JP6744238B2 - Soft magnetic powder, magnetic parts and dust core - Google Patents

Soft magnetic powder, magnetic parts and dust core Download PDF

Info

Publication number
JP6744238B2
JP6744238B2 JP2017029997A JP2017029997A JP6744238B2 JP 6744238 B2 JP6744238 B2 JP 6744238B2 JP 2017029997 A JP2017029997 A JP 2017029997A JP 2017029997 A JP2017029997 A JP 2017029997A JP 6744238 B2 JP6744238 B2 JP 6744238B2
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic powder
phase
powder
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017029997A
Other languages
Japanese (ja)
Other versions
JP2018137306A (en
Inventor
真 八巻
真 八巻
浦田 顕理
顕理 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2017029997A priority Critical patent/JP6744238B2/en
Publication of JP2018137306A publication Critical patent/JP2018137306A/en
Application granted granted Critical
Publication of JP6744238B2 publication Critical patent/JP6744238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁性シートなどの磁性部品や圧粉磁芯の使用に適している軟磁性粉末に関する。 The present invention relates to a soft magnetic powder suitable for use in a magnetic component such as a magnetic sheet or a dust core.

このタイプの軟磁性粉末は、例えば、特許文献1に開示されている。 This type of soft magnetic powder is disclosed in Patent Document 1, for example.

特許文献1には、Fe,B,Si,P,C及びCuからなる軟磁性合金粉末(軟磁性粉末)が開示されている。特許文献1の軟磁性合金粉末は、初期結晶が析出した結晶相を主相とする結晶相部と、非晶質相を主相とする非晶質相部とを有している。特許文献1の軟磁性合金粉末に所定の熱処理条件による熱処理(ナノ結晶化熱処理)を施すと、粉末外周部では40nm以下、粉末中心部では60nm以下のナノ結晶が析出する。このように熱処理した軟磁性合金粉末を使用することで、優れた磁気特性を有する磁性部品が得られる。 Patent Document 1 discloses a soft magnetic alloy powder (soft magnetic powder) composed of Fe, B, Si, P, C and Cu. The soft magnetic alloy powder of Patent Document 1 has a crystal phase part having a crystal phase in which initial crystals are precipitated as a main phase and an amorphous phase part having an amorphous phase as a main phase. When the soft magnetic alloy powder of Patent Document 1 is subjected to heat treatment (nanocrystallization heat treatment) under predetermined heat treatment conditions, nanocrystals of 40 nm or less at the outer periphery of the powder and 60 nm or less at the center of the powder are precipitated. By using the soft magnetic alloy powder thus heat-treated, a magnetic component having excellent magnetic characteristics can be obtained.

特開2014−75529号公報JP, 2014-75529, A

熱処理後のナノ結晶の粒径から理解されるように、特許文献1の軟磁性合金粉末の初期結晶は、例えば10nmに満たないような微細な粒径を有している。特許文献1に示唆されているように、従来の技術常識によれば、ナノ結晶化熱処理によって優れた磁気特性を得るためには、軟磁性粉末における初期結晶の粒径を微細化するか、又は、軟磁性粉末を非晶質単相とする必要がある。しかしながら、粒径の微細化や非晶質単相化を行う場合、高額な装置や複雑な製造工程が必要になり、これにより製造コストが増大する。 As understood from the grain size of the nanocrystals after the heat treatment, the initial crystals of the soft magnetic alloy powder of Patent Document 1 have a fine grain size of less than 10 nm, for example. As suggested in Patent Document 1, according to conventional technical common knowledge, in order to obtain excellent magnetic properties by heat treatment for nanocrystallization, the grain size of the initial crystal in the soft magnetic powder is reduced, or It is necessary that the soft magnetic powder has an amorphous single phase. However, when the grain size is reduced or the amorphous single phase is used, an expensive device and a complicated manufacturing process are required, which increases the manufacturing cost.

そこで、本発明は、磁性部品や圧粉磁芯の使用に適している新たな軟磁性粉末であって製造コストを低減可能な軟磁性粉末を提供することを目的とする。 Therefore, an object of the present invention is to provide a new soft magnetic powder that is suitable for use in magnetic parts and dust cores and that can reduce the manufacturing cost.

従来の技術常識によれば、軟磁性粉末における初期結晶の粒径が、数十nm程度よりも大きくなると、熱処理後の軟磁性粉末の磁気特性が大きく劣化する。一方、本発明の発明者による鋭意検討の結果、軟磁性粉末における初期結晶の粒径が更に大きくなり、2μm程度以上である場合、従来の技術常識に反して、熱処理後の軟磁性粉末の磁気特性が向上するという新たな知見が得られた。この知見に基づき、本発明は、以下の軟磁性粉末を提供する。 According to the conventional technical common sense, when the grain size of the initial crystal in the soft magnetic powder is larger than about several tens of nm, the magnetic characteristics of the soft magnetic powder after heat treatment are significantly deteriorated. On the other hand, as a result of diligent studies by the inventors of the present invention, when the grain size of the initial crystal in the soft magnetic powder is further increased and is about 2 μm or more, contrary to the conventional common general knowledge, the magnetic properties of the soft magnetic powder after heat treatment are contradicted. A new finding was obtained that the characteristics are improved. Based on this finding, the present invention provides the following soft magnetic powder.

本発明は、第1の軟磁性粉末として、
複数の金属粒子からなる軟磁性粉末であって、
前記金属粒子の夫々は、非晶質相を含んでおり、
前記金属粒子の少なくとも1つは、結晶相を含んでおり、
前記軟磁性粉末における前記結晶相の体積比率は、30%以下であり、
前記軟磁性粉末において、前記結晶相に含まれる結晶の平均粒径(D50)は、2μm以上である
軟磁性粉末を提供する。
The present invention, as the first soft magnetic powder,
A soft magnetic powder composed of a plurality of metal particles,
Each of the metal particles contains an amorphous phase,
At least one of the metal particles comprises a crystalline phase,
The volume ratio of the crystalline phase in the soft magnetic powder is 30% or less,
In the soft magnetic powder, a soft magnetic powder having an average particle diameter (D50) of crystals included in the crystalline phase of 2 μm or more is provided.

また、本発明は、第2の軟磁性粉末として、第1の軟磁性粉末であって、
前記金属粒子の夫々は、組成式FeSiCuで表わされ、79≦a≦86at%、5≦b≦13at%、0≦c≦8at%、1≦x≦10at%、0≦y≦5at%、0.4≦z≦1.4at%、及び0.06≦z/x≦1.20を満たす
軟磁性粉末を提供する。
The present invention also provides, as the second soft magnetic powder, the first soft magnetic powder,
Each of said metal particles is represented by a composition formula Fe a B b Si c P x C y Cu z, 79 ≦ a ≦ 86at%, 5 ≦ b ≦ 13at%, 0 ≦ c ≦ 8at%, 1 ≦ x A soft magnetic powder satisfying ≦10 at %, 0≦y≦5 at %, 0.4≦z≦1.4 at %, and 0.06≦z/x≦1.20.

また、本発明は、第3の軟磁性粉末として、第1又は第2の軟磁性粉末であって、
所定の熱処理を施すことで、ナノ結晶相を有する軟磁性粉末を作製でき、
前記ナノ結晶相を有する軟磁性粉末において、前記結晶相及び前記ナノ結晶相に含まれる結晶のうち、200nmより小さな粒径を有する前記結晶の平均粒径(D50)は、50nm以下である
軟磁性粉末を提供する。
The present invention also provides, as the third soft magnetic powder, the first or second soft magnetic powder,
By applying a predetermined heat treatment, it is possible to produce a soft magnetic powder having a nanocrystalline phase,
In the soft magnetic powder having the nanocrystalline phase, among the crystals included in the crystalline phase and the nanocrystalline phase, the average grain size (D50) of the crystals having a grain size smaller than 200 nm is 50 nm or less. Provide a powder.

