平均値を求める。   The above-described operation is performed on any ten nanocrystalline soft magnetic alloy powders 1, and an average value of any ten N / Ns is obtained.

本発明に用いるナノ結晶軟磁性合金粉末は、アモルファス相の軟磁性合金粉末を熱処理し、αFe(−Si)結晶相を析出させることで得られる。アモルファス相の軟磁性合金粉末の作製には、高圧の水やガスを噴射することで融解した合金を分断して急冷し固体化するアトマイズ装置などを使用することができる。特に水アトマイズ装置は、冷却速度が速いので、均一なアモルファス相の軟磁性合金粉末が得られるので好ましい。   The nanocrystalline soft magnetic alloy powder used in the present invention is obtained by heat-treating an amorphous soft magnetic alloy powder to precipitate an αFe (-Si) crystal phase. For the preparation of the soft magnetic alloy powder in the amorphous phase, an atomizing device or the like that cuts and melts the melted alloy by jetting high-pressure water or gas and solidifies it can be used. In particular, the water atomizer is preferable because the cooling rate is fast, and a uniform amorphous phase soft magnetic alloy powder can be obtained.

ナノ結晶軟磁性合金粉末の組成としては、組成式FeSiCuで表され、79.0≦a≦86.0、5.0≦b≦13.0、0.0≦c≦8.0、1.0≦x≦10.0、0.0≦y≦5.0、0.4≦z≦1.4および0.06≦z/x≦1.20である組成が適用できる。 The composition of nanocrystalline soft magnetic alloy powder represented by a composition formula Fe a B b Si c P x C y Cu z, 79.0 ≦ a ≦ 86.0,5.0 ≦ b ≦ 13.0,0 0.0 ≦ c ≦ 8.0, 1.0 ≦ x ≦ 10.0, 0.0 ≦ y ≦ 5.0, 0.4 ≦ z ≦ 1.4 and 0.06 ≦ z / x ≦ 1.20 A composition can be applied.

Fe元素は、磁性を担う主たる元素であるので、その含有量は飽和磁束密度向上のためには多い方が好ましく、特に81at%以上で有ることが望ましい。しかしながら86at%を超えると、アモルファス相の形成能が低下するので好ましくない。   Since the Fe element is a main element responsible for magnetism, its content is preferably large for improving the saturation magnetic flux density, and particularly preferably 81 at% or more. However, if it exceeds 86 at%, the ability to form an amorphous phase decreases, which is not preferable.

また、耐食性の改善や電気抵抗の調整などを目的として、Feの一部をTi、Zr、Hf、Nb、Ta、Mo、W、Cr、Co、Ni、Al、Mn、Zn、S、Sn、As、Sb、Bi、N、O、Ca、V、Mgおよび希土類元素、貴金属元素のうち1種類以上の元素で、組成全体の3at%以下を置換し、Feとの合計が79.0at%以上、86.0at%以下としても良い。   For the purpose of improving corrosion resistance and adjusting electric resistance, a part of Fe is Ti, Zr, Hf, Nb, Ta, Mo, W, Cr, Co, Ni, Al, Mn, Zn, S, Sn, One or more of As, Sb, Bi, N, O, Ca, V, Mg, rare earth elements, and noble metal elements replace 3 at% or less of the entire composition, and the total with Fe is 79.0 at% or more 86.0 at% or less.

ナノ結晶軟磁性合金粉末の平均粒子径は、40μmを超え60μm未満で有ることが好ましい。平均粒子径が40μm以下では、保磁力が大きくなり圧粉磁芯としたときのヒステリシス損失が大きくなって好ましくない。また平均粒子径が60μm以上では、水アトマイズ法によるアモルファス相の軟磁性合金粉末の作製が困難となる。   The average particle size of the nanocrystalline soft magnetic alloy powder is preferably more than 40 μm and less than 60 μm. An average particle size of 40 μm or less is not preferable because the coercive force is increased and the hysteresis loss is increased when a dust core is used. On the other hand, when the average particle size is 60 μm or more, it becomes difficult to produce an amorphous soft magnetic alloy powder by the water atomization method.

