JP5912239B2 - Fe-based alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component - Google Patents
Fe-based alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component Download PDFInfo
- Publication number
- JP5912239B2 JP5912239B2 JP2010229565A JP2010229565A JP5912239B2 JP 5912239 B2 JP5912239 B2 JP 5912239B2 JP 2010229565 A JP2010229565 A JP 2010229565A JP 2010229565 A JP2010229565 A JP 2010229565A JP 5912239 B2 JP5912239 B2 JP 5912239B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy composition
- based alloy
- composition according
- nanocrystalline
- amorphous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、チョークコイル、トランス、センサ、リアクトルなどの磁芯の使用に好適である、Fe基合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品に関する。 The present invention relates to an Fe-based alloy composition, an Fe-based nanocrystalline alloy and a method for producing the same, and a magnetic component, which are suitable for use in magnetic cores such as choke coils, transformers, sensors, and reactors.
近年、電子部品の高効率及び小型化のために、電子部品の磁芯に用いられる磁性材料にも特性向上が求められている。具体的には、結晶磁気異方性と磁気ひずみの低減による透磁率の向上、鉄損の低減及び高飽和磁束密度化である。特に磁気ひずみの小さい軟磁性材料には、Mn−Znフェライト、Fe−Si−Al、Fe−Niなどの結晶合金、Co基アモルファスなどのアモルファス合金、更に熱処理により微細な結晶を析出させたナノ結晶合金などがあり、特許文献1、特許文献2、特許文献3等に開示されている。
In recent years, in order to increase the efficiency and miniaturization of electronic components, magnetic materials used for magnetic cores of electronic components have been required to have improved characteristics. Specifically, improvement of magnetic permeability by reduction of magnetocrystalline anisotropy and magnetostriction, reduction of iron loss, and high saturation magnetic flux density. Especially for soft magnetic materials with small magnetostriction, crystal alloys such as Mn-Zn ferrite, Fe-Si-Al, Fe-Ni, amorphous alloys such as Co-based amorphous, and nanocrystals with fine crystals deposited by heat treatment There are alloys and the like, which are disclosed in
しかしながら、Mn−Znフェライト、Fe−Si−Al、Fe−Ni、Co基アモルファス合金などの軟磁性材料は飽和磁束密度が0.5〜1.1T程度と非常に低い。また特許文献1のナノ結晶合金は、bccFe(−Si)のナノ結晶を析出させることで磁気ひずみを低減させているが、結晶粒の成長を抑制させるためにNbが多く含まれていることから、飽和磁束密度は従来合金と同様に1.0〜1.3T程度と低い。更に特許文献2では、Nb量を少なくすることで飽和磁束密度を1.4T程度まで向上させているが、相反して軟磁気特性は劣化している。すなわち、Fe−Si−B−Nb−Cu系の組成では飽和磁束密度と軟磁気特性の両立は困難であるという課題がある。また特許文献3では高い飽和磁束密度と低い磁気ひずみのナノ結晶材料が報告されているが、原料価格が高く、高融点で、更に酸化しやすいZr、Nbなどの金属元素が多量に含まれているため、単ロール液体急冷法にて作製するには、溶解ルツボ、銅ロール、ノズルなどの寿命が短くなり、更に真空中もしくはArなどの不活性雰囲気中のチャンバー内で製造するため、量産性に劣り低価格で製造することができない。
However, soft magnetic materials such as Mn—Zn ferrite, Fe—Si—Al, Fe—Ni, and Co-based amorphous alloys have a very low saturation magnetic flux density of about 0.5 to 1.1 T. Moreover, although the nanocrystal alloy of
そこで、本発明は、安価で、高い飽和磁束密度を有し、且つ高い初透磁率と低い鉄損を有するFe基合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品とを提供することを目的とする。 Therefore, the present invention provides an Fe-based alloy composition, an Fe-based nanocrystalline alloy, a manufacturing method thereof, and a magnetic component that are inexpensive, have a high saturation magnetic flux density, and have a high initial permeability and a low iron loss. The purpose is to do.
本発明の発明者は、鋭意検討の結果、本発明によるFe基合金組成物を、高い飽和磁束密度を有し、且つ高い透磁率と低い鉄損を有するFe基ナノ結晶合金を得るための出発原料として用いることができることを見出した。ここで本発明のFe基合金組成物は、所定の組成式で表され、主相としてアモルファス相を有しており、且つ優れた靭性を有している。本発明のFe基合金組成物を熱処理すると、磁化の高いbccFe(−Si)相からなる微細なナノ結晶が析出し、Fe基ナノ結晶合金を得ることができる。この微細なナノ結晶は、高い飽和磁束密度を得ると同時に、Fe基ナノ結晶合金の結晶磁気異方性と磁気ひずみを大幅に低減することができる。この低減された結晶磁気異方性と磁気ひずみは、高い透磁率と低い鉄損をもたらす。このように、本発明のFe基合金組成物は、高い飽和磁束密度を有し且つ高い透磁率と低い鉄損を有するFe基ナノ結晶合金を得るための出発原料として有益な材料である。 As a result of intensive studies, the inventor of the present invention has obtained an Fe-based alloy composition according to the present invention as a starting material for obtaining an Fe-based nanocrystalline alloy having a high saturation magnetic flux density, a high magnetic permeability, and a low iron loss. It has been found that it can be used as a raw material. Here, the Fe-based alloy composition of the present invention is represented by a predetermined composition formula, has an amorphous phase as a main phase, and has excellent toughness. When the Fe-based alloy composition of the present invention is heat-treated, fine nanocrystals composed of a highly magnetized bccFe (-Si) phase are precipitated, and an Fe-based nanocrystalline alloy can be obtained. This fine nanocrystal can obtain a high saturation magnetic flux density, and at the same time, can significantly reduce the magnetocrystalline anisotropy and magnetostriction of the Fe-based nanocrystalline alloy. This reduced magnetocrystalline anisotropy and magnetostriction results in high magnetic permeability and low iron loss. Thus, the Fe-based alloy composition of the present invention is a useful material as a starting material for obtaining an Fe-based nanocrystalline alloy having a high saturation magnetic flux density, a high magnetic permeability, and a low iron loss.
本発明によれば、第1のFe基合金組成物として、主相としてアモルファス相を有する組成式Fe100−a−b−c−dSiaBbPcCudのFe基合金組成物であって、10≦a≦20at%、3≦b≦20at%、1≦c≦15at%、0.5≦d≦3at%であることを特徴とするFe基合金組成物(但し、Fe 81.3 Si 10 B 6 P 2 Cu 0.7 を除く)が得られる。 According to the present invention, a first Fe-based alloy composition, an Fe-based alloy composition of formula Fe 100-a-b-c -d Si a B b P c Cu d having an amorphous phase as a main phase 10 ≦ a ≦ 20 at%, 3 ≦ b ≦ 20 at%, 1 ≦ c ≦ 15 at%, 0.5 ≦ d ≦ 3 at% , wherein Fe 81. 3 Si 10 B 6 P 2 Cu 0.7 ) is obtained.