また、本発明は、第4の軟磁性粉末として、
第1又は第2の軟磁性粉末を出発材料として得られるナノ結晶相を有する軟磁性粉末であって、
前記ナノ結晶相を有する軟磁性粉末において、前記結晶相及び前記ナノ結晶相に含まれる結晶のうち、200nmより小さな粒径を有する前記結晶の平均粒径(D50)は、50nm以下である
軟磁性粉末を提供する。
The present invention also provides, as the fourth soft magnetic powder,
A soft magnetic powder having a nanocrystalline phase obtained from the first or second soft magnetic powder as a starting material,
In the soft magnetic powder having the nanocrystalline phase, among the crystals included in the crystalline phase and the nanocrystalline phase, the average grain size (D50) of the crystals having a grain size smaller than 200 nm is 50 nm or less. Provide a powder.

また、本発明は、第1の磁性部品として、
第1から第4までのいずれかの軟磁性粉末を備える磁性部品を提供する。
The present invention also provides, as the first magnetic component,
Provided is a magnetic component including any one of the first to fourth soft magnetic powders.

また、本発明は、第1の圧粉磁芯として、
第1から第4までのいずれかの軟磁性粉末を備える圧粉磁芯を提供する。
The present invention also provides, as the first dust core,
Provided is a dust core including the soft magnetic powder according to any one of the first to fourth aspects.

本発明の軟磁性粉末における初期結晶の平均粒径(D50)は、2μm以上である。即ち、本発明の軟磁性粉末における初期結晶の多くは、従来の技術常識において熱処理後の磁気性能を劣化させると考えられていた数十nm程度の値を大きく超える2μm以上の粒径を有している。このように、初期結晶の粒径を敢えて大きくすることによって、熱処理後の磁気性能が向上する。加えて、本発明の軟磁性粉末は、粒径の微細化や非晶質相単相化が不要であるため、一般的な装置を使用して簡単に作製できる。即ち、本発明によれば、磁性部品や圧粉磁芯の使用に適している新たな軟磁性粉末であって製造コストを低減可能な軟磁性粉末を提供できる。 The average grain size (D50) of initial crystals in the soft magnetic powder of the present invention is 2 μm or more. That is, most of the initial crystals in the soft magnetic powder of the present invention have a particle size of 2 μm or more, which greatly exceeds the value of several tens of nm, which was considered to deteriorate the magnetic performance after heat treatment in the conventional technical common sense. ing. Thus, by intentionally increasing the grain size of the initial crystal, the magnetic performance after the heat treatment is improved. In addition, since the soft magnetic powder of the present invention does not need to be made finer in particle size or have a single amorphous phase, it can be easily produced using a general apparatus. That is, according to the present invention, it is possible to provide a soft magnetic powder which is a new soft magnetic powder suitable for use in magnetic parts and dust cores and which can reduce the manufacturing cost.

本実施の形態の軟磁性粉末を使用して作製した圧粉磁芯について、軟磁性粉末に含まれる初期結晶の平均粒径(D50)及び軟磁性粉末の結晶化度と、圧粉磁芯の鉄損との関係を示す図である。図中の数字は、圧粉磁心の鉄損Pcv(20kHz、100mT)の値(kW/m)を示している。For a dust core produced using the soft magnetic powder of the present embodiment, the average grain size (D50) of the initial crystals contained in the soft magnetic powder, the crystallinity of the soft magnetic powder, and the dust core It is a figure which shows the relationship with iron loss. The numbers in the figure show the values (kW/m 3 ) of the iron loss Pcv (20 kHz, 100 mT) of the dust core.

本発明の実施の形態による軟磁性粉末は、複数の金属粒子からなり、磁性シートなどの磁性部品や、圧粉磁芯の材料として使用される。本実施の形態によれば、金属粒子の夫々は、非晶質相を含んでおり、且つ、金属粒子の少なくとも1つは、初期結晶が析出した結晶相を含んでいる。軟磁性粉末における結晶相の体積比率は、30%以下である。軟磁性粉末において、結晶相に含まれる初期結晶の平均粒径(D50)は、2μm以上である。 The soft magnetic powder according to the embodiment of the present invention is composed of a plurality of metal particles and is used as a material for a magnetic component such as a magnetic sheet or a dust core. According to the present embodiment, each of the metal particles contains an amorphous phase, and at least one of the metal particles contains a crystal phase in which initial crystals are precipitated. The volume ratio of the crystal phase in the soft magnetic powder is 30% or less. In the soft magnetic powder, the average grain size (D50) of the initial crystals contained in the crystal phase is 2 μm or more.

本実施の形態における平均粒径(D50)は、一般的に用いられるメディアン径(50%粒子径)であり、例えば、以下の方法によって得られる。まず、軟磁性粉末を液状の樹脂に混合する。次に、樹脂を硬化させて研磨する。研磨面を、10%ナイタールでエッチングする。エッチングした研磨面を、電子顕微鏡にて組織観察し、結晶の粒径を求める。このとき、まず結晶の長径(D1)と短径(D2)とを測定し、長径及び短径の平均値である(D1+D2)/2を、観察断面粒径D′とする。結晶の形状が球である場合の真の粒径Dを、D=1.22D′の計算式によって算定する。粒径Dから、体積累積分布曲線を作成し、累積50%に対応する50%粒子径を、平均粒径(D50)とする。 The average particle diameter (D50) in the present embodiment is a commonly used median diameter (50% particle diameter), and is obtained by the following method, for example. First, the soft magnetic powder is mixed with a liquid resin. Next, the resin is hardened and polished. The polished surface is etched with 10% Nital. The grain surface of the crystal is obtained by observing the texture of the etched polished surface with an electron microscope. At this time, first, the major axis (D1) and the minor axis (D2) of the crystal are measured, and (D1+D2)/2, which is the average value of the major axis and the minor axis, is defined as the observed cross-sectional particle diameter D'. The true particle size D when the crystal shape is a sphere is calculated by the calculation formula of D=1.22D′. A volume cumulative distribution curve is created from the particle diameter D, and the 50% particle diameter corresponding to the cumulative 50% is taken as the average particle diameter (D50).

本実施の形態の軟磁性粉末は、例えば、以下のようにして作製できる。まず、原料を溶解して様々な金属元素を含む合金溶湯を作製する。次に、合金溶湯を、ノズルから排出する。排出によって生じる合金溶湯の流れに冷却媒体を衝突させ、これにより合金溶湯を分断して微細化すると共に急冷する。合金溶湯の分断方法は、特に限定されず、例えば、ガスアトマイズ法や水アトマイズ法を採用できる。また、冷却媒体は、合金溶湯の分断方法に合わせて適宜選択すればよい。例えば、ガスアトマイズ法において、窒素やアルゴンなどの不活性ガスや空気などの各種気体を用いてもよいし、水アトマイズ法において、高圧の水を用いてもよい。更に、合金溶湯の分断と急冷とを、異なる媒体を用いて実施しても良い。 The soft magnetic powder of this embodiment can be produced, for example, as follows. First, the raw materials are melted to prepare a molten alloy containing various metal elements. Next, the molten alloy is discharged from the nozzle. The cooling medium is caused to collide with the flow of the molten alloy generated by the discharge, whereby the molten alloy is divided into fine particles and rapidly cooled. The method for dividing the molten alloy is not particularly limited, and for example, a gas atomizing method or a water atomizing method can be adopted. Further, the cooling medium may be appropriately selected according to the method of cutting the molten alloy. For example, in the gas atomizing method, various gases such as an inert gas such as nitrogen and argon and air may be used, and in the water atomizing method, high-pressure water may be used. Further, the division of the molten alloy and the rapid cooling may be performed using different media.