ナノ結晶軟磁性合金粉末よりも平均粒子径が小さい軟磁性金属微粉末としては、FeまたはFe−Si系の合金などのFeを主成分とする材料が、飽和磁束密度が高いので好ましい。ナノ結晶軟磁性合金粉末の平均粒子径に対する、軟磁性金属微粉末の平均粒子径の比は、0.04以上0.15以下とするのが好ましい。平均粒子径の比が0.15よりも大きいと、軟磁性金属微粉末がナノ結晶軟磁性合金粉末の粒子間に入り難くなるので、ナノ結晶軟磁性合金粉末の粒子同士が密接し易くなり、αFe(−Si)結晶相の析出に伴う発熱量の放散性が悪くなるため好ましくない。また平均粒子径の比が0.04より小さいと、軟磁性金属微粉末を多量に製造することが困難となるので好ましくない。   As the soft magnetic metal fine powder having an average particle size smaller than that of the nanocrystalline soft magnetic alloy powder, a material containing Fe as a main component, such as Fe or an Fe-Si alloy, is preferable because of high saturation magnetic flux density. The ratio of the average particle size of the soft magnetic metal fine powder to the average particle size of the nanocrystalline soft magnetic alloy powder is preferably 0.04 or more and 0.15 or less. If the ratio of the average particle diameter is larger than 0.15, it becomes difficult for the soft magnetic metal fine powder to enter between the particles of the nanocrystalline soft magnetic alloy powder. This is not preferable because the heat dissipation associated with the precipitation of the αFe (-Si) crystal phase deteriorates. An average particle size ratio of less than 0.04 is not preferable because it becomes difficult to produce a large amount of soft magnetic metal fine powder.

ナノ結晶軟磁性合金粉末の含有量に対する軟磁性金属微粉末の添加量は、質量比において1mass%を超え15mass%未満が好ましい。αFe(−Si)結晶相の析出に伴う発熱量をより効果的に放散させるには3mass%以上10mass%以下がより好ましい。15mass%以上の軟磁性金属微粉末の添加は、軟磁性金属微粉末のヒステリシス損失の影響が大きくなり、圧粉磁芯のコア損失を増加させるため好ましくない。また1mass%以下では、αFe(−Si)結晶相の析出に伴う発熱量を放散する効果が小さい。   The addition amount of the soft magnetic metal fine powder with respect to the content of the nanocrystalline soft magnetic alloy powder is preferably more than 1 mass% and less than 15 mass% in mass ratio. In order to dissipate the calorific value accompanying the precipitation of the αFe (-Si) crystal phase more effectively, it is more preferably 3 mass% or more and 10 mass% or less. The addition of 15 mass% or more of soft magnetic metal fine powder is not preferable because the influence of hysteresis loss of the soft magnetic metal fine powder is increased and the core loss of the dust core is increased. Moreover, if it is 1 mass% or less, the effect of dissipating the calorific value accompanying the precipitation of the αFe (-Si) crystal phase is small.

アモルファス相の軟磁性合金粉末とバインダー(第1のバインダー)を混合して軟磁性合金粉末の粒子表面に第1のバインダーを付着させ、さらに軟磁性金属微粉末と混合して、アモルファス相の軟磁性合金粉末の粒子表面に、第1のバインダーを介して軟磁性金属微粉末を付着させる方法としては、一般的な造粒機や混合機による撹拌効果を利用することができる。例えば撹拌造粒機、ドラム型造粒機、振動型造粒機、あるいはV型混合機などが使用できる。   Amorphous phase soft magnetic alloy powder and binder (first binder) are mixed to adhere the first binder to the particle surface of the soft magnetic alloy powder, and further mixed with soft magnetic metal fine powder to soften the amorphous phase. As a method for attaching the soft magnetic metal fine powder to the particle surface of the magnetic alloy powder through the first binder, a stirring effect by a general granulator or mixer can be used. For example, a stirring granulator, a drum granulator, a vibration granulator, or a V-type mixer can be used.