本発明によれば、第2のFe基合金組成物として、主相としてアモルファス相を有する組成式Fe100−a−b−c−d−eSiaBbPcCudCeのFe基合金組成物であって、10≦a≦20at%、3≦b≦20at%、1≦c≦15at%、0<d≦3at%、0<e≦10at%であることを特徴とするFe基合金組成物が得られる。 According to the present invention, the second Fe-based as the alloy composition, the Fe-based composition formula has an amorphous phase Fe 100-a-b-c -d-e Si a B b P c Cu d C e as the main phase Fe-based alloy composition, wherein 10 ≦ a ≦ 20 at%, 3 ≦ b ≦ 20 at%, 1 ≦ c ≦ 15 at%, 0 <d ≦ 3 at%, 0 <e ≦ 10 at% An alloy composition is obtained.
また、本発明によれば、第3のFe基合金組成物として、第1のFe基合金組成物であって、a、b、c、d、eが、13≦a≦18at%、5≦b≦15at%、2≦c≦10at%、0.5≦d≦3at%、0<e≦3at%を更に満たすことを特徴とするFe基合金組成物が得られる。 Further, according to the present invention, as the third Fe-based alloy composition, the first Fe-based alloy composition, wherein a, b, c, d, and e are 13 ≦ a ≦ 18 at%, 5 ≦ An Fe-based alloy composition characterized by further satisfying b ≦ 15 at%, 2 ≦ c ≦ 10 at%, 0.5 ≦ d ≦ 3 at%, and 0 <e ≦ 3 at% is obtained.
また、本発明によれば、第4のFe基合金組成物として、第1又は第2のいずれかのFe基合金組成物であって、PとCuの比が0.1≦d/c≦1.5を満たすことを特徴とするFe基合金組成物が得られる。 According to the present invention, the fourth Fe-based alloy composition is either the first or second Fe-based alloy composition, wherein the ratio of P and Cu is 0.1 ≦ d / c ≦ An Fe-based alloy composition characterized by satisfying 1.5 is obtained.
また、本発明によれば、第5のFe基合金組成物として、第1乃至第3のいずれかのFe基合金組成物であって、Feの一部をCo、Niのうちの1種類以上の元素で置換してなることを特徴とするFe基合金組成物が得られる。 According to the present invention, as the fifth Fe-based alloy composition, any one of the first to third Fe-based alloy compositions, wherein a part of Fe is one or more of Co and Ni. An Fe-based alloy composition characterized by being substituted with the above element is obtained.
また、本発明によれば、第7のFe基合金組成物として、第1乃至第5のいずれかのFe基合金組成物であって、連続薄帯形状を有することを特徴とするFe基合金組成物が得られる。 According to the present invention, as the seventh Fe-based alloy composition, any one of the first to fifth Fe-based alloy compositions having a continuous ribbon shape is provided. A composition is obtained.
また、本発明によれば、第8のFe基合金組成物として、第6のFe基合金組成物であって、JIS Z 2248に準拠する曲げ試験において、密着曲げによる湾曲部の外側の裂けきずが無いこと特徴とするFe基合金組成物が得られる。 Further, according to the present invention, as the eighth Fe-based alloy composition, a sixth Fe-based alloy composition, and in a bending test in accordance with JIS Z 2248, cracks outside the curved portion due to contact bending Thus, an Fe-based alloy composition characterized in that no Fe is present can be obtained.
また、本発明によれば、第9のFe基合金組成物として、第1乃至第5のいずれかのFe基合金組成物であって、粉末形状を有することを特徴とするFe基合金組成物が得られる。 According to the present invention, as the ninth Fe-based alloy composition, the Fe-based alloy composition according to any one of the first to fifth Fe-based alloy compositions having a powder shape Is obtained.
また、本発明によれば、第10のFe基合金組成物として、第1乃至第8のいずれかのFe基合金組成物であって、非晶質と該非晶質中に存在する初期微結晶とからなるナノヘテロ構造であって前記初期微結晶の平均粒径が0.3〜10nmであるナノヘテロ構造を有することを特徴とするFe基合金組成物が得られる。 According to the present invention, as the tenth Fe-based alloy composition, any one of the first to eighth Fe-based alloy compositions, wherein the amorphous and the initial microcrystals existing in the amorphous are obtained. The Fe-based alloy composition is characterized in that it has a nanoheterostructure having an initial crystallite average particle size of 0.3 to 10 nm.
また、本発明によれば、第11のFe基合金組成物として、第1乃至第9のいずれかのFe基合金組成物であって、第1結晶化開始温度(Tx1)と第2結晶化開始温度(Tx2)の差(ΔT=Tx2−Tx1)が70℃以上300℃以下であることを特徴とするFe基合金組成物が得られる。 According to the present invention, the eleventh Fe-based alloy composition is any one of the first to ninth Fe-based alloy compositions, wherein the first crystallization start temperature (T x1 ) and the second crystal A Fe-based alloy composition characterized in that the difference (ΔT = T x2 −T x1 ) in the start temperature (T x2 ) is 70 ° C. or higher and 300 ° C. or lower is obtained.
また、本発明によれば、第1乃至第11のいずれかのFe基合金組成物を用いて構成されたことを特徴とする磁性部品が得られる。 In addition, according to the present invention, a magnetic component characterized by being configured using any one of the first to eleventh Fe-based alloy compositions can be obtained.
また、本発明によれば、第1乃至第11のいずれかのFe基合金組成物を用意するステップと、第1結晶化開始温度より50℃低い温度以上で第2結晶化開始温度(Tx2)以下の温度範囲で前記Fe基合金組成物を熱処理するステップを含むことを特徴とするFe基ナノ結晶合金の製造方法が得られる。 Further, according to the present invention, the step of preparing any one of the first to eleventh Fe-based alloy compositions, and the second crystallization start temperature (T x2) at a temperature of 50 ° C. lower than the first crystallization start temperature. ) A method for producing an Fe-based nanocrystalline alloy comprising the step of heat-treating the Fe-based alloy composition in the following temperature range is obtained.
また、本発明によれば、第1のFe基ナノ結晶合金として、上記Fe基ナノ結晶合金の製造方法により製造されたFe基ナノ結晶合金であって、平均粒径が5〜40nmであることを特徴とするFe基ナノ結晶合金が得られる。 According to the present invention, the first Fe-based nanocrystalline alloy is an Fe-based nanocrystalline alloy manufactured by the above-described Fe-based nanocrystalline alloy manufacturing method, and the average particle size is 5 to 40 nm. A Fe-based nanocrystalline alloy characterized by the following can be obtained.
また、本発明によれば、第2のFe基ナノ結晶合金として、第1のFe基ナノ結晶合金であって、10000以上の初透磁率と3×10−6以下の磁気ひずみを有することを特徴とするFe基ナノ結晶合金が得られる。 Further, according to the present invention, as the second Fe-based nanocrystalline alloy, the first Fe-based nanocrystalline alloy has an initial permeability of 10,000 or more and a magnetostriction of 3 × 10 −6 or less. A characteristic Fe-based nanocrystalline alloy is obtained.
更に、本発明によれば、第1乃至第2のいずれかのFe基ナノ結晶合金を用いて構成されたことを特徴とする磁性部品が得られる。 Furthermore, according to the present invention, a magnetic component characterized in that it is configured using any one of the first and second Fe-based nanocrystalline alloys can be obtained.