上述のように合金溶湯を処理する際に、例えば、微細化した合金溶湯の冷却速度が緩やかになるように、合金溶湯の排出速度や合金溶湯の排出から冷却媒体の衝突までの時間等の処理条件を調整することにより、本実施の形態の軟磁性粉末が得られる。また、例えば、微細化した合金溶湯の全てを一律に同じ速度で急冷しようとせず、冷却速度のばらつきを許容して合金溶湯の一部を緩やかに冷却することによっても、本実施の形態の軟磁性粉末が得られる。即ち、非晶質相を含み、且つ、2μm以上の粒径を有する初期結晶が析出した結晶相を含む金属粒子が作製される。 When processing the molten alloy as described above, for example, the processing such as the discharge speed of the molten alloy and the time from the discharging of the molten alloy to the collision of the cooling medium so that the cooling rate of the refined molten alloy becomes gentle. By adjusting the conditions, the soft magnetic powder of this embodiment can be obtained. Further, for example, by not uniformly quenching all of the refined alloy molten metal at the same rate, but allowing a variation in the cooling rate to gently cool a part of the alloy molten metal, the softening of the present embodiment can be performed. A magnetic powder is obtained. That is, metal particles containing an amorphous phase and a crystal phase in which initial crystals having a grain size of 2 μm or more are deposited are produced.

本実施の形態の軟磁性粉末は、主要元素として少なくともFeを含んでいる。より具体的には、本実施の形態の軟磁性粉末は、例えば、Fe基軟磁性粉末である。一般的に、Fe基軟磁性粉末をArガス雰囲気のような不活性雰囲気中で熱処理した場合、2回以上結晶化される。最初に結晶化が開始する温度を第1結晶化開始温度(Tx1)といい、2回目の結晶化が開始する温度を第2結晶化開始温度(Tx2)という。また、第1結晶化開始温度(Tx1)と第2結晶化開始温度(Tx2)の間の温度差をΔT=Tx2−Tx1という。第1結晶化開始温度(Tx1)は、bccFe(αFeやFe−Si)の結晶析出の発熱ピークであり、第2結晶化開始温度(Tx2)は、FeBやFeP等の化合物析出の発熱ピークである。これらの結晶化開始温度は、例えば、示差走査熱量分析(DSC)装置を使用して、40℃/分程度の昇温速度で熱分析を行うことで評価可能である。 The soft magnetic powder of the present embodiment contains at least Fe as a main element. More specifically, the soft magnetic powder of the present embodiment is, for example, Fe-based soft magnetic powder. Generally, when the Fe-based soft magnetic powder is heat-treated in an inert atmosphere such as an Ar gas atmosphere, it is crystallized twice or more. The temperature at which crystallization first starts is called the first crystallization start temperature (Tx1), and the temperature at which the second crystallization starts is called the second crystallization start temperature (Tx2). Further, the temperature difference between the first crystallization start temperature (Tx1) and the second crystallization start temperature (Tx2) is referred to as ΔT=Tx2-Tx1. The first crystallization start temperature (Tx1) is an exothermic peak of bccFe (αFe or Fe-Si) crystal precipitation, and the second crystallization start temperature (Tx2) is an exothermic peak of compound precipitation of FeB or FeP. is there. These crystallization start temperatures can be evaluated by, for example, using a differential scanning calorimetry (DSC) device and performing thermal analysis at a temperature rising rate of about 40° C./min.

本実施の形態の軟磁性粉末に対して、化合物の析出を抑制可能な温度範囲での熱処理(以下、「ナノ結晶化熱処理」という。)を施すことにより、非晶質相から、数十nm以下の微細な粒径を有するナノ結晶が析出したナノ結晶相が形成され、これにより熱処理後の軟磁性粉末の磁気特性が向上する。即ち、本実施の形態の軟磁性粉末に所定の熱処理(ナノ結晶化熱処理)を施すことで、ナノ結晶相を有し且つ優れた磁気特性を有する軟磁性粉末を作製できる。ナノ結晶化熱処理は、間接加熱、直接加熱、誘導加熱等の様々な方法で行うことができる。 By subjecting the soft magnetic powder of the present embodiment to a heat treatment (hereinafter referred to as “nanocrystallization heat treatment”) in a temperature range in which precipitation of a compound can be suppressed, it is possible to obtain tens of nm from an amorphous phase. A nanocrystal phase in which nanocrystals having the following fine grain size are precipitated is formed, and thereby the magnetic characteristics of the soft magnetic powder after heat treatment are improved. That is, by subjecting the soft magnetic powder of the present embodiment to a predetermined heat treatment (nanocrystallization heat treatment), it is possible to produce a soft magnetic powder having a nanocrystalline phase and excellent magnetic properties. The nanocrystallization heat treatment can be performed by various methods such as indirect heating, direct heating, and induction heating.

ナノ結晶相を有する軟磁性粉末(即ち、熱処理後の軟磁性粉末)は、非晶質相とナノ結晶相とからなる金属粒子、及び、非晶質相とナノ結晶相と結晶相(初期結晶)とからなる金属粒子を含んでいる。ナノ結晶相を有する軟磁性粉末において、結晶相及びナノ結晶相に含まれる結晶(初期結晶及びナノ結晶)のうち、200nmより小さな粒径を有する結晶の平均粒径(D50)は、50nm以下である。 The soft magnetic powder having a nano crystalline phase (that is, the soft magnetic powder after heat treatment) includes metal particles composed of an amorphous phase and a nano crystalline phase, and an amorphous phase, a nano crystalline phase and a crystalline phase (initial crystal). ) Contains metal particles consisting of. In the soft magnetic powder having a nanocrystalline phase, among the crystals included in the crystalline phase and the nanocrystalline phase (initial crystals and nanocrystals), the average grain size (D50) of the crystals having a grain size smaller than 200 nm is 50 nm or less. is there.

上述のように、本実施の形態によれば、熱処理前の軟磁性粉末を出発材料として、ナノ結晶相を有する熱処理後の軟磁性粉末が得られる。また、熱処理後の軟磁性粉末は、熱処理前の軟磁性粉末と同様に、磁性シートなどの磁性部品や、圧粉磁芯の材料として使用できる。即ち、本実施の形態によれば、熱処理前の軟磁性粉末や熱処理後の軟磁性粉末を備える磁性部品及び圧粉磁芯が得られる。本実施の形態による磁性部品や圧粉磁芯を作製する場合、ナノ結晶化熱処理は成形前に行っても良く、成形後に行っても良い。また、ナノ結晶化熱処理と成形とを同時に行ってもよい。 As described above, according to this embodiment, the soft magnetic powder before heat treatment is used as a starting material, and the soft magnetic powder after heat treatment having a nanocrystalline phase is obtained. Further, the soft magnetic powder after the heat treatment can be used as a magnetic component such as a magnetic sheet or a material for a dust core similarly to the soft magnetic powder before the heat treatment. That is, according to the present embodiment, a magnetic component and a dust core including the soft magnetic powder before the heat treatment and the soft magnetic powder after the heat treatment can be obtained. When producing the magnetic component or the dust core according to the present embodiment, the nanocrystallization heat treatment may be performed before or after the forming. Further, the nano-crystallization heat treatment and the molding may be performed at the same time.