本発明で使用する第1バインダーは、熱硬化性の樹脂を使用することができる。特に耐熱性に優れ絶縁性が良好な熱硬化性のシリコーン樹脂が好ましい。第1のバインダーは、そのまま混合しても良いが、適当な溶媒で希釈して用いると、混合時間を短縮することができる。   As the first binder used in the present invention, a thermosetting resin can be used. Particularly preferred is a thermosetting silicone resin having excellent heat resistance and good insulation. The first binder may be mixed as it is, but when diluted with an appropriate solvent, the mixing time can be shortened.

軟磁性金属微粉末が付着したアモルファス相の軟磁性合金粉末に、バインダー(第2のバインダー)を追加して造粒粉を作製する工程も、前述の一般的な造粒機を使用することができる。またここで使用する第2のバインダーは、第1のバインダーと同じでも良いし、耐熱性に優れ絶縁性が良好な熱硬化性の樹脂であれば、第1のバインダーと異なる種類のバインダーを使用しても良い。   The above-mentioned general granulator can also be used in the step of preparing a granulated powder by adding a binder (second binder) to the amorphous soft magnetic alloy powder to which the soft magnetic metal fine powder is adhered. it can. The second binder used here may be the same as the first binder, or a different type of binder from the first binder is used as long as it is a thermosetting resin with excellent heat resistance and good insulation. You may do it.

造粒粉は、金型に充填し、加圧成形する。その後、αFe(−Si)結晶相の析出と、熱硬化性の樹脂を硬化させる熱処理を行って圧粉磁芯を作製する。熱処理における熱処理温度と熱処理時間は、アモルファス相の軟磁性合金粉末にαFe(−Si)結晶相が析出し、Fe−B、Fe−Pなどの化合物相が析出しない熱処理温度と熱処理時間を選択すれば良い。   The granulated powder is filled in a mold and pressure-molded. Thereafter, precipitation of the αFe (-Si) crystal phase and a heat treatment for curing the thermosetting resin are performed to produce a dust core. The heat treatment temperature and heat treatment time in the heat treatment are selected as the heat treatment temperature and the heat treatment time at which the αFe (-Si) crystal phase is precipitated in the amorphous soft magnetic alloy powder and the compound phase such as Fe-B and Fe-P is not precipitated. It ’s fine.

(実施例1〜3)
原料としてFe、Fe−Si、Fe−B、Fe−PおよびCuを用い、組成式でFe82.4Si5.07.05.0Cu0.6となる様に秤量し、高周波加熱炉で溶解して合金組成物を得た。その後、水アトマイズ装置を用いてアモルファス相の軟磁性合金粉末を作製した。アモルファス相の軟磁性合金粉末の平均粒子径は約45μmであった。
(Examples 1-3)
Using Fe, Fe-Si, Fe-B, Fe-P and Cu as raw materials, weighed so that Fe 82.4 Si 5.0 B 7.0 P 5.0 Cu 0.6 in the composition formula, The alloy composition was obtained by melting in a high-frequency heating furnace. Thereafter, an amorphous phase soft magnetic alloy powder was produced using a water atomizer. The average particle diameter of the amorphous phase soft magnetic alloy powder was about 45 μm.

次に、上記で得られたアモルファス相の軟磁性合金粉末と、第1のバインダーとして熱硬化型のシリコーン樹脂を撹拌造粒機を使用して混合し、アモルファス相の軟磁性合金粉末の粒子の表面にシリコーン樹脂を付着させた。シリコーン樹脂の量は、粉末全体に対する樹脂分の質量比が2mass%となる様にした。   Next, the amorphous phase soft magnetic alloy powder obtained above and a thermosetting silicone resin as a first binder are mixed using a stirring granulator, and the amorphous phase soft magnetic alloy powder particles are mixed. A silicone resin was adhered to the surface. The amount of the silicone resin was such that the mass ratio of the resin to the entire powder was 2 mass%.