本発明のFe基合金組成物を出発原料として用いて製造されたFe基ナノ結晶合金は、安価で、磁気ひずみが小さく、更に高い初透磁率と低い鉄損を有し且つ高い飽和磁束密度を実現できる。 The Fe-based nanocrystalline alloy manufactured using the Fe-based alloy composition of the present invention as a starting material is inexpensive, has a small magnetostriction, has a high initial permeability and a low iron loss, and has a high saturation magnetic flux density. realizable.
本発明の実施の形態によるFe基合金組成物は、Fe基ナノ結晶合金の出発原料として好適であり、組成式Fe100-a-b-c-dSiaBbPcCudのものである。ここで、10≦a≦20at%、3≦b≦20at%、1≦c≦15at%、0<d≦3at%を満たしている。また、組成式Fe100-a-b-c-d-eSiaBbPcCudCeで、10≦a≦20at%、3≦b≦20at%、1≦c≦15at%、0<d≦3at%、0<e≦10at%を満たすFe基合金組成物も好適である。 Fe-based alloy composition according to the embodiment of the present invention is suitable as starting materials for the Fe-based nanocrystalline alloy is of the formula Fe 100-abcd Si a B b P c Cu d. Here, 10 ≦ a ≦ 20 at%, 3 ≦ b ≦ 20 at%, 1 ≦ c ≦ 15 at%, and 0 <d ≦ 3 at% are satisfied. Further, in the composition formula Fe 100-abcde Si a B b P c Cu d C e, 10 ≦ a ≦ 20at%, 3 ≦ b ≦ 20at%, 1 ≦ c ≦ 15at%, 0 <d ≦ 3at%, 0 < Fe-based alloy compositions that satisfy e ≦ 10 at% are also suitable.
なお、a、b、c、d、eについては13≦a≦18at%、5≦b≦15at%、2≦c≦10at%、0.5≦d≦3at%、0<e≦3at%を満たすことが好ましい。加えて、PとCuの比が0.1≦d/c≦1.5を満たすことが好ましい。 For a, b, c, d, and e, 13 ≦ a ≦ 18 at%, 5 ≦ b ≦ 15 at%, 2 ≦ c ≦ 10 at%, 0.5 ≦ d ≦ 3 at%, and 0 <e ≦ 3 at%. It is preferable to satisfy. In addition, it is preferable that the ratio of P and Cu satisfies 0.1 ≦ d / c ≦ 1.5.
ここで、上記Fe基合金組成物においては、Feの一部をCo、Niのうちの1種類以上の元素で置換してもよい。また、Feの一部をTi、Zr、Hf、Nb、Ta、Mo、W、Cr、Co、Ni、Al、Mn、Ag、Zn、Sn、As、Sb、Bi、Y、N、O、S、白金族元素及び希土類元素のうちの1種類以上の元素で置換してもよい。その場合、Ti、Zr、Hf、Nb、Ta、Mo、W、Cr、Co、Ni、Al、Mn、Ag、Zn、Sn、As、Sb、Bi、Y、N、O、S、白金族元素及び希土類元素のうちの1種類以上の元素はFe基合金組成物の組成全体の4at%以下であり、Ti、Zr、Hf、Nb、Ta、Mo、W、Cr、Co、Ni、Al、Mn、Ag、Zn、Sn、As、Sb、Bi、Y、N、O、S、白金族元素及び希土類元素のうちの1種類以上の元素とFeとの合計はFe基合金組成物の組成全体の(100−a−b−c−d)at%、若しくは(100−a−b−c−d−e)at%である。 Here, in the Fe-based alloy composition, a part of Fe may be substituted with one or more elements of Co and Ni. Moreover, a part of Fe is Ti, Zr, Hf, Nb, Ta, Mo, W, Cr, Co, Ni, Al, Mn, Ag, Zn, Sn, As, Sb, Bi, Y, N, O, S. Alternatively, one or more elements selected from platinum group elements and rare earth elements may be substituted. In that case, Ti, Zr, Hf, Nb, Ta, Mo, W, Cr, Co, Ni, Al, Mn, Ag, Zn, Sn, As, Sb, Bi, Y, N, O, S, platinum group elements And one or more of the rare earth elements is 4 at% or less of the total composition of the Fe-based alloy composition, and Ti, Zr, Hf, Nb, Ta, Mo, W, Cr, Co, Ni, Al, Mn , Ag, Zn, Sn, As, Sb, Bi, Y, N, O, S, the total of one or more of the platinum group elements and rare earth elements and Fe is the total composition of the Fe-based alloy composition. (100-ab-cd) at% or (100-ab-cd-e) at%.
上記Fe基合金組成物において、Fe元素は主元素であり、磁性を担う必須元素である。またCo、Niも磁性元素のためFeと置換することが可能であり、その割合によって飽和磁束密度、磁気ひずみ、耐食性、機械特性を調整することができる。ただし、飽和磁束密度の向上及び原料価格の低減のため、Feの割合が多いことが基本的には好ましい。 In the Fe-based alloy composition, the Fe element is a main element and is an essential element responsible for magnetism. Since Co and Ni are also magnetic elements, they can be replaced with Fe, and the saturation magnetic flux density, magnetostriction, corrosion resistance, and mechanical properties can be adjusted according to the ratio. However, in order to improve the saturation magnetic flux density and reduce the raw material price, it is basically preferable that the ratio of Fe is large.
上記Fe基合金組成物において、Si元素はアモルファス相形成を担う必須元素である。またナノ結晶化するときにbccFe(−Si)からなる微細なナノ結晶を構成する。ナノ結晶合金では、磁気ひずみが正であるアモルファス相と、磁気ひずみが負であるナノ結晶相により相殺することで、全体の磁気ひずみを低減することができると理解される。Siが10at%以上であると、bccFe(−Si)からなるナノ結晶相の磁気ひずみが負となり、本発明のFe基ナノ結晶合金全体の磁気ひずみを低減することができる。更にSiの割合を13at%以上にすると、磁気ひずみが3×10−6以下となり更に好ましい。またSiの割合が20at%を超えると、アモルファス形成能が著しく低下するため、Siの割合は20at%以下が好ましい。また特にSi量の割合が18at%であると、安定して連続薄帯を作製できるためより好ましい。 In the Fe-based alloy composition, Si element is an essential element responsible for amorphous phase formation. Further, when nanocrystallizing, a fine nanocrystal composed of bccFe (-Si) is formed. In a nanocrystalline alloy, it is understood that the overall magnetostriction can be reduced by canceling with an amorphous phase having a positive magnetostriction and a nanocrystal phase having a negative magnetostriction. When Si is 10 at% or more, the magnetostriction of the nanocrystalline phase made of bccFe (-Si) becomes negative, and the magnetostriction of the entire Fe-based nanocrystalline alloy of the present invention can be reduced. Furthermore, when the Si ratio is set to 13 at% or more, the magnetostriction is 3 × 10 −6 or less, which is more preferable. Further, when the Si ratio exceeds 20 at%, the amorphous forming ability is remarkably lowered, so the Si ratio is preferably 20 at% or less. In particular, it is more preferable that the amount of Si is 18 at% because a continuous ribbon can be stably produced.