以下、本実施の形態による軟磁性粉末の特徴について更に詳しく説明する。 The features of the soft magnetic powder according to the present embodiment will be described in more detail below.

前述したように、本実施の形態による熱処理前の軟磁性粉末において、結晶相に含まれる初期結晶の平均粒径(D50)は、2μm以上である。従来の技術常識によれば、このような大きな平均粒径(D50)を有する初期結晶は、熱処理後の軟磁性粉末の磁気性能を劣化させるはずである。 As described above, in the soft magnetic powder before heat treatment according to the present embodiment, the average grain size (D50) of the initial crystals contained in the crystal phase is 2 μm or more. According to the conventional technical common sense, an initial crystal having such a large average grain size (D50) should deteriorate the magnetic performance of the soft magnetic powder after heat treatment.

詳しくは、従来の技術常識によれば、熱処理前の軟磁性粉末に含まれる初期結晶の粒径が数十nm程度よりも大きくなると、熱処理後の軟磁性粉末の磁気性能が劣化する。このため、熱処理前の軟磁性粉末を非晶質単相に形成するか、又は、熱処理前の軟磁性粉末に含まれる初期結晶の粒径を数nm程度の微細な値にする必要がある。例えば、水アトマイズ法によって軟磁性粉末を作製する場合、合金溶湯を粉砕して得た合金溶滴を急冷して金属粒子を作製し、これにより金属粒子に含まれる結晶を微小化する必要がある。しかしながら、全ての合金溶滴を必要な速度で急冷することは容易ではない。 Specifically, according to the conventional technical common sense, when the grain size of the initial crystal contained in the soft magnetic powder before the heat treatment becomes larger than about several tens nm, the magnetic performance of the soft magnetic powder after the heat treatment deteriorates. Therefore, it is necessary to form the soft magnetic powder before the heat treatment into an amorphous single phase, or to set the grain size of the initial crystals contained in the soft magnetic powder before the heat treatment to a fine value of about several nm. For example, when a soft magnetic powder is produced by a water atomizing method, it is necessary to rapidly cool alloy droplets obtained by crushing a molten alloy to produce metal particles, and thereby miniaturize crystals contained in the metal particles. .. However, it is not easy to quench all the alloy droplets at the required rate.

一方、本実施の形態において、熱処理前の軟磁性粉末における初期結晶の平均粒径(D50)は、2μm以上である。この平均粒径(D50)から理解されるように、本実施の形態の軟磁性粉末における初期結晶の多くは、従来の技術常識において熱処理後の磁気性能を劣化させると考えられていた数十nmを大きく超える2μm以上の粒径を有している。本発明の発明者が得た知見によれば、軟磁性粉末における初期結晶の粒径が、このように大きくなると、従来の技術常識に反して、熱処理後の軟磁性粉末の磁気特性が向上する。即ち、初期結晶の粒径を敢えて大きくすることによって、熱処理後の磁気性能が向上する。加えて、粒径の微細化や非晶質相単相化が不要であるため、一般的な装置を使用して簡単に作製できる。より具体的には、全ての合金溶滴を必要な速度で急冷するといった厳しい製造条件を満たす必要がなくなる。即ち、本発明によれば、磁性部品や圧粉磁芯の使用に適している新たな軟磁性粉末であって製造コストを低減可能な軟磁性粉末を提供できる。 On the other hand, in the present embodiment, the average grain size (D50) of the initial crystals in the soft magnetic powder before heat treatment is 2 μm or more. As can be understood from this average particle size (D50), most of the initial crystals in the soft magnetic powder of the present embodiment are considered to deteriorate the magnetic performance after heat treatment in the conventional technical common sense of several tens nm. Has a particle size of 2 μm or more, which greatly exceeds According to the knowledge obtained by the inventor of the present invention, when the grain size of the initial crystal in the soft magnetic powder becomes large in this way, contrary to the conventional technical common sense, the magnetic characteristics of the soft magnetic powder after heat treatment are improved. .. That is, by intentionally increasing the grain size of the initial crystal, the magnetic performance after the heat treatment is improved. In addition, since it is not necessary to reduce the grain size or make the amorphous phase single phase, it can be easily manufactured using a general apparatus. More specifically, it is not necessary to meet the strict manufacturing conditions of rapidly cooling all the alloy droplets at a required rate. That is, according to the present invention, it is possible to provide a soft magnetic powder which is a new soft magnetic powder suitable for use in magnetic parts and dust cores and which can reduce the manufacturing cost.

本実施の形態によれば、熱処理前の軟磁性粉末における初期結晶の体積比率(以下、「結晶化度」という。)と、軟磁性粉末における初期結晶の平均粒径(D50)との2つのパラメータが、熱処理後の軟磁性粉末の磁気特性に大きな影響を与える。具体的には、結晶化度が30%よりも大きい場合、磁気特性が劣化する。この劣化は、熱処理時にナノ結晶化する対象体積が減少するためだと考えられる。また、平均粒径(D50)が数十nm以上であって且つ2μmよりも小さい場合、磁気特性が劣化する。この劣化は、磁壁移動のピニングサイト数の増加に起因すると考えられる。 According to the present embodiment, there are two of the volume ratio of the initial crystals in the soft magnetic powder before heat treatment (hereinafter, referred to as “crystallinity”) and the average grain size (D50) of the initial crystals in the soft magnetic powder. The parameters have a great influence on the magnetic properties of the soft magnetic powder after heat treatment. Specifically, when the crystallinity is higher than 30%, the magnetic properties deteriorate. It is considered that this deterioration is due to a decrease in the target volume of nanocrystallization during heat treatment. Further, when the average particle diameter (D50) is several tens nm or more and smaller than 2 μm, the magnetic characteristics deteriorate. It is considered that this deterioration is due to an increase in the number of pinning sites for domain wall motion.

本実施の形態の軟磁性粉末は、結晶化度が30%以下であり、且つ、平均粒径(D50)が2μm以上であるため、熱処理後の軟磁性粉末は、良好な磁気特性を有する。結晶化度が30%以下であり、且つ、平均粒径(D50)が2μm以上という条件を満たしている場合、熱処理によって、ピニングサイト数の増加を抑制しつつ十分なナノ結晶が析出すると考えられる。熱処理後の軟磁性粉末の磁気特性を向上させるためには、結晶化度が10%以下であり、且つ、平均粒径(D50)が5μm以上であることが更に好ましい。 Since the soft magnetic powder of the present embodiment has a crystallinity of 30% or less and an average particle diameter (D50) of 2 μm or more, the soft magnetic powder after heat treatment has good magnetic characteristics. When the degree of crystallinity is 30% or less and the condition that the average particle size (D50) is 2 μm or more is satisfied, it is considered that sufficient nanocrystals are deposited by heat treatment while suppressing an increase in the number of pinning sites. .. In order to improve the magnetic properties of the soft magnetic powder after heat treatment, it is more preferable that the crystallinity is 10% or less and the average particle size (D50) is 5 μm or more.