続いて、カルボニル法で製造された平均粒子径が約3.6μmのFe粉末を軟磁性金属微粉末として、粒子の表面にシリコーン樹脂が付着したアモルファス相の軟磁性合金粉末と混合し、アモルファス相の軟磁性合金粉末の粒子表面にシリコーン樹脂のバインダーを介してFe粉末を付着させた。本実施例では、アモルファス相の軟磁性合金粉末の平均粒子径に対するFe粉末の平均粒子径の比は、0.08である。Fe粉末の量は、アモルファス相の軟磁性合金粉末に対して質量比で、実施例1では3mass%、実施例2では7mass%、そして実施例3では10mass%とした。   Subsequently, Fe powder having an average particle diameter of about 3.6 μm produced by the carbonyl method is mixed as a soft magnetic metal fine powder with an amorphous phase soft magnetic alloy powder having a silicone resin adhered to the surface of the particles. Fe powder was adhered to the particle surface of the soft magnetic alloy powder through a silicone resin binder. In this example, the ratio of the average particle diameter of the Fe powder to the average particle diameter of the soft magnetic alloy powder in the amorphous phase is 0.08. The amount of Fe powder was 3 mass% in Example 1, 7 mass% in Example 2, and 10 mass% in Example 3 with respect to the amorphous-phase soft magnetic alloy powder.

Fe粉末がシリコーン樹脂のバインダーを介して粒子表面に付着したアモルファス相の軟磁性合金粉末に、粉末全体に対する樹脂分の質量比で1mass%の熱硬化型のシリコーン樹脂を第2のバインダーとして追加して混合し、造粒を行って造粒粉とした。   To the soft magnetic alloy powder in the amorphous phase with Fe powder attached to the particle surface through a binder of silicone resin, a thermosetting silicone resin with a mass ratio of resin to the whole powder is added as a second binder. And mixed and granulated to obtain granulated powder.

得られた造粒粉2.5gを金型に投入し、980MPaで加圧成形を行いトロイダル形状の圧粉体を作製した。圧粉体の寸法は、外径13mm、内径8mm、厚さが5mmである。   The obtained granulated powder (2.5 g) was put into a mold and pressure molded at 980 MPa to produce a toroidal green compact. The green compact has an outer diameter of 13 mm, an inner diameter of 8 mm, and a thickness of 5 mm.

圧粉体は、赤外線加熱型の環状炉を用いて、熱処理温度450℃、熱処理時間20分で熱処理を行ってαFe(−Si)結晶相の析出と熱硬化性シリコーン樹脂の硬化を行い、圧粉磁芯を作製した。   The green compact is heat treated using an infrared heating type annular furnace at a heat treatment temperature of 450 ° C. and a heat treatment time of 20 minutes to precipitate αFe (—Si) crystal phase and cure the thermosetting silicone resin. A powder magnetic core was prepared.

上記で作製した圧粉磁芯に巻線を行い、B−Hアナライザーを用いて周波数20kHz、磁束密度100mTにおけるコア損失を測定した。   Winding was performed on the dust core produced above, and the core loss at a frequency of 20 kHz and a magnetic flux density of 100 mT was measured using a BH analyzer.

また、圧粉磁芯を任意の断面で切断し、切断面を走査型電子顕微鏡(SEM)で観察を行い、N/Nsを測定した。図1は、実施例3の圧粉磁芯のSEMによる断面写真の一例である。ナノ結晶軟磁性合金粉末1の粒子を軟磁性金属微粉末6が取り囲んでいることが判る。   Further, the dust core was cut in an arbitrary cross section, and the cut surface was observed with a scanning electron microscope (SEM) to measure N / Ns. FIG. 1 is an example of a cross-sectional photograph of the dust core of Example 3 by SEM. It can be seen that the soft magnetic metal fine powder 6 surrounds the particles of the nanocrystalline soft magnetic alloy powder 1.

(比較例1、2)
比較例1、2は、アモルファス相の軟磁性合金粉末に対するFe粉末の量を質量比で、比較例1では1mass%、比較例2では15mass%とした以外は、実施例1〜3と同様にして圧粉磁芯の作製を行い、コア損失と、N/Nsの平均値を測定した。
(Comparative Examples 1 and 2)
Comparative Examples 1 and 2 are the same as in Examples 1 to 3 except that the amount of Fe powder relative to the soft magnetic alloy powder in the amorphous phase is 1 mass% in Comparative Example 1 and 15 mass% in Comparative Example 2. Then, a dust core was prepared, and the core loss and the average value of N / Ns were measured.