上記Fe基合金組成物において、B元素はアモルファス相形成を担う必須元素である。Bの割合が3at%より少ないと、液体急冷条件下におけるアモルファス相の形成が困難になる。Bの割合が20at%より多いと、均質なナノ結晶組織を得ることができず、またFe−Bからなる化合物が析出するため、Fe基合金組成物は劣化した軟磁気特性を有することとなる。従って、Bの割合は、3at%以上20at%以下であることが望ましい。更に、Bの割合が多いと、融解温度が高くなることから、Bの割合が15at%以下であることが好ましい。特に、Bの割合が5at%〜15at%であると、透磁率が高く、安定して連続薄帯を作製できる。 In the Fe-based alloy composition, the B element is an essential element for forming an amorphous phase. When the ratio of B is less than 3 at%, it becomes difficult to form an amorphous phase under liquid quenching conditions. When the proportion of B is more than 20 at%, a homogeneous nanocrystalline structure cannot be obtained, and a compound composed of Fe—B is precipitated, so that the Fe-based alloy composition has deteriorated soft magnetic properties. . Therefore, the ratio of B is desirably 3 at% or more and 20 at% or less. Furthermore, since the melting temperature increases when the proportion of B is large, the proportion of B is preferably 15 at% or less. In particular, when the ratio of B is 5 at% to 15 at%, the magnetic permeability is high, and a continuous ribbon can be produced stably.
上記Fe基合金組成物において、P元素はアモルファス形成を担う必須元素であり、ナノ結晶化にあたってはナノ結晶の安定化に寄与する。更に、Pの割合が少ないと、熱処理の際、結晶粒が粗大化しナノ結晶化が困難になり、更に融点も高くなることから、Pの割合は1at%以上であることが好ましい。また、Pの割合が多いと非晶質相の形成が困難になり、均質なナノ組織を得られず、更に飽和磁束密度が低下するため、Pの割合は15at%以下が好ましい。特に、Pの割合が2at%〜10at%であると、透磁率が高く、安定して連続薄帯を作製できる。 In the Fe-based alloy composition, the P element is an essential element responsible for amorphous formation, and contributes to the stabilization of the nanocrystal in the nanocrystallization. Furthermore, if the P content is small, crystal grains become coarse during the heat treatment, making it difficult to crystallize nanocrystals and further increasing the melting point. Therefore, the P content is preferably 1 at% or more. Further, if the proportion of P is large, it becomes difficult to form an amorphous phase, a homogeneous nanostructure cannot be obtained, and the saturation magnetic flux density is further lowered. Therefore, the proportion of P is preferably 15 at% or less. In particular, when the ratio of P is 2 at% to 10 at%, the magnetic permeability is high, and a continuous ribbon can be produced stably.
上記Fe基合金組成物において、Cu元素はナノ結晶化に寄与する必須元素である。Cuの割合が0(添加無し)であると熱処理の際、Fe−BやFe−Pなどの化合物が析出し、更に結晶粒が粗大化し磁気特性が著しく劣化するため、Cuの割合は0より大きくなければならない。またCuの割合が3at%より多いと、非晶質相の形成が困難になる。従って、Cuの割合は0at%より多く、3at%以下であることが望ましい。特に、Cuの割合が0.5at%以上であると、ΔT(=Tx2−Tx1)が70℃以上となり、化合物析出を抑制し、安定した熱処理が可能になることで、高い透磁率を得ることができる。 In the Fe-based alloy composition, Cu element is an essential element contributing to nanocrystallization. When the Cu ratio is 0 (no addition), a compound such as Fe-B or Fe-P precipitates during the heat treatment, and the crystal grains become coarse and the magnetic properties deteriorate significantly. Must be big. If the Cu content is more than 3 at%, it is difficult to form an amorphous phase. Therefore, the ratio of Cu is desirably greater than 0 at% and less than 3 at%. In particular, when the ratio of Cu is 0.5 at% or more, ΔT (= T x2 −T x1 ) is 70 ° C. or more, compound precipitation is suppressed, and stable heat treatment is possible, so that high magnetic permeability is achieved. Can be obtained.
また、Cu元素はFe元素及びB元素と正の混合エンタルピーを有し、P元素と負の混合エンタルピーを有する。このことから、Cu原子とP原子の間には強い相関関係がある。従って、この2元素を複合添加すると、均質な非晶質相の形成が可能になる。具体的にはPの割合(c)とCuの割合(d)との比率(d/c)を0.1以上1.5以下にすることで、液体急冷条件下における非晶質相の形成の際に結晶化及び結晶の粒成長が抑制され、0.3nm以上10nm以下のサイズの初期微結晶が形成され、非晶質と前記非晶質中に存在する初期微結晶とからなるナノヘテロ構造が得られる。このナノサイズの初期微結晶によってFe基ナノ結晶合金の形成の際にbccFe(−Si)結晶は微細構造を有するようになる。一方、Pの割合(c)とCuの割合(d)との比率(d/c)が0.1以上1.5以下の範囲外にある場合、均質なナノ結晶組織が得られず、従ってFe基合金組成物は優れた軟磁気特性を有することができない。 Moreover, Cu element has a positive mixed enthalpy with Fe element and B element, and has a negative mixed enthalpy with P element. From this, there is a strong correlation between Cu atoms and P atoms. Therefore, when these two elements are added in combination, a homogeneous amorphous phase can be formed. Specifically, by forming the ratio (d / c) of the ratio (c) of P and the ratio (d) of Cu to 0.1 to 1.5, formation of an amorphous phase under liquid quenching conditions In this process, crystallization and crystal grain growth are suppressed, initial microcrystals having a size of 0.3 nm or more and 10 nm or less are formed, and a nanoheterostructure consisting of amorphous and initial microcrystals existing in the amorphous Is obtained. This nano-sized initial crystallite makes the bccFe (-Si) crystal have a fine structure when forming an Fe-based nanocrystalline alloy. On the other hand, when the ratio (d / c) of the proportion (c) of P and the proportion (d) of Cu is outside the range of 0.1 or more and 1.5 or less, a homogeneous nanocrystalline structure cannot be obtained. Fe-based alloy compositions cannot have excellent soft magnetic properties.
上記Fe基合金組成物において、C元素はアモルファス形成を担う元素である。本実施の形態においては、B元素、Si元素、P元素、C元素の組み合わせを用いることで、いずれか一つしか用いない場合と比較して、アモルファス相形成能やナノ結晶の安定性を高めることとしている。また、Cは安価であるため、Cの添加により他の半金属量が低減され、総材料コストが低減される。但し、Cの割合が5at%を超えると、Fe基合金組成物が脆化し、軟磁気特性の劣化が生じるという問題がある。従って、Cの割合は、5at%以下が望ましい。特にCの割合が3at%以下であると、溶解時におけるCの蒸発に起因した組成のばらつきを抑えることができる。 In the Fe-based alloy composition, C element is an element responsible for amorphous formation. In this embodiment, by using a combination of B element, Si element, P element, and C element, the amorphous phase forming ability and the stability of nanocrystals are improved as compared with the case where only one of them is used. I am going to do that. Moreover, since C is inexpensive, the amount of other metalloids is reduced by adding C, and the total material cost is reduced. However, when the proportion of C exceeds 5 at%, there is a problem that the Fe-based alloy composition becomes brittle and soft magnetic properties are deteriorated. Therefore, the C ratio is desirably 5 at% or less. In particular, when the proportion of C is 3 at% or less, it is possible to suppress variation in composition due to evaporation of C during dissolution.