熱処理前の軟磁性粉末においては、結晶化度及び平均粒径(D50)に加えて、2μm未満の粒径を有する初期結晶からなる結晶相の体積比率(以下、「小粒子結晶化度」という。)も、熱処理後の軟磁性粉末の磁気特性に影響を与える。より具体的には、小粒子結晶化度は、熱処理後の軟磁性粉末の磁気特性を向上させるために、10%以下である必要があり、5%以下であることが好ましい。 In the soft magnetic powder before heat treatment, in addition to the crystallinity and the average particle size (D50), the volume ratio of the crystal phase composed of initial crystals having a particle size of less than 2 μm (hereinafter referred to as “small particle crystallinity”). .) also affects the magnetic properties of the soft magnetic powder after heat treatment. More specifically, the crystallinity of small particles needs to be 10% or less, preferably 5% or less, in order to improve the magnetic properties of the soft magnetic powder after heat treatment.

一般的に、熱処理によって非晶質相からナノ結晶を析出する際には、発熱(結晶化発熱)が生じる。結晶化発熱に起因して、磁気特性の劣化をもたらす化合物が析出するおそれがある。一方、本実施の形態によれば、既に比較的大きな体積の初期結晶が析出しているため、結晶化発熱の量が低下する。このため、結晶化発熱による化合物の析出を抑制でき、軟磁性粉末からなる大型磁芯を容易に熱処理できる。また、良好な磁気特性を得られる粒径の範囲が広いため、熱処理前の軟磁性粉末を作製する際に初期結晶の粒径がばらついたとしても良好な磁気特性が得られる。 In general, when nanocrystals are precipitated from the amorphous phase by heat treatment, heat is generated (crystallization heat). Due to the heat of crystallization, a compound that deteriorates the magnetic properties may be deposited. On the other hand, according to the present embodiment, since the relatively large volume of the initial crystal is already deposited, the amount of crystallization heat is reduced. Therefore, the precipitation of the compound due to the heat of crystallization can be suppressed, and the large magnetic core made of soft magnetic powder can be easily heat-treated. In addition, since the range of the particle size that provides good magnetic properties is wide, good magnetic properties can be obtained even if the initial crystal grain size varies when the soft magnetic powder before heat treatment is manufactured.

本実施の形態によれば、軟磁性粉末における結晶の体積比率が30%以下であり且つ軟磁性粉末における初期結晶の平均粒径(D50)が2μm以上である限り、軟磁性粉末の金属粒子は、どのような組成を有していてもよい。金属粒子は、全て同じ組成を有していてもよいし、夫々異なる組成を有していてもよい。換言すれば、本実施の形態による軟磁性粉末は、様々な組成式を有する金属粒子の集合体であってもよい。 According to the present embodiment, as long as the volume ratio of crystals in the soft magnetic powder is 30% or less and the average grain size (D50) of the initial crystals in the soft magnetic powder is 2 μm or more, the metal particles of the soft magnetic powder are , And may have any composition. The metal particles may all have the same composition, or may have different compositions. In other words, the soft magnetic powder according to the present embodiment may be an aggregate of metal particles having various composition formulas.

例えば、金属粒子がFe基の合金であり、αFeの初期結晶が析出している場合、非晶質単相の金属粒子のみからなる軟磁性粉末を熱処理した場合に比べても、所定の熱処理によって、高い飽和磁束密度Bsが得られる。また、熱処理後の軟磁性粉末を備えた圧粉磁芯は、磁束密度が飽和しにくくなるため、直流電流を重畳させても透磁率が低下しにくい。即ち、透磁率の直流重畳特性が良好である。 For example, when the metal particles are an Fe-based alloy and the initial crystals of αFe are precipitated, even if the soft magnetic powder consisting of only amorphous single-phase metal particles is heat treated, A high saturation magnetic flux density Bs is obtained. Further, in the dust core provided with the soft magnetic powder after the heat treatment, the magnetic flux density is less likely to be saturated, and therefore the magnetic permeability is less likely to decrease even if a direct current is superposed. That is, the direct current superposition characteristic of magnetic permeability is good.

より具体的には、軟磁性粉末を構成する金属粒子の夫々は、組成式FeSiCuで表わされる合金粒子であってもよい。換言すれば、本実施の形態の軟磁性粉末は、組成式FeSiCuで表わされる軟磁性合金粉末であってもよい。この場合、79≦a≦86at%、5≦b≦13at%、0≦c≦8at%、1≦x≦10at%、0≦y≦5at%、0.4≦z≦1.4at%、及び0.06≦z/x≦1.20を満たしていてもよい。 More specifically, Each of the metal particles constituting the soft magnetic powder may be alloy particles represented by the composition formula Fe a B b Si c P x C y Cu z. In other words, the soft magnetic powder of the present embodiment may be a soft magnetic alloy powder represented by a composition formula Fe a B b Si c P x C y Cu z. In this case, 79≦a≦86 at%, 5≦b≦13 at%, 0≦c≦8 at%, 1≦x≦10 at%, 0≦y≦5 at%, 0.4≦z≦1.4 at%, and It may satisfy 0.06≦z/x≦1.20.

上記の軟磁性合金粉末によれば、熱処理後の軟磁性合金粉末の磁気特性は、結晶相に含まれる初期結晶の平均粒径(D50)に応じて変化する。より具体的には、平均粒径(D50)が50nm以下である場合、良好な飽和磁束密度が得られ、平均粒径(D50)が50nmよりも大きく且つ2μmよりも小さい場合、飽和磁束密度が劣化する。平均粒径(D50)が2μm以上である場合、良好な飽和磁束密度が得られる。 According to the above soft magnetic alloy powder, the magnetic properties of the soft magnetic alloy powder after heat treatment change according to the average grain size (D50) of the initial crystals contained in the crystal phase. More specifically, when the average particle size (D50) is 50 nm or less, good saturation magnetic flux density is obtained, and when the average particle size (D50) is larger than 50 nm and smaller than 2 μm, the saturation magnetic flux density is to degrade. When the average particle diameter (D50) is 2 μm or more, good saturation magnetic flux density can be obtained.

上記の軟磁性合金粉末において、Feは主元素であり、磁性を担う必須元素である。飽和磁束密度の向上及び原料価格の低減のため、Feの割合が多いことが基本的には好ましい。Feの割合が79at%より少ないと、望ましいBsが得られない。Feの割合が86at%より多いと、液体急冷条件下における非晶質相の形成が困難になる。また、1.60T以上の飽和磁束密度を有する圧粉磁芯を得るためには、Feの割合は、80at%以上であることが望ましい。 In the above soft magnetic alloy powder, Fe is a main element and an essential element responsible for magnetism. In order to improve the saturation magnetic flux density and reduce the raw material cost, it is basically preferable that the proportion of Fe is large. If the proportion of Fe is less than 79 at %, the desired Bs cannot be obtained. When the proportion of Fe is more than 86 at %, it becomes difficult to form the amorphous phase under the liquid quenching condition. Further, in order to obtain a dust core having a saturation magnetic flux density of 1.60 T or more, the proportion of Fe is preferably 80 at% or more.

上記の軟磁性合金粉末において、Bは非晶質相形成を担う必須元素である。Bの割合が5at%より少ないと、液体急冷条件下における非晶質相の形成が困難になる。13at%より多いと、αFeの結晶が析出する温度である第1結晶化開始温度と化合物が析出する温度である第2結晶化開始温度との温度差であるΔTが減少し、均質なナノ結晶相を得ることができない。特に、原料を溶湯とする際に融点を低くし量産化を容易にするためには、Bの割合は、10at%以下であることが望ましい。 In the above soft magnetic alloy powder, B is an essential element responsible for forming an amorphous phase. When the proportion of B is less than 5 at %, it becomes difficult to form an amorphous phase under the liquid quenching condition. When it is more than 13 at %, ΔT, which is the temperature difference between the first crystallization start temperature which is the temperature at which αFe crystals are precipitated and the second crystallization start temperature which is the temperature at which the compound is precipitated, is reduced and homogeneous nanocrystals are obtained. I can't get a phase. In particular, in order to lower the melting point when the raw material is a molten metal and facilitate mass production, it is desirable that the B content be 10 at% or less.