(比較例3)
比較例3は、実施例1〜3と同じアモルファス相の軟磁性合金粉末と、バインダーとして実施例1〜3と同じ熱硬化型のシリコーン樹脂を、粉末全体に対する樹脂分が質量比で3mass%となる様に加えて混合し造粒粉を作製した。その後、実施例1〜3と同様にして圧粉磁芯の作製を行い、コア損失の測定を行った。比較例3では軟磁性金属微粉末を加えていないので、N/Nsは測定しなかった。
(Comparative Example 3)
Comparative Example 3 is the same amorphous phase soft magnetic alloy powder as in Examples 1 to 3, and the same thermosetting silicone resin as in Examples 1 to 3 as a binder. In addition, the mixture was mixed to prepare a granulated powder. Thereafter, a dust core was prepared in the same manner as in Examples 1 to 3, and the core loss was measured. In Comparative Example 3, since no soft magnetic metal fine powder was added, N / Ns was not measured.

(比較例4)
比較例4は、実施例1〜3と同じアモルファス相の軟磁性合金粉末に、実施例1〜3と同じFe粉末と実施例1〜3と同じ熱硬化型のシリコーン樹脂を同時に加えて混合して造粒粉を作製した。Fe粉末の量は、アモルファス相の軟磁性合金粉末に対して質量比で10mass%である。また熱硬化型のシリコーン樹脂の量は、粉末全体に対する樹脂分が質量比で3mass%となる様にした。その後、実施例1〜3と同様にして圧粉磁芯の作製を行い、コア損失と、N/Nsの平均値の測定を行った。
(Comparative Example 4)
In Comparative Example 4, the same Fe powder as in Examples 1 to 3 and the same thermosetting silicone resin as in Examples 1 to 3 were added to the same amorphous phase soft magnetic alloy powder as in Examples 1 to 3 and mixed. To produce granulated powder. The amount of the Fe powder is 10 mass% by mass ratio with respect to the amorphous soft magnetic alloy powder. The amount of the thermosetting silicone resin was such that the resin content relative to the whole powder was 3 mass% by mass ratio. Thereafter, a dust core was prepared in the same manner as in Examples 1 to 3, and the core loss and the average value of N / Ns were measured.

Figure 0006314020
Figure 0006314020

表1に、実施例1〜3と比較例1〜4について、加えた軟磁性金属微粉末の量、測定したN/Nsの平均値、およびコア損失の値を示す。表1の実施例1〜3と比較例1〜3を対比すると、軟磁性金属微粉末の量が質量比で1mass%超え15mass%未満で、N/Nsの平均値が0.5以上0.9以下の本発明による圧粉磁芯は、比較例と比べてコア損失が小さいことが判る。また、軟磁性金属微粉末の量が質量比で15mass%以上では、ヒステリシス損失の増加によってコア損失が大きくなっていることが判る。   Table 1 shows the amount of added soft magnetic metal fine powder, the measured average value of N / Ns, and the value of core loss for Examples 1 to 3 and Comparative Examples 1 to 4. When Examples 1 to 3 and Comparative Examples 1 to 3 in Table 1 are compared, the amount of the soft magnetic metal fine powder is more than 1 mass% and less than 15 mass% by mass ratio, and the average value of N / Ns is 0.5 or more and 0.00. It can be seen that the dust core according to the present invention of 9 or less has a smaller core loss than the comparative example. Further, it can be seen that when the amount of the soft magnetic metal fine powder is 15 mass% or more by mass ratio, the core loss is increased due to an increase in hysteresis loss.