上記の初期微結晶を有するFe基合金組成物から形成されるFe基ナノ結晶合金は平均粒径が5nm以上40nm以下であるbccFe(−Si)結晶を含んでいる。本実施の形態によると、Fe基ナノ結晶合金の平均粒径は40nm以下で形成され、また平均粒径が5nm未満であると飽和磁束密度が低下してしまうため、5nm以上とする必要がある。 The Fe-based nanocrystalline alloy formed from the Fe-based alloy composition having the initial microcrystals includes bccFe (-Si) crystals having an average particle size of 5 nm to 40 nm. According to the present embodiment, the Fe-based nanocrystalline alloy is formed with an average particle size of 40 nm or less, and if the average particle size is less than 5 nm, the saturation magnetic flux density is lowered. .
本実施の形態におけるFe基合金組成物は、様々な形状を有することができる。例えば、Fe基合金組成物は、連続薄帯形状を有していてもよいし、粉末形状を有していてもよい。連続薄帯形状のFe基合金組成物は、Fe基アモルファス薄帯などの製造に使用されている単ロール製造装置や双ロール製造装置のような従来の装置を使用して形成することができる。粉末形状のFe基合金組成物は水アトマイズ法やガスアトマイズ法によって作製してもよいし、薄帯のFe基合金組成物を粉砕することで作製してもよい。また薄帯や粉末などのFe基合金組成物はアルゴンや窒素などの不活性雰囲気中又は真空中で製造することが出来るが大気中でも問題なく作製することもでき、安価で製造できる。またアルゴンや窒素などのガスをフローさせて製造することも可能である。 The Fe-based alloy composition in the present embodiment can have various shapes. For example, the Fe-based alloy composition may have a continuous ribbon shape or a powder shape. The continuous ribbon-shaped Fe-based alloy composition can be formed using a conventional apparatus such as a single roll manufacturing apparatus or a twin roll manufacturing apparatus used for manufacturing an Fe-based amorphous ribbon. The powder-shaped Fe-based alloy composition may be produced by a water atomizing method or a gas atomizing method, or may be produced by pulverizing a thin ribbon Fe-based alloy composition. An Fe-based alloy composition such as a ribbon or powder can be produced in an inert atmosphere such as argon or nitrogen or in a vacuum, but can also be produced without any problem in the air, and can be produced at low cost. It is also possible to manufacture by flowing a gas such as argon or nitrogen.
連続薄帯形状のFe基合金組成物は、高い靭性への要求を考慮すると、熱処理前の状態において曲げ試験の際に密着曲げ可能であることが好ましい。ここで、曲げ試験とは、靭性を評価するための試験であり、曲げ角度が180°であり内側半径が零となるように試料を曲げるものである。本発明ではJIS Z 2248に規定されている折り曲げ試験に準拠して実施し、密着曲げによる湾曲部の外側の裂けきずが無いかを確認した。即ち、曲げ試験によれば、試料は裂けきず無し(○)か、裂けきず有り(×)。後述する実施例での評価においては、長さ30mm、幅15mm、厚さ20μmの薄帯試料をその中心において密着曲げをし、湾曲部の外側の裂けきず無し(○)裂けきず有り(×)をチェックした。 In view of the demand for high toughness, the continuous ribbon-shaped Fe-based alloy composition is preferably capable of tight bending during a bending test in a state before heat treatment. Here, the bending test is a test for evaluating toughness, and the sample is bent so that the bending angle is 180 ° and the inner radius is zero. In this invention, it implemented based on the bending test prescribed | regulated to JISZ2248, and confirmed whether there was no crack of the outer side of the curved part by contact | adherence bending. That is, according to the bending test, the sample was not torn (O) or torn (X). In the evaluation in Examples described later, a ribbon sample having a length of 30 mm, a width of 15 mm, and a thickness of 20 μm was tightly bent at the center thereof, and there was no tear on the outside of the curved portion (O) No tear (×) Checked.
本実施の形態によるFe基合金組成物は低い融解温度を有している。このFe基合金組成物をArガス雰囲気のような不活性雰囲気中で昇温していくとFe基合金組成物は融解し、それによって吸熱反応が生じることとなる。この吸熱反応の開始温度を融解開始温度(Tm)とする。この融解開始温度(Tm)は、例えば、示差熱量分析(DTA)装置を用い、10℃/分程度の昇温速度で熱分析を行うことで評価可能である。 The Fe-based alloy composition according to the present embodiment has a low melting temperature. When the temperature of the Fe-based alloy composition is increased in an inert atmosphere such as an Ar gas atmosphere, the Fe-based alloy composition is melted, thereby causing an endothermic reaction. Let the end temperature of this endothermic reaction be the melting start temperature (Tm). This melting start temperature (Tm) can be evaluated, for example, by performing a thermal analysis at a rate of temperature increase of about 10 ° C./min using a differential calorimetry (DTA) apparatus.
本実施の形態におけるFe基合金組成物において、融解温度を低減すると、製造装置等への負荷が小さくなる。加えて、融解温度が低いと、非晶質形成の際に低温から急冷することができるため、冷却速度は向上する。そのため、非晶質薄帯の形成が容易になり、均質なナノ結晶組織が得られることで軟磁気特性の向上が見込まれる。具体的には、融解開始温度(Tm)は市販のFeナノ結晶合金の融解開始温度である1110℃より低いことが好ましい。 In the Fe-based alloy composition in the present embodiment, when the melting temperature is reduced, the load on the manufacturing apparatus and the like is reduced. In addition, if the melting temperature is low, the cooling rate can be improved because the amorphous material can be rapidly cooled from a low temperature. Therefore, formation of an amorphous ribbon becomes easy, and improvement of soft magnetic properties is expected by obtaining a homogeneous nanocrystalline structure. Specifically, the melting start temperature (Tm) is preferably lower than 1110 ° C., which is the melting start temperature of a commercially available Fe nanocrystalline alloy.
本実施の形態によるFe基合金組成物は主相としてアモルファス相を有している。従って、本実施の形態によるFe基合金組成物をArガス雰囲気のような不活性雰囲気中で熱処理すると、2回以上結晶化される。最初に結晶化が開始した温度を第1結晶化開始温度(Tx1)とし、2回目の結晶化が開始した温度を第2結晶化開始温度(Tx2)とする。また、第1結晶化開始温度(Tx1)と第2結晶化開始温度(Tx2)の間の温度差をΔT=Tx2−Tx1とする。単に「結晶化開始温度」といった場合、第1結晶化開始温度(Tx1)を意味する。なお、これら結晶化温度は、例えば、示差走査熱量分析(DSC)装置を用い、40℃/分程度の昇温速度で熱分析を行うことで評価可能である。 The Fe-based alloy composition according to the present embodiment has an amorphous phase as a main phase. Therefore, when the Fe-based alloy composition according to the present embodiment is heat-treated in an inert atmosphere such as an Ar gas atmosphere, it is crystallized twice or more. The temperature at which crystallization starts first is the first crystallization start temperature (T x1 ), and the temperature at which the second crystallization starts is the second crystallization start temperature (T x2 ). In addition, a temperature difference between the first crystallization start temperature (T x1 ) and the second crystallization start temperature (T x2 ) is ΔT = T x2 −T x1 . When simply referred to as “crystallization start temperature”, it means the first crystallization start temperature (T x1 ). In addition, these crystallization temperatures can be evaluated by performing thermal analysis at a temperature increase rate of about 40 ° C./min using, for example, a differential scanning calorimetry (DSC) apparatus.