上記の軟磁性合金粉末において、Siは非晶質相形成を担う元素であり、必ずしも含まれなくても良いが、ナノ結晶が析出する際にナノ結晶相の安定化に寄与する。Siの割合が8at%よりも多いと非晶質形成能が低下する。特に、合金溶湯を急冷する際に容易に非晶質の形成が行われることを考慮すると、Siの割合は、5at%以下であることが望ましい。 In the above soft magnetic alloy powder, Si is an element responsible for forming an amorphous phase, and Si is not necessarily contained, but it contributes to stabilization of the nanocrystal phase when nanocrystals are precipitated. If the proportion of Si is more than 8 at %, the amorphous forming ability is lowered. In particular, considering that amorphous formation is easily performed when the molten alloy is rapidly cooled, the Si content is preferably 5 at% or less.

上記の軟磁性合金粉末において、Pは非晶質相形成を担う必須元素である。Pの割合が1at%より少ないと、液体急冷条件下における非晶質相の形成が困難になる。Pの割合が10at%より多いと、Bsが低下する。特に、本実施の形態においては、B、Si及びPの組み合わせを用いることで、いずれか一つしか用いない場合と比較して、非晶質相形成能やナノ結晶相の安定性を高めることができる。 In the above soft magnetic alloy powder, P is an essential element responsible for forming an amorphous phase. When the proportion of P is less than 1 at %, it becomes difficult to form an amorphous phase under liquid quenching conditions. When the proportion of P is more than 10 at %, Bs is lowered. In particular, in the present embodiment, by using a combination of B, Si and P, the ability to form an amorphous phase and the stability of the nanocrystalline phase can be improved as compared with the case where only one is used. You can

上記の軟磁性合金粉末において、Cは非晶質形成を担う元素であり、必ずしも含まれなくても良い。Cは安価であるため、Cの添加により他の半金属量が低減され、総材料コストが低減される。ただし、Cの割合が5at%を超えると、軟磁性合金粉末が脆化する。特に、原料の溶湯時におけるCの蒸発に起因した組成のばらつきを抑えるためには、Cの割合は3at%以下であることが望ましい。また、本実施の形態においては、B、Si、P、Cの組み合わせを用いることで、いずれか一つしか用いない場合と比較して、非晶質相形成能やナノ結晶相の安定性を高めることができる。 In the above soft magnetic alloy powder, C is an element responsible for amorphous formation and does not necessarily have to be contained. Since C is inexpensive, the addition of C reduces the amount of other semi-metals and reduces the total material cost. However, if the proportion of C exceeds 5 at %, the soft magnetic alloy powder becomes brittle. In particular, the proportion of C is preferably 3 at% or less in order to suppress the compositional variation due to the evaporation of C during the melting of the raw material. In addition, in the present embodiment, by using the combination of B, Si, P, and C, the amorphous phase forming ability and the stability of the nanocrystalline phase can be improved as compared with the case where only one is used. Can be increased.

上記の軟磁性合金粉末において、Cuはナノ結晶相の形成に寄与する必須元素である。Cuの割合が0.4at%より少ないと、ナノ結晶相の形成が困難になる。Cuの割合が1.4at%より多いと、非晶質相が不均質になり、熱処理によって均質なナノ結晶相が得られないことに加え、材料コストが嵩む。特に、軟磁性合金粉末の酸化及びナノ結晶への粒成長を考慮すると、Cuの割合は、0.5at%以上、1.3at%以下であることが好ましい。 In the above soft magnetic alloy powder, Cu is an essential element that contributes to the formation of nanocrystalline phase. If the proportion of Cu is less than 0.4 at %, it becomes difficult to form the nanocrystalline phase. If the proportion of Cu is more than 1.4 at %, the amorphous phase becomes inhomogeneous, a uniform nanocrystalline phase cannot be obtained by heat treatment, and the material cost increases. In particular, considering the oxidation of the soft magnetic alloy powder and the grain growth into nanocrystals, the proportion of Cu is preferably 0.5 at% or more and 1.3 at% or less.

PとCuとの間には、強い原子間引力がある。従って、上記の軟磁性合金粉末が特定の比率のPとCuとを含んでいると、10nm以下のサイズのクラスターが形成され、この微細なクラスターによってナノ結晶の形成の際にαFeの結晶は微細構造を有するようになる。詳しくは、Pの割合(x)とCuの割合(z)との特定の比率(z/x)は0.06以上、1.2以下である。特に、軟磁性合金粉末の脆化及び酸化を考慮すると、特定の比率(z/x)は、0.08以上、0.8以下であることが望ましい。 There is a strong interatomic attraction between P and Cu. Therefore, when the soft magnetic alloy powder contains P and Cu in a specific ratio, clusters having a size of 10 nm or less are formed, and the fine clusters make αFe crystals fine when forming nanocrystals. To have a structure. Specifically, the specific ratio (z/x) of the ratio (x) of P and the ratio (z) of Cu is 0.06 or more and 1.2 or less. Particularly, considering the embrittlement and oxidation of the soft magnetic alloy powder, the specific ratio (z/x) is preferably 0.08 or more and 0.8 or less.

上記の軟磁性合金粉末において、Feの3at%以下をTi、Zr、Hf、Nb、Ta、Mo、W、Cr、Co、Ni、Al、Mn、Ag、Zn、S、Sn、As、Sb、Bi、Y、N、O、Mg、Ca、V及び希土類元素のうち1種類以上の元素で置換することにより良好な磁気特性が得られる。これらの元素は、基本的に不純物元素であり、製造過程において軟磁性合金粉末に含有される可能性がある。不純物元素を多く含有した場合には、磁気特性が劣化すると考えられる。一方、Feの置換量が3at%以下であれば、耐食性の改善や電気抵抗の調整などのため、飽和磁束密度の著しい低下が生じない範囲で置換可能で、良好な磁気特性を維持できる。 In the above soft magnetic alloy powder, Fe, 3 at% or less of Ti, Zr, Hf, Nb, Ta, Mo, W, Cr, Co, Ni, Al, Mn, Ag, Zn, S, Sn, As, Sb, Good magnetic properties can be obtained by substituting one or more elements of Bi, Y, N, O, Mg, Ca, V and rare earth elements. These elements are basically impurity elements and may be contained in the soft magnetic alloy powder during the manufacturing process. It is considered that when a large amount of the impurity element is contained, the magnetic characteristics are deteriorated. On the other hand, when the substitution amount of Fe is 3 at% or less, the substitution can be performed within a range where the saturation magnetic flux density is not remarkably lowered due to the improvement of the corrosion resistance and the adjustment of the electric resistance, and the good magnetic characteristics can be maintained.

本実施の形態は、既に説明した変形例に加えて、更に様々に変形可能である。 The present embodiment can be modified in various ways in addition to the modification examples already described.