また、表1の実施例3と比較例4を対比すると、本発明による圧粉磁芯の製造方法は、加えた軟磁性金属微粉末の質量比が同じ従来の製造方法と比較して、N/Nsの平均値は大きくなり、コア損失の小さい圧粉磁芯が得られることが判る。   Further, when Example 3 and Comparative Example 4 in Table 1 are compared, the method for producing a dust core according to the present invention has N as compared with the conventional production method in which the mass ratio of the added soft magnetic metal fine powder is the same. It can be seen that the average value of / Ns increases, and a dust core with a small core loss can be obtained.

以上述べた様に、本発明は、軟磁性金属微粉末の量が質量比で1mass%超え15mass%未満で、N/Nsの平均値が0.5以上0.9以下とすることにより、コア損失の小さい優れた軟磁気特性を有する圧粉磁芯を得ることができる。   As described above, according to the present invention, the amount of the soft magnetic metal fine powder is more than 1 mass% and less than 15 mass% by mass ratio, and the average value of N / Ns is 0.5 or more and 0.9 or less, A dust core having excellent soft magnetic characteristics with low loss can be obtained.

本発明は、以上に説明した実施例に限定されるものではなく、本発明の技術的思想内で当分野において通常の知識を有する者により多くの変形が可能である。   The present invention is not limited to the embodiments described above, and many modifications can be made by those having ordinary knowledge in the art within the technical idea of the present invention.

1 ナノ結晶軟磁性合金粉末
2 粒子断面の外周
3 軟磁性金属微粉末の平均粒子径を直径とする円
4 ナノ結晶軟磁性合金粉末の粒子断面の円相当径の0.2倍の長さ
5 距離範囲
6 軟磁性金属微粉末
DESCRIPTION OF SYMBOLS 1 Nanocrystal soft magnetic alloy powder 2 The outer periphery of a particle cross section 3 The circle which makes the average particle diameter of a soft magnetic metal fine powder a diameter 4 Length 0.2 times the circle equivalent diameter of the particle cross section of nanocrystal soft magnetic alloy powder Distance range 6 Soft magnetic metal fine powder

Claims (7)