本実施の形態によるFe基合金組成物における第1結晶化での発熱はアモルファス相からbccFe(−Si)相への相変態に起因し、また第2結晶化での発熱はFe−BやFe−Pなどの化合物相への相変態に起因する。本実施の形態によるFe基ナノ結晶合金はアモルファス相中に平均粒径40nm以下のbccFe(−Si)相からなるナノ結晶を析出させたものであり、本実施の形態によるFe基合金組成物において第1結晶化ピークのみ発熱させることによって得られる。具体的には本実施の形態によるFe基合金組成物を結晶化開始温度(即ち、第1結晶化開始温度)より50℃低い温度以上で熱処理をすることにより本実施の形態によるFe基ナノ結晶合金を形成することができる。ここで、結晶化開始温度(Tx1)から50℃低くしたのは昇温速度を考慮したためである。また、第2結晶化ピークを発熱させるとFe−BやFe−Pなど化合物が析出し磁気特性が著しく劣化するため、第2結晶化開始温度(Tx2)以下にて熱処理する必要がある。更に、化合物の析出を抑制し、且つ均質なナノ結晶組織を得るためには、Fe基合金組成物の第1結晶化開始温度(Tx1)と第2結晶化開始温度(Tx2)の差ΔTが70℃以上300℃以下であることが好ましい。 The heat generation in the first crystallization in the Fe-based alloy composition according to the present embodiment is caused by the phase transformation from the amorphous phase to the bccFe (-Si) phase, and the heat generation in the second crystallization is Fe-B or Fe. Due to a phase transformation to a compound phase such as -P. The Fe-based nanocrystalline alloy according to the present embodiment is obtained by precipitating nanocrystals composed of a bccFe (-Si) phase having an average particle size of 40 nm or less in an amorphous phase. In the Fe-based alloy composition according to the present embodiment, It is obtained by heating only the first crystallization peak. Specifically, the Fe-based nanocrystal according to the present embodiment is obtained by heat-treating the Fe-based alloy composition according to the present embodiment at a temperature that is 50 ° C. lower than the crystallization start temperature (that is, the first crystallization start temperature). An alloy can be formed. Here, the reason why the temperature is lowered by 50 ° C. from the crystallization start temperature (T x1 ) is because the rate of temperature rise is taken into consideration. Further, when the second crystallization peak is heated, a compound such as Fe-B or Fe-P is precipitated and the magnetic properties are remarkably deteriorated. Therefore, it is necessary to perform heat treatment at a temperature lower than the second crystallization start temperature (T x2 ). Further, in order to suppress the precipitation of the compound and obtain a homogeneous nanocrystalline structure, the difference between the first crystallization start temperature (T x1 ) and the second crystallization start temperature (T x2 ) of the Fe-based alloy composition. ΔT is preferably 70 ° C. or higher and 300 ° C. or lower.
このようにして得られた本実施の形態のFe基合金組成物によると、1kHzにおいて10000以上の初透磁率と3×10−6以下の磁気ひずみを有するFe基ナノ結晶合金が得られる。 According to the Fe-based alloy composition of the present embodiment thus obtained, an Fe-based nanocrystalline alloy having an initial permeability of 10,000 or more and a magnetostriction of 3 × 10 −6 or less at 1 kHz is obtained.
本実施の形態によるFe基合金組成物を成形して、巻磁芯、積層磁芯、圧粉磁芯などの磁気コアを形成することができる。更に、その磁気コアに熱処理を施しナノ結晶を析出させた本発明のFe基ナノ結晶合金によると、チョークコイル、トランス、センサ、リアクトルなどの部品を提供することが可能となる。また、ナノ結晶化の熱処理を施した薄帯、粉末を用いて巻磁芯、積層磁芯、圧粉磁芯などの磁気コアに形成して用いてもよく、更に磁気コアの形成後に結晶粒が粗大化しない範囲で応力緩和のための熱処理を施してもよい。 The Fe-based alloy composition according to the present embodiment can be molded to form a magnetic core such as a wound magnetic core, a laminated magnetic core, or a dust core. Furthermore, according to the Fe-based nanocrystalline alloy of the present invention in which the magnetic core is subjected to heat treatment to precipitate nanocrystals, it is possible to provide components such as a choke coil, a transformer, a sensor, and a reactor. In addition, it may be used by forming it on a magnetic core such as a wound magnetic core, a laminated magnetic core, or a dust core using a ribbon or powder that has been subjected to a heat treatment for nanocrystallization. Heat treatment for stress relaxation may be performed within a range that does not coarsen.
以下、本発明の実施の形態について複数の実施例を参照しながら更に詳細に説明する。 Hereinafter, embodiments of the present invention will be described in more detail with reference to a plurality of examples.
(実施例1〜22及び比較例1〜11)
原料を下記の表1に掲げられた本発明の実施例1〜22及び比較例1〜11の合金組成となるように秤量し、高周波加熱装置により溶解した。その後、溶解したFe基合金組成物を大気中において単ロール液体急冷法にて処理し、厚さ約20μm、幅約15mm、長さ約10mの連続薄帯を作製し、曲げ試験による密着曲げとX線回折装置(XRD)による析出相の評価を行った。その後、幅5mmにスリット加工を施し、外径13mm、内径8mmの巻磁芯になるよう成形した。その後、各々の巻磁芯について450℃〜550℃の温度にて3分間熱処理を施し、Fe基ナノ結晶合金を得た。各Fe基ナノ結晶合金の初透磁率μiはインピーダンスアナライザーを用い、0.4A/mの磁場にて測定した。飽和磁束密度Bsは振動試料型磁力計(VSM)を用い、800kA/mの磁場にて測定した。磁気ひずみλsは、ひずみゲージ法を用いて測定した。また鉄損Pcmは交流BHトレーサーを用い、20kHz−200mTの励磁条件にて測定した。表1は、本発明と比較例のFe基合金組成物の合金組成と、各組成での最適熱処理条件下における磁気特性の測定結果である。
(Examples 1 to 22 and Comparative Examples 1 to 11)
The raw materials were weighed so as to have the alloy compositions of Examples 1 to 22 and Comparative Examples 1 to 11 of the present invention listed in Table 1 below, and dissolved by a high-frequency heating device. Thereafter, the melted Fe-based alloy composition is processed in the atmosphere by a single roll liquid quenching method to produce a continuous ribbon having a thickness of about 20 μm, a width of about 15 mm, and a length of about 10 m. The precipitated phase was evaluated by an X-ray diffractometer (XRD). Thereafter, slitting was applied to a width of 5 mm to form a wound magnetic core having an outer diameter of 13 mm and an inner diameter of 8 mm. Thereafter, each wound magnetic core was heat-treated at a temperature of 450 ° C. to 550 ° C. for 3 minutes to obtain an Fe-based nanocrystalline alloy. The initial permeability μi of each Fe-based nanocrystalline alloy was measured with a magnetic field of 0.4 A / m using an impedance analyzer. The saturation magnetic flux density Bs was measured in a magnetic field of 800 kA / m using a vibrating sample magnetometer (VSM). The magnetostriction λs was measured using a strain gauge method. The iron loss Pcm was measured using an AC BH tracer under excitation conditions of 20 kHz-200 mT. Table 1 shows the alloy compositions of the Fe-based alloy compositions of the present invention and comparative examples, and the measurement results of the magnetic properties under the optimum heat treatment conditions for each composition.