例えば、本実施の形態の軟磁性粉末に含まれる金属粒子は、FeCuNbSiB系やFeアモルファスであってもよい。本実施の形態の軟磁性粉末は、非晶質単相の軟磁性粉末を熱処理して、2μm以上の粒径の初期結晶を析出させて作製してもよい。本実施の形態において、初期結晶の組成は、特に限定されない。例えば、本実施の形態の軟磁性粉末がFe基の合金からなる場合、初期結晶は、αFeの結晶であることが好ましいが、化合物の結晶であってもよい。 For example, the metal particles contained in the soft magnetic powder of the present embodiment may be FeCuNbSiB type or Fe amorphous. The soft magnetic powder of the present embodiment may be produced by heat treating an amorphous single-phase soft magnetic powder to precipitate an initial crystal having a grain size of 2 μm or more. In this embodiment, the composition of the initial crystal is not particularly limited. For example, when the soft magnetic powder of the present embodiment is made of an Fe-based alloy, the initial crystal is preferably an αFe crystal, but may be a compound crystal.

以下、本発明について実施例を使用して更に具体的に説明する。 Hereinafter, the present invention will be described more specifically using examples.

実施例1の軟磁性粉末の原料として、工業純鉄、フェロシリコン、フェロリン、フェロボロン、及び電解銅を準備した。原料をFe82.9Si6.5Cu0.6の合金組成となるように秤量し、アルゴン雰囲気中で高周波溶解によって溶解して合金溶湯を作製した。合金溶湯を、ガスアトマイズ法によって処理した。詳しくは、合金溶湯を、ノズルから排出して、高圧のガスを使用して合金溶滴に分断し、分断後の合金溶滴を冷却用の水に接触させることで冷却した。以上の分断処理及び分断処理から少し時間を置いた冷却処理により、平均粒径(D50)が10〜70μmの金属粒子からなる軟磁性粉末が得られた。金属粒子の析出相(析出物)を、X線回析(XRD:X‐ray diffraction)によって評価し、初期結晶が析出した結晶相であることを確認した。また、軟磁性粉末における初期結晶の平均粒径(D50)及び結晶化度を測定した。 As raw materials for the soft magnetic powder of Example 1, industrial pure iron, ferrosilicon, ferroline, ferroboron, and electrolytic copper were prepared. The raw material was weighed so as to have an alloy composition of Fe 82.9 Si 4 B 6 P 6.5 Cu 0.6 and melted by high frequency melting in an argon atmosphere to prepare a molten alloy. The alloy melt was processed by the gas atomizing method. Specifically, the molten alloy was discharged from a nozzle, divided into alloy droplets using a high-pressure gas, and the divided alloy droplets were brought into contact with cooling water for cooling. A soft magnetic powder made of metal particles having an average particle diameter (D50) of 10 to 70 μm was obtained by the above-mentioned cutting treatment and cooling treatment after a little time from the cutting treatment. The precipitation phase (precipitate) of the metal particles was evaluated by X-ray diffraction (XRD: X-ray diffraction), and it was confirmed that the initial phase was a precipitated crystal phase. The average grain size (D50) and crystallinity of the initial crystals in the soft magnetic powder were measured.

上述のように得られた軟磁性粉末を使用して圧粉磁芯を作製した。詳しくは、軟磁性粉末を、2wt%のシリコーン樹脂を使用して造粒し、外径13mm且つ内径8mmの金型を使用して10ton/cmの成形圧力によって常温環境下で成形して硬化処理を施した。このようにして作製した圧粉磁芯に対して、電気炉を使用して、所定の熱処理条件によりアルゴン雰囲気中で熱処理を施した。熱処理を施した後の圧粉磁芯の鉄損を測定した。 A dust core was produced using the soft magnetic powder obtained as described above. Specifically, soft magnetic powder is granulated using 2 wt% of silicone resin, molded using a mold having an outer diameter of 13 mm and an inner diameter of 8 mm under a molding pressure of 10 ton/cm 2 and cured at room temperature environment. Treated. The powder magnetic core thus produced was heat-treated in an argon atmosphere under a predetermined heat-treatment condition using an electric furnace. The iron loss of the dust core after the heat treatment was measured.

図1を参照すると、初期結晶の平均粒径(D50)が2μm以上かつ結晶化度が30%以下の場合の鉄損は、240kW/m以下であり、概ね250kW/mの鉄損を有するFe−Siコアと比較しても良好な磁気特性が得られる。更に、結晶の平均粒径(D50)が5μm以上かつ結晶化度が10%以下の場合の鉄損は、150kW/m以下であり、概ね160kW/mの鉄損を有するFeアモルファスコアと比較しても良好な磁気特性が得られる。 Referring to FIG. 1, the iron loss when the average grain size (D50) of the initial crystals is 2 μm or more and the crystallinity is 30% or less is 240 kW/m 3 or less, which is about 250 kW/m 3 . Good magnetic properties can be obtained even when compared with the Fe-Si core that it has. Further, the iron loss when the average grain size (D50) of the crystals is 5 μm or more and the crystallinity is 10% or less is 150 kW/m 3 or less, and an Fe amorphous core having an iron loss of approximately 160 kW/m 3 is obtained. Good magnetic properties can be obtained even by comparison.

上述のように、本実施例の金属粒子は、Fe82.9Si6.5Cu0.6である。但し、組成式FeSiCu(79≦a≦86at%、5≦b≦13at%、0≦c≦8at%、1≦x≦10at%、0≦y≦5at%、0.4≦z≦1.4at%、及び0.06≦z/x≦1.20)を有する軟磁性粉末においては、Fe81.4Si10Cu0.6,Fe81.3SiCu0.7,Fe80.3Si10Cu0.7,Fe81.4SiCu0.6,Fe82.4Si11Cu0.6,Fe83.3SiCu0.7,Fe83.410Cu0.6,Fe82.410Cu0.6,Fe82.3Si10Cu0.7等の様々な組成においても本実施例と同様な磁気特性が得られる。 As described above, the metal particles of this example are Fe 82.9 Si 4 B 6 P 6.5 Cu 0.6 . However, the composition formula Fe a B b S c P x C y Cu z (79≦a≦86 at%, 5≦b≦13 at%, 0≦c≦8 at%, 1≦x≦10 at%, 0≦y≦5 at %, 0.4≦z≦1.4 at %, and 0.06≦z/x≦1.20), Fe 81.4 Si 3 B 10 P 5 Cu 0.6 , Fe 81.3 Si 5 B 9 P 4 Cu 0.7 , Fe 80.3 Si 5 B 10 P 4 Cu 0.7 , Fe 81.4 Si 5 B 6 P 7 Cu 0.6 , Fe 82.4 Si 1 B 11 P 5 Cu 0.6, Fe 83.3 Si 4 B 8 P 4 Cu 0.7, Fe 83.4 B 10 P 6 Cu 0.6, Fe 82.4 B 10 P 6 C 1 Cu 0. 6 , Fe 82.3 Si 3 B 10 P 3 C 1 Cu 0.7 and the like, magnetic properties similar to those of the present embodiment can be obtained in various compositions.