αFe(−Si)結晶相を有するナノ結晶軟磁性合金粉末と、前記ナノ結晶軟磁性合金粉末よりも平均粒子径が小さい軟磁性金属微粉末と、バインダーを含む圧粉磁芯であって、
前記圧粉磁芯の断面において、
前記軟磁性金属微粉末の平均粒子径を直径とする円が、前記ナノ結晶軟磁性合金粉末の粒子断面の外周に密接して配列できる最大数をNsとし、
前記ナノ結晶軟磁性合金粉末の前記粒子断面の外周から前記ナノ結晶軟磁性合金粉末の前記粒子断面の円相当径の0.2倍の長さの距離範囲に、少なくとも一部が含まれる前記軟磁性金属微粉末の粒子の数をNとしたとき、
N/Nsの平均値が0.5以上0.9以下であることを特徴とする圧粉磁芯。
A nanocrystalline soft magnetic alloy powder having an αFe (-Si) crystal phase, a soft magnetic metal fine powder having an average particle size smaller than that of the nanocrystalline soft magnetic alloy powder, and a dust core comprising a binder,
In the cross section of the dust core,
Ns is the maximum number of circles whose diameter is the average particle diameter of the soft magnetic metal fine powder that can be closely arranged on the outer periphery of the particle cross section of the nanocrystalline soft magnetic alloy powder,
The soft portion at least partially included in a distance range of 0.2 times the equivalent circle diameter of the particle cross section of the nanocrystalline soft magnetic alloy powder from the outer periphery of the particle cross section of the nanocrystalline soft magnetic alloy powder. When the number of magnetic metal fine particles is N,
A dust core having an average value of N / Ns of 0.5 or more and 0.9 or less.
前記ナノ結晶軟磁性合金粉末の平均粒子径に対する前記軟磁性金属微粉末の平均粒子径の比が、0.04以上0.15以下である請求項1に記載の圧粉磁芯。   2. The dust core according to claim 1, wherein a ratio of an average particle diameter of the soft magnetic metal fine powder to an average particle diameter of the nanocrystalline soft magnetic alloy powder is 0.04 or more and 0.15 or less. 前記ナノ結晶軟磁性合金粉末の平均粒子径は、40μmを超え60μm未満である請求項1または2に記載の圧粉磁芯。   The powder magnetic core according to claim 1 or 2, wherein an average particle size of the nanocrystalline soft magnetic alloy powder is more than 40 µm and less than 60 µm. 前記ナノ結晶軟磁性合金粉末の含有量に対する前記軟磁性金属微粉末の添加量が、質量比において1mass%を超え15mass%未満である請求項1乃至3のいずれかに記載の圧粉磁芯。   The dust core according to any one of claims 1 to 3, wherein an amount of the soft magnetic metal fine powder added relative to the content of the nanocrystalline soft magnetic alloy powder is more than 1 mass% and less than 15 mass% in mass ratio. 前記軟磁性金属微粉末の主たる成分が、Feである請求項1乃至4のいずれかに記載の圧粉磁芯。   The dust core according to any one of claims 1 to 4, wherein a main component of the soft magnetic metal fine powder is Fe. 前記ナノ結晶軟磁性合金粉末の組成が、組成式FeSiCuで表され、
79.0≦a≦86.0、5.0≦b≦13.0、0.0≦c≦8.0、1.0≦x≦10.0、0.0≦y≦5.0、0.4≦z≦1.4および0.06≦z/x≦1.20で、
Feの一部をTi、Zr、Hf、Nb、Ta、Mo、W、Cr、Co、Ni、Al、Mn、Zn、S、Sn、As、Sb、Bi、N、O、Ca、V、Mgおよび希土類元素、貴金属元素のうち1種類以上の元素で、組成全体の3at%以下を置換し、Feとの合計が79.0at%以上、86.0at%以下である請求項1乃至5のいずれかに記載の圧粉磁芯。
The composition of the nanocrystalline soft magnetic alloy powder is represented by a composition formula Fe a B b Si c P x C y Cu z,
79.0 ≦ a ≦ 86.0, 5.0 ≦ b ≦ 13.0, 0.0 ≦ c ≦ 8.0, 1.0 ≦ x ≦ 10.0, 0.0 ≦ y ≦ 5.0, 0.4 ≦ z ≦ 1.4 and 0.06 ≦ z / x ≦ 1.20,
Part of Fe is Ti, Zr, Hf, Nb, Ta, Mo, W, Cr, Co, Ni, Al, Mn, Zn, S, Sn, As, Sb, Bi, N, O, Ca, V, Mg And at least one element selected from the group consisting of rare earth elements and noble metal elements, wherein 3 at% or less of the entire composition is substituted, and the total amount with Fe is 79.0 at% or more and 86.0 at% or less. The dust core according to crab.
熱処理によりナノ結晶を析出させるアモルファス相の軟磁性合金粉末と、バインダーを混合して前記軟磁性合金粉末の表面に前記バインダーを付着させ、
前記バインダーを付着させた前記軟磁性合金粉末と、前記軟磁性合金粉末よりも平均粒子径が小さい軟磁性金属微粉末とを混合して、前記軟磁性合金粉末の粒子表面に前記バインダーを介して前記軟磁性金属微粉末を付着させ、
前記軟磁性金属微粉末が付着した前記軟磁性合金粉末に、バインダーを追加し、混合して造粒粉を作製し、
前記造粒粉を金型に充填して加圧成形により圧粉体を作製し、
前記圧粉体を熱処理して前記軟磁性合金粉末にαFe(−Si)結晶相を析出させることを特徴とする圧粉磁芯の製造方法。
Amorphous phase soft magnetic alloy powder that precipitates nanocrystals by heat treatment and a binder are mixed to adhere the binder to the surface of the soft magnetic alloy powder.
The soft magnetic alloy powder to which the binder is attached and a soft magnetic metal fine powder having an average particle size smaller than that of the soft magnetic alloy powder are mixed, and the soft magnetic alloy powder particles on the surface of the soft magnetic alloy powder through the binder. Attaching the soft magnetic metal fine powder;
To the soft magnetic alloy powder to which the soft magnetic metal fine powder is adhered, a binder is added and mixed to produce granulated powder,
Filling the granulated powder into a mold and producing a green compact by pressure molding,
A method for producing a dust core, wherein the powder compact is heat-treated to precipitate an αFe (-Si) crystal phase in the soft magnetic alloy powder.
JP2014077978A 2014-04-04 2014-04-04 Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof Active JP6314020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014077978A JP6314020B2 (en) 2014-04-04 2014-04-04 Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014077978A JP6314020B2 (en) 2014-04-04 2014-04-04 Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015201481A JP2015201481A (en) 2015-11-12
JP6314020B2 true JP6314020B2 (en) 2018-04-18