表1から理解されるように、実施例1〜22のFe基合金組成物はすべて急冷処理後の状態においてアモルファス相を主相とするものであり、曲げ試験により密着曲げが可能であることが確認できた。 As understood from Table 1, the Fe-based alloy compositions of Examples 1 to 22 all have an amorphous phase as the main phase in the state after the rapid cooling treatment, and can be closely bent by a bending test. It could be confirmed.
また、表1から理解されるように、実施例1〜22の熱処理後Fe基ナノ結晶合金の磁気特性は、10000以上の高い透磁率、1.3T以上の高い飽和磁束密度、10W/kg以下の低い鉄損を得た。 Moreover, as understood from Table 1, the magnetic properties of the Fe-based nanocrystalline alloys after heat treatment in Examples 1 to 22 have a high permeability of 10,000 or more, a high saturation magnetic flux density of 1.3 T or more, and 10 W / kg or less. Low iron loss.
図1は、本発明と比較例(P無し)の1kHzにおける初透磁率と飽和磁束密度の関係を示した図である。図1から理解されるように、本発明のFe基ナノ結晶合金は比較例(P無し)のFe基ナノ結晶合金と比較すると同じ飽和磁束密度でも高い初透磁率が得られることが確認できる。これはPが含まれることにより、従来必要とした結晶粒の成長速度を抑制するNbやZrなどの金属元素を必要とせず、若しくは従来よりも少量にて同等の効果が得ることができるためである。 FIG. 1 is a graph showing the relationship between the initial magnetic permeability at 1 kHz and the saturation magnetic flux density in the present invention and a comparative example (without P). As can be seen from FIG. 1, it can be confirmed that the Fe-based nanocrystalline alloy of the present invention has a high initial permeability even at the same saturation magnetic flux density as compared with the Fe-based nanocrystalline alloy of the comparative example (without P). This is because the inclusion of P does not require a metal element such as Nb or Zr that suppresses the growth rate of the crystal grains required in the past, or an equivalent effect can be obtained in a smaller amount than in the past. is there.
また、表1の実施例1〜4、比較例1、2から理解されるように本発明のFe基ナノ結晶合金はCuを添加することにより初透磁率の向上が確認できる。これはCu添加による結晶粒の微細化とΔT拡大による化合物の抑制効果のためである。 Moreover, as can be understood from Examples 1 to 4 and Comparative Examples 1 and 2 in Table 1, the Fe-based nanocrystalline alloy of the present invention can be confirmed to have improved initial permeability by adding Cu. This is because of the effect of suppressing the compound by refinement of crystal grains by addition of Cu and expansion of ΔT.
実施例1〜3、比較例1ではΔTはそれぞれ、72、78、80、24℃となっており、ΔTの小さい比較例1では上記で述べたように化合物が析出し初透磁率が大幅に低下する。そのため高い初透磁率を安定的に得るためには、ΔTが70℃以上とすることができるCuを0.5at%以上含むFe基合金組成物を熱処理することが好ましい。またCuを過剰に添加するとアモルファス形成能が低下するため3at%以下であることが好ましい。 In Examples 1 to 3 and Comparative Example 1, ΔT is 72, 78, 80, and 24 ° C., respectively, and in Comparative Example 1 having a small ΔT, the compound is precipitated and the initial permeability is greatly increased as described above. descend. Therefore, in order to stably obtain a high initial magnetic permeability, it is preferable to heat-treat an Fe-based alloy composition containing 0.5 at% or more of Cu capable of setting ΔT to 70 ° C. or more. Moreover, since an amorphous formation ability will fall when Cu is added excessively, it is preferable that it is 3 at% or less.
また、表1の実施例2、5、6、14、比較例4〜6から理解されるようにSiが少ないと磁気ひずみの増加のため初透磁率が低下し、またSiが過剰であるとアモルファス形成能低下のため初透磁率が低下する。またSi量は安定に連続薄帯が作製でき、磁気ひずみを3×10−6以下まで低減できる13〜18at%の範囲がより好ましい。 In addition, as understood from Examples 2, 5, 6, 14, and Comparative Examples 4 to 6 in Table 1, when the amount of Si is small, the initial permeability decreases due to an increase in magnetostriction, and the Si is excessive. The initial permeability decreases due to a decrease in the ability to form amorphous. The amount of Si is more preferably in the range of 13 to 18 at% where a continuous ribbon can be stably produced and the magnetostriction can be reduced to 3 × 10 −6 or less.
また、表1の実施例7から理解されるようにC元素を添加しても良好な軟磁気特性を有することが理解できる。 Further, as can be seen from Example 7 in Table 1, it can be understood that even if the C element is added, it has good soft magnetic properties.
また、表1の実施例8〜21、比較例5から理解されるように飽和磁束密度の著しい低下が生じない4at%以下の範囲にて、Fe元素を、Ti、Zr、Hf、Nb、Ta、Mo、W、Cr、Al、Mn、Ag、Zn、Sn、As、Sb、Bi、Y、N、O、S、白金族及び希土類元素のうち、1種類以上の元素で置換してもよい。更にこれらの元素は、組織の微細化、均質化に加え耐食性の改善や電気抵抗の調整などの効果もある。 Further, as can be understood from Examples 8 to 21 and Comparative Example 5 in Table 1, Fe element is contained in Ti, Zr, Hf, Nb, Ta within a range of 4 at% or less where no significant decrease in saturation magnetic flux density occurs. , Mo, W, Cr, Al, Mn, Ag, Zn, Sn, As, Sb, Bi, Y, N, O, S, platinum group and rare earth elements may be substituted with one or more elements. . Furthermore, these elements have effects such as improvement of corrosion resistance and adjustment of electric resistance in addition to refinement and homogenization of the structure.
また実施例3、9、10に示す熱処理後に析出したbccFe(−Si)の結晶粒の平均粒径はそれぞれ32nm、28nm、22nmとなっており、微細なナノ結晶からなるFe基ナノ結晶合金が得られていることが確認できた。図2は本発明のFe基ナノ結晶合金のTEM画像である。図2では、実施例10のTEM画像を示している。図2より熱処理後では微細で均質なナノ組織が得られていることが確認できた。なお、熱処理前のFe基合金組成物においても、平均粒径が3nm程度の初期微結晶が生成されていることを確認した。本発明での平均粒径は、TEM画像から画像解析を行った粒度分布により算出したものである。 Moreover, the average particle diameters of the crystal grains of bccFe (-Si) precipitated after the heat treatment shown in Examples 3, 9, and 10 are 32 nm, 28 nm, and 22 nm, respectively, and an Fe-based nanocrystalline alloy composed of fine nanocrystals is obtained. It was confirmed that it was obtained. FIG. 2 is a TEM image of the Fe-based nanocrystalline alloy of the present invention. In FIG. 2, the TEM image of Example 10 is shown. From FIG. 2, it was confirmed that a fine and homogeneous nanostructure was obtained after the heat treatment. In addition, it was confirmed that initial microcrystals having an average particle diameter of about 3 nm were also formed in the Fe-based alloy composition before the heat treatment. The average particle diameter in the present invention is calculated from a particle size distribution obtained by image analysis from a TEM image.