Claims (6)

複数の金属粒子からなる軟磁性粉末であって、
前記金属粒子の夫々は、非晶質相を含んでおり、
前記金属粒子の少なくとも1つは、結晶相を含んでおり、
前記軟磁性粉末における前記結晶相の体積比率は、30%以下であり、
前記軟磁性粉末において、前記結晶相に含まれる結晶の平均粒径(D50)は、2μm以上であり、
前記金属粒子の夫々は、組成式Fe Si Cu で表わされ、79≦a≦86at%、5≦b≦13at%、0≦c≦8at%、1≦x≦10at%、0≦y≦5at%、0.4≦z≦1.4at%、及び0.06≦z/x≦1.20を満たす
軟磁性粉末。
A soft magnetic powder composed of a plurality of metal particles,
Each of the metal particles contains an amorphous phase,
At least one of the metal particles comprises a crystalline phase,
The volume ratio of the crystalline phase in the soft magnetic powder is 30% or less,
In the soft magnetic powder, the average grain size of crystals contained in the crystalline phase (D50) is state, and are more 2 [mu] m,
Each of said metal particles is represented by a composition formula Fe a B b Si c P x C y Cu z, 79 ≦ a ≦ 86at%, 5 ≦ b ≦ 13at%, 0 ≦ c ≦ 8at%, 1 ≦ x Soft magnetic powder satisfying ≦10 at %, 0≦y≦5 at %, 0.4≦z≦1.4 at %, and 0.06≦z/x≦1.20 .
請求項1記載の軟磁性粉末であって、
所定の熱処理を施すことで、ナノ結晶相を有する軟磁性粉末を作製でき、
前記ナノ結晶相を有する軟磁性粉末において、前記結晶相及び前記ナノ結晶相に含まれる結晶のうち、200nmより小さな粒径を有する前記結晶の平均粒径(D50)は、50nm以下である
軟磁性粉末。
The soft magnetic powder according to claim 1 , wherein
By applying a predetermined heat treatment, it is possible to produce a soft magnetic powder having a nanocrystalline phase,
In the soft magnetic powder having the nanocrystalline phase, among the crystals included in the crystalline phase and the nanocrystalline phase, the average grain size (D50) of the crystals having a grain size smaller than 200 nm is 50 nm or less. Powder.
請求項1記載の軟磁性粉末を出発材料として得られるナノ結晶相を有する軟磁性粉末であって、
前記ナノ結晶相を有する軟磁性粉末において、前記結晶相及び前記ナノ結晶相に含まれる結晶のうち、200nmより小さな粒径を有する前記結晶の平均粒径(D50)は、50nm以下である
軟磁性粉末。
A soft magnetic powder having a nanocrystalline phase obtained by using the soft magnetic powder according to claim 1 as a starting material,
In the soft magnetic powder having the nanocrystalline phase, among the crystals included in the crystalline phase and the nanocrystalline phase, the average grain size (D50) of the crystals having a grain size smaller than 200 nm is 50 nm or less. Powder.
請求項1から請求項3までのいずれかに記載の軟磁性粉末であって、Feの3at%以下を、Ti、Zr、Hf、Nb、Ta、Mo、W、Cr、Co、Ni、Al、Mn、Ag、Zn、S、Sn、As、Sb、Bi、Y、N、O、Mg、Ca、V及び希土類元素のうち1種類以上の元素で置換したThe soft magnetic powder according to any one of claims 1 to 3, wherein 3 at% or less of Fe is Ti, Zr, Hf, Nb, Ta, Mo, W, Cr, Co, Ni, Al, Substituted with at least one element selected from Mn, Ag, Zn, S, Sn, As, Sb, Bi, Y, N, O, Mg, Ca, V and rare earth elements.
軟磁性粉末。Soft magnetic powder.
請求項1から請求項4までのいずれかに記載の軟磁性粉末を備える磁性部品。 A magnetic component comprising the soft magnetic powder according to any one of claims 1 to 4. 請求項1から請求項4までのいずれかに記載の軟磁性粉末を備える圧粉磁芯。 A dust core comprising the soft magnetic powder according to any one of claims 1 to 4.
JP2017029997A 2017-02-21 2017-02-21 Soft magnetic powder, magnetic parts and dust core Active JP6744238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017029997A JP6744238B2 (en) 2017-02-21 2017-02-21 Soft magnetic powder, magnetic parts and dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017029997A JP6744238B2 (en) 2017-02-21 2017-02-21 Soft magnetic powder, magnetic parts and dust core

Publications (2)

Publication Number Publication Date
JP2018137306A JP2018137306A (en) 2018-08-30
JP6744238B2 true JP6744238B2 (en) 2020-08-19

Family

ID=63366172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017029997A Active JP6744238B2 (en) 2017-02-21 2017-02-21 Soft magnetic powder, magnetic parts and dust core

Country Status (1)

Country Link
JP (1) JP6744238B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7099035B2 (en) * 2018-04-27 2022-07-12 セイコーエプソン株式会社 Soft magnetic powder, powder magnetic core, magnetic element and electronic equipment
KR20220115577A (en) * 2019-12-25 2022-08-17 가부시키가이샤 무라타 세이사쿠쇼 alloy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445888B2 (en) * 2005-09-16 2014-03-19 日立金属株式会社 Soft magnetic alloy, method for producing the same, and magnetic component
WO2008129803A1 (en) * 2007-03-20 2008-10-30 Nec Tokin Corporation Soft magnetic alloy, magnetic component using the same, and their production methods
KR101516936B1 (en) * 2008-08-22 2015-05-04 아키히로 마키노 ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND MANUFACTURING METHOD THEREFOR, AND MAGNETIC COMPONENT
JP5912349B2 (en) * 2011-09-02 2016-04-27 Necトーキン株式会社 Soft magnetic alloy powder, nanocrystalline soft magnetic alloy powder, manufacturing method thereof, and dust core
JP6088192B2 (en) * 2012-10-05 2017-03-01 Necトーキン株式会社 Manufacturing method of dust core
JP6372441B2 (en) * 2015-07-31 2018-08-15 Jfeスチール株式会社 Method for producing water atomized metal powder

Also Published As

Publication number Publication date
JP2018137306A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6460276B1 (en) Soft magnetic alloys and magnetic parts
CN110225801B (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic component, and dust core
JP6088192B2 (en) Manufacturing method of dust core
WO2011122589A1 (en) Initial ultrafine crystal alloy, nanocrystal soft magnetic alloy and method for producing same, and magnetic component formed from nanocrystal soft magnetic alloy
JP6226093B1 (en) Soft magnetic alloys and magnetic parts
JP6245391B1 (en) Soft magnetic alloys and magnetic parts
JP7387008B2 (en) Iron-based amorphous alloy containing sub-nanoscale ordered clusters, method for preparing the same, and nanocrystalline alloy derivatives using the same
JP2018070966A (en) Soft magnetic alloy and magnetic component
JP6451878B1 (en) Soft magnetic alloys and magnetic parts
JP2018070965A (en) Soft magnetic alloy and magnetic component
JP2008294411A (en) Soft magnetism powder, manufacturing method for dust core, dust core, and magnetic component
JP6245390B1 (en) Soft magnetic alloys and magnetic parts
JP5916983B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP2710938B2 (en) High saturation magnetic flux density soft magnetic alloy
JP2016104900A (en) Metallic soft magnetic alloy, magnetic core, and production method of the same
TWI701350B (en) Soft magnetic alloys and magnetic parts
JP2018078269A (en) Soft magnetic alloy and magnetic component
JP2016094651A (en) Soft magnetic alloy and magnetic part
JP6744238B2 (en) Soft magnetic powder, magnetic parts and dust core
JP6338004B1 (en) Soft magnetic alloys and magnetic parts
JP6436206B1 (en) Soft magnetic alloys and magnetic parts
JP6338001B1 (en) Soft magnetic alloys and magnetic parts
JP7326777B2 (en) Soft magnetic alloys and magnetic parts
JP2019094531A (en) Soft magnetic alloy and magnetic component
JP6741108B1 (en) Soft magnetic alloys and magnetic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200730

R150 Certificate of patent or registration of utility model

Ref document number: 6744238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250