Family

ID=54552514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014077978A Active JP6314020B2 (en) 2014-04-04 2014-04-04 Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6314020B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6859862B2 (en) * 2016-07-11 2021-04-14 大同特殊鋼株式会社 Soft magnetic alloy
JP6429055B1 (en) * 2018-03-09 2018-11-28 Tdk株式会社 Soft magnetic metal powder, dust core and magnetic parts
CN111200062B (en) * 2019-12-30 2023-11-03 电子科技大学 Miniaturized inductor manufacturing method based on nanoparticle filling process and inductor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196216A (en) * 2000-01-17 2001-07-19 Hitachi Ferrite Electronics Ltd Dust core
JP2005150257A (en) * 2003-11-12 2005-06-09 Fuji Electric Holdings Co Ltd Compound magnetic particle and compound magnetic material
JP5022999B2 (en) * 2008-06-17 2012-09-12 株式会社タムラ製作所 Powder magnetic core and manufacturing method thereof
JP5288405B2 (en) * 2008-11-13 2013-09-11 Necトーキン株式会社 Inductor and method of manufacturing inductor
KR101335820B1 (en) * 2009-01-22 2013-12-03 스미토모덴키고교가부시키가이샤 Process for producing metallurgical powder, process for producing powder magnetic core, powder magnetic core, and coil component
JP5561536B2 (en) * 2010-06-17 2014-07-30 住友電気工業株式会社 Reactor and converter
JP5537534B2 (en) * 2010-12-10 2014-07-02 Necトーキン株式会社 Fe-based nanocrystalline alloy powder and manufacturing method thereof, and dust core and manufacturing method thereof
JP5305118B2 (en) * 2013-01-28 2013-10-02 住友電気工業株式会社 Reactor and boost converter

Also Published As

Publication number Publication date
JP2015201481A (en) 2015-11-12

Similar Documents

Publication Publication Date Title
KR102088534B1 (en) Soft magnetic powder, dust core, and magnetic device
WO2011155494A1 (en) Iron group-based soft magnetic powder
JP2017034091A (en) Production method of soft magnetic dust core and soft magnetic dust core
JP6530164B2 (en) Nanocrystalline soft magnetic alloy powder and dust core using the same
JP6088192B2 (en) Manufacturing method of dust core
JP6101034B2 (en) Manufacturing method of dust core
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JPWO2005020252A1 (en) High frequency magnetic core and inductance component using the same
JP2004349585A (en) Method of manufacturing dust core and nanocrystalline magnetic powder
JP2008135674A (en) Soft magnetic alloy powder, compact, and inductance element
JP6448799B2 (en) Soft magnetic powder
WO2018179812A1 (en) Dust core
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2006032907A (en) High-frequency core and inductance component using the same
JP2007134591A (en) Composite magnetic material, dust core using the same and magnetic element
JP6314020B2 (en) Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof
JP6191855B2 (en) Soft magnetic metal powder and high frequency powder magnetic core
JP7128439B2 (en) Dust core and inductor element
JP6898057B2 (en) Powder magnetic core
KR102264124B1 (en) Magnetic core and coil component
JP6359273B2 (en) Powder magnetic core and method for manufacturing the same
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP7128438B2 (en) Dust core and inductor element
JP6458853B1 (en) Powder magnetic core and inductor element
JP2008013827A (en) Composite soft magnetic power and dust core using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170303

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R150 Certificate of patent or registration of utility model

Ref document number: 6314020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250