また実施例3、10、比較例6に示すFe基合金組成物を示差熱分析装置(DTA)にて評価したところ、融点はそれぞれ1082℃、1084℃、1110℃となっており、本発明品にて融点の低下が確認できた。 Further, when the Fe-based alloy compositions shown in Examples 3 and 10 and Comparative Example 6 were evaluated with a differential thermal analyzer (DTA), the melting points were 1082 ° C., 1084 ° C., and 1110 ° C., respectively. It was confirmed that the melting point decreased.
実施例21、22に示したように、飽和磁束密度Bsの向上や磁気ひずみの制御などのため、Feの一部を、Ni、Co元素のいずれか1種類以上の元素で置換してもよい。 As shown in Examples 21 and 22, a part of Fe may be substituted with one or more elements of Ni and Co elements in order to improve the saturation magnetic flux density Bs and control the magnetostriction. .
以上、説明したように、本発明によるFe基合金組成物を出発原料とすることで、安価で、高い飽和磁束密度を有し、且つ高い初透磁率と低い鉄損を有するFe基ナノ結晶合金及びその製造方法、並びに磁性部品を得ることが出来る。 As described above, by using the Fe-based alloy composition according to the present invention as a starting material, the Fe-based nanocrystalline alloy is inexpensive, has a high saturation magnetic flux density, and has a high initial permeability and a low iron loss. And the manufacturing method and magnetic parts can be obtained.
Claims (15)
A magnetic component comprising the Fe-based nanocrystalline alloy according to claim 13 or 14 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010229565A JP5912239B2 (en) | 2010-10-12 | 2010-10-12 | Fe-based alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010229565A JP5912239B2 (en) | 2010-10-12 | 2010-10-12 | Fe-based alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012082476A JP2012082476A (en) | 2012-04-26 |
JP5912239B2 true JP5912239B2 (en) | 2016-04-27 |
Family
ID=46241667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010229565A Active JP5912239B2 (en) | 2010-10-12 | 2010-10-12 | Fe-based alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5912239B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102925823A (en) * | 2012-11-29 | 2013-02-13 | 浙江大学 | Iron cobalt-based magnetically soft alloy with high saturation magnetic flux density and preparation method of iron cobalt-based magnetically soft alloy |
JP6260086B2 (en) * | 2013-03-04 | 2018-01-17 | 新東工業株式会社 | Iron-based metallic glass alloy powder |
WO2016121951A1 (en) * | 2015-01-30 | 2016-08-04 | 株式会社村田製作所 | Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor |
US10316396B2 (en) * | 2015-04-30 | 2019-06-11 | Metglas, Inc. | Wide iron-based amorphous alloy, precursor to nanocrystalline alloy |
JP6593146B2 (en) | 2015-12-16 | 2019-10-23 | セイコーエプソン株式会社 | Soft magnetic powder, dust core, magnetic element and electronic equipment |
JP6862743B2 (en) | 2016-09-29 | 2021-04-21 | セイコーエプソン株式会社 | Soft magnetic powder, powder magnetic core, magnetic element and electronic equipment |
JP6904034B2 (en) | 2017-04-17 | 2021-07-14 | セイコーエプソン株式会社 | Soft magnetic powder, powder magnetic core, magnetic element and electronic equipment |
JP6662438B2 (en) * | 2018-11-30 | 2020-03-11 | Tdk株式会社 | Soft magnetic alloys and magnetic components |
CN110541116B (en) * | 2019-10-15 | 2021-11-26 | 桂林电子科技大学 | Crystallization-controllable iron-based nanocrystalline magnetically soft alloy |
CN113025869A (en) * | 2021-02-26 | 2021-06-25 | 佛山市中研非晶科技股份有限公司 | Production method of iron-based nanocrystalline strip based on recovered waste strip |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2868121B2 (en) * | 1987-07-28 | 1999-03-10 | 日立金属株式会社 | Method for producing Fe-based magnetic alloy core |
JPH05255820A (en) * | 1992-01-09 | 1993-10-05 | Toshiba Corp | Fe base alloy having iso-permeability and its manufacture, and fe base magnetic core using the same |
US8277579B2 (en) * | 2006-12-04 | 2012-10-02 | Tohoku Techno Arch Co., Ltd. | Amorphous alloy composition |
KR102023313B1 (en) * | 2008-08-22 | 2019-09-19 | 가부시키가이샤 토호쿠 마그네토 인스티튜트 | ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND MANUFACTURING METHOD THEREFOR, AND MAGNETIC COMPONENT |
-
2010
- 2010-10-12 JP JP2010229565A patent/JP5912239B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012082476A (en) | 2012-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5912239B2 (en) | Fe-based alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component | |
JP4584350B2 (en) | Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component | |
JP6181346B2 (en) | Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component | |
JP4815014B2 (en) | Alloy composition, Fe-based nanocrystalline alloy and method for producing the same | |
JP6046357B2 (en) | Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component | |
JP5429613B2 (en) | Nanocrystalline soft magnetic alloys and magnetic cores | |
JP5916983B2 (en) | Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component | |
JP2007107095A (en) | Magnetic alloy, amorphous alloy thin band, and magnetic component | |
JP5697131B2 (en) | Fe-based nanocrystalline alloy manufacturing method, Fe-based nanocrystalline alloy, magnetic component, Fe-based nanocrystalline alloy manufacturing apparatus | |
JP2008231462A (en) | Magnetic alloy, amorphous alloy strip and magnetic component | |
JP2009263775A (en) | Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, magnetic core, and method for producing the nanocrystal soft magnetic alloy | |
JP5445891B2 (en) | Soft magnetic ribbon, magnetic core, and magnetic parts | |
JP2014075529A (en) | Soft magnetic alloy powder, powder-compact magnetic core arranged by use thereof, and manufacturing method thereof | |
WO2022019335A1 (en) | Fe-based nanocrystal soft magnetic alloy and magnetic component | |
JP6548059B2 (en) | Fe-based alloy composition, soft magnetic material, magnetic member, electric / electronic related parts and devices | |
WO2020024870A1 (en) | Alloy composition, fe-based nanocrystalline alloy and manufacturing method therefor, and magnetic component | |
JP4217038B2 (en) | Soft magnetic alloy | |
JP2021193205A (en) | Fe-BASED NANOCRYSTALLINE SOFT MAGNETIC ALLOY | |
JP2008150637A (en) | Magnetic alloy, amorphous alloy ribbon and magnetic parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130402 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140424 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141008 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141225 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150108 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20150213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160401 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5912239 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |