JPH0448053A - Fe-base soft-magnetic alloy and its production and magnetic core using the same - Google Patents

Fe-base soft-magnetic alloy and its production and magnetic core using the same

Info

Publication number
JPH0448053A
JPH0448053A JP2155298A JP15529890A JPH0448053A JP H0448053 A JPH0448053 A JP H0448053A JP 2155298 A JP2155298 A JP 2155298A JP 15529890 A JP15529890 A JP 15529890A JP H0448053 A JPH0448053 A JP H0448053A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic alloy
based soft
crystal grains
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2155298A
Other languages
Japanese (ja)
Other versions
JP2877452B2 (en
Inventor
Takao Sawa
孝雄 沢
Yumiko Takahashi
由美子 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15602840&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0448053(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2155298A priority Critical patent/JP2877452B2/en
Priority to EP90314358A priority patent/EP0435680B1/en
Priority to DE69018422T priority patent/DE69018422T2/en
Priority to KR1019900022570A priority patent/KR940006334B1/en
Publication of JPH0448053A publication Critical patent/JPH0448053A/en
Priority to US08/217,219 priority patent/US5522948A/en
Application granted granted Critical
Publication of JP2877452B2 publication Critical patent/JP2877452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an iron-base soft-magnetic alloy having low iron loss, high saturation magnetic flux density, and low magnetostriction in high frequency region by subjecting a rapidly solidified body of a molten metal containing iron-base alloy, etc., to heat treatment and precipitating fine crystalline grains in the structure. CONSTITUTION:A molten metal containing molten iron-base alloy and ceramic material is formed into a rapidly solidified body by a rapid solidification process, such as chill block melt spinning, and this rapidly solidified body is heat-treated at a temp. in the vicinity of or not lower than its crystallization temp., by which fine crystalline grains are precipitated in the structure. Further, the above molten metal has a composition represented by formula, where X means one or more compounds selected from ceramic materials capable of being melted at the time of preparing a rapidly solidified body, M means one or more elements among Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W, M' means one or more kinds among Mn, platinum group elements, Ag, Au, Zn, Al, Ga, In, Sn, and rare earth elements, A means Co and/or Ni, and Z means one or more kinds among B, C, P, and Ge. Moreover, the symbols (a), (b), (c), (d), (e), (f), and (g) stand for, by atom, 0.1-5%, 0.1-5%, 0.1-10%, 0-10%, 0-40%, 5-25%, and 2-20%, respectively, and the sum of (f) and (g) is 12-31%.

Description

【発明の詳細な説明】 [発明の目的〕 (産業上の利用分野) 本発明は、各種トランス、可飽和リアクトル、各種チョ
ークコイル、各種磁気ヘッド、各種センサなどに適した
Fe基軟磁性合金その製造方法およびそれを用いた磁心
に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a Fe-based soft magnetic alloy suitable for various transformers, saturable reactors, various choke coils, various magnetic heads, various sensors, etc. This invention relates to a manufacturing method and a magnetic core using the same.

(従来の技術) 電源用各種磁性部品や磁気ヘッド用の軟磁性材料として
は、従来、パーマロイ、Fe−Al−8i系合金、ケイ
素鋼、フェライトなどが用いられてきた。
(Prior Art) Permalloy, Fe-Al-8i alloy, silicon steel, ferrite, and the like have been used as soft magnetic materials for various magnetic parts for power supplies and magnetic heads.

ところで、近年、電子機器に対する小型軽量化、高性能
化などの要求が高まっており、このような要求を満足す
るために、たとえば電源などの動作周波数は高周波化さ
れつつある。そこで、磁性部品を構成する軟磁性材料に
は、高周波域における低損失化や飽和磁束゛密度の増大
などの特性向上が強く望まれている。
Incidentally, in recent years, there has been an increasing demand for electronic devices to be smaller and lighter and to have higher performance, and in order to satisfy these demands, the operating frequency of power supplies, etc., is being increased to a higher frequency. Therefore, it is strongly desired that soft magnetic materials constituting magnetic components have improved characteristics such as lower loss in high frequency ranges and increased saturation magnetic flux density.

しかし、上述したような従来材では、これらの要求を充
分に満足することができないことから、高周波対応の軟
Fn性材料としてアモルファス合金が最近注目を集めて
いる。
However, since the above-mentioned conventional materials cannot fully satisfy these requirements, amorphous alloys have recently attracted attention as soft Fn materials compatible with high frequencies.

アモルファス合金は、高透磁率、低保磁力などの優れた
軟磁気特性を示し、また高周波域で低鉄損、高角形比が
得られるなどの特性を有することから、スイッチング電
源用の磁性部品などとして一部実用化されている。たと
えばCo基アモルファス合金は可飽和リアクトルなどと
して、またFe基アモルファス合金はチョークコイルな
どとして実用化されている。
Amorphous alloys exhibit excellent soft magnetic properties such as high magnetic permeability and low coercive force, and also have properties such as low iron loss and high squareness ratio in high frequency ranges, so they are used as magnetic components for switching power supplies. It has been partially put into practical use. For example, Co-based amorphous alloys have been put into practical use as saturable reactors, and Fe-based amorphous alloys have been put into practical use as choke coils.

しかし、これらアモルファス合金においても、解決しな
ければならない課題も多い。たとえばCo基アモルファ
ス合金は、高周波域で低鉄損、高角形比が得られるなど
、特性的には優れているものの、比較的高価で汎用性に
乏しいという難点がある。また、Fe基アモルファス合
金は、安価で汎用性には優れるものの、零磁歪が得られ
ないため、樹脂モールドなどによる磁気特性の劣化が比
較的大きく、また磁歪振動によってノイズの発生が太き
いなどの難点がある。
However, even with these amorphous alloys, there are many problems that must be solved. For example, Co-based amorphous alloys have excellent properties such as low iron loss and high squareness ratio in high frequency ranges, but they have the drawbacks of being relatively expensive and lacking in versatility. In addition, although Fe-based amorphous alloys are inexpensive and have excellent versatility, they do not have zero magnetostriction, so they suffer from relatively large deterioration of magnetic properties due to resin molding, etc., and generate large noise due to magnetostrictive vibrations. There are some difficulties.

一方、最近、Co基アモルファス合金とほぼ同等の軟磁
気特性を有する、超微細な結晶粒を析出させたF、e基
軟磁性合金が提案されている(特開昭63−32050
4号公報、同64−79342号公報など参照)。この
Fe基超超微細結晶合金、優れた軟磁気特性を有すると
ともに、低磁歪を満足し、さらにFeを主としているこ
とから比較的安価であり、Co基アモルファス合金に代
る軟磁性材料として注目されている。
On the other hand, recently, an F, e-based soft magnetic alloy in which ultrafine crystal grains are precipitated and has soft magnetic properties almost equivalent to that of a Co-based amorphous alloy has been proposed (Japanese Patent Laid-Open No. 63-32050
(See Publication No. 4, Publication No. 64-79342, etc.). This Fe-based ultra-ultrafine crystal alloy has excellent soft magnetic properties, satisfies low magnetostriction, and is relatively inexpensive because it mainly contains Fe, and is attracting attention as a soft magnetic material that can replace Co-based amorphous alloys. ing.

(発明が解決しようとする課題) しかしながら、上記Fe基超超微細結晶合金軟磁気特性
は、その製造過程における熱処理温度に対する依存性が
大きいという難点があった。
(Problems to be Solved by the Invention) However, the soft magnetic properties of the Fe-based ultrafine-crystalline alloy have a drawback that they are highly dependent on the heat treatment temperature in the manufacturing process.

すなわち、上記Fe基超超微細結晶合金母合金を一旦ア
モルファス化し、その後結晶化温度近傍の温度域で熱処
理することによって、微細な結晶粒を析出させて優れた
軟磁気特性を付与している。
That is, the Fe-based ultra-ultrafine crystal alloy master alloy is once made amorphous and then heat-treated in a temperature range near the crystallization temperature to precipitate fine crystal grains and impart excellent soft magnetic properties.

しかし、上記熱処理の温度範囲が比較的狭く、さらにア
モルファス状態から結晶化する際に放出されるエネルギ
ー量が大きいため、熱処理時に設定温度範囲を超える危
険性が高く、これによって軟磁気特性の劣化を招きやす
いという難点があった。 本発明は、このような課題に
対処するためになされもので、高周波域において低鉄損
、高飽和磁束密度、低磁歪を満足し、かつこれら特性が
熱処理条件にあまり依存することなく得られる安価で汎
用性に優れたFee基軟磁性合金その製造方法、および
それを用いた磁心を提供することを目的とするものであ
る。
However, because the temperature range of the above heat treatment is relatively narrow and the amount of energy released when crystallizing from an amorphous state is large, there is a high risk of exceeding the set temperature range during heat treatment, which may cause deterioration of soft magnetic properties. The problem was that it was easy to invite. The present invention has been made to address these issues, and is an inexpensive product that satisfies low core loss, high saturation magnetic flux density, and low magnetostriction in a high frequency range, and provides these characteristics without depending too much on heat treatment conditions. The object of the present invention is to provide a method for producing a highly versatile Fe-based soft magnetic alloy, and a magnetic core using the same.

[発明の構成] (課題を解決するための手段と作用) すなわち本発明のFee基軟磁性合金、一般式: %式% (式中、Xは急冷体作製時に溶融可能なセラミックス材
料から選ばれた少なくとも1種の化合物を、MはTi、
Zr、Hf5V、Nb、Ta。
[Structure of the invention] (Means and effects for solving the problem) That is, the Fee-based soft magnetic alloy of the present invention, general formula: % formula % (wherein, at least one compound, M is Ti,
Zr, Hf5V, Nb, Ta.

Cr、MoおよびWから選ばれた少なくとも1種の元素
を、M′はMn、白金族元素、Ag、Au、Zn、 A
I、 Ga、In5Sn、希土類元素から選ばれた少な
くとも1種の元素を、AはCoおよびNiから選ばれた
少なくとも1種の元素を、2はB、C,PおよびGeか
ら選ばれた少なくとも1種の元素を表し、a、b、c、
d、e、fおよびgは、下記の式を満足する数である。
At least one element selected from Cr, Mo and W, M' is Mn, a platinum group element, Ag, Au, Zn, A
I, Ga, In5Sn, and at least one element selected from rare earth elements, A is at least one element selected from Co and Ni, and 2 is at least one element selected from B, C, P, and Ge. Represents the species elements a, b, c,
d, e, f, and g are numbers that satisfy the following formula.

ただし、下記式中の全ての数字はat%を示す。However, all numbers in the formula below indicate at%.

0、1≦a≦5 0、1≦b≦5 0、1≦C≦10 0≦d≦10 0≦e≦40 5≦f≦25 2≦g≦20 12≦f+g≦30゜以下同じ。) で実質的に表される組成を有し、かつ面積比で組織の5
0%以上が微細結晶粒により構成されていることを特徴
とするものである。
0, 1≦a≦5 0, 1≦b≦5 0, 1≦C≦10 0≦d≦10 0≦e≦40 5≦f≦25 2≦g≦20 12≦f+g≦30° or less. ) and has a composition substantially represented by
It is characterized in that 0% or more is composed of fine crystal grains.

また、本発明のFee基軟磁性合金製造方法は、溶融状
態のFe基合金およびセラミックス材料を含有する溶湯
を急冷する工程と、前記急冷工程で得た急冷体に、該急
冷体の結晶化温度付近あるいはそれ以上の温度で熱処理
を施し、組織内に微細結晶粒を析出させる工程とを有す
ることを特徴とするものである。
Further, the method for producing a Fe-based soft magnetic alloy of the present invention includes a step of rapidly cooling a molten metal containing a Fe-based alloy and a ceramic material in a molten state, and a step of rapidly cooling a molten metal containing a Fe-based alloy and a ceramic material in a molten state, and adding a crystallization temperature of the quenched material to a quenched material obtained in the quenching step. This method is characterized by a step of precipitating fine crystal grains within the structure by performing heat treatment at a temperature around or above that temperature.

ここで、本発明のFee基軟磁性合金おける組成限定理
由について説明する。
Here, the reasons for limiting the composition of the Fee-based soft magnetic alloy of the present invention will be explained.

上記(I)式におけるXは、熱処理によって微細な結晶
粒を比較的低温で析出させるのに必須のものであり、か
つ結晶粒の粗大化を抑制するものである。これらにより
、鉄損や透磁率などの軟磁気特性が改善され、また軟磁
気特性の熱処理温度依存性が低下し、軟磁気特性の再現
性が向上する。
X in the above formula (I) is essential for precipitating fine crystal grains at a relatively low temperature by heat treatment, and suppresses coarsening of the crystal grains. These improve the soft magnetic properties such as core loss and magnetic permeability, reduce the dependence of the soft magnetic properties on heat treatment temperature, and improve the reproducibility of the soft magnetic properties.

このXとしては、少なくとも急冷体作製時に溶融可能な
セラミックス材料、すなわち無機化合物であればその効
果が得られるが、溶融のしやすさなどから融点1800
℃以下の化合物が好ましい。また、この溶融性を考慮す
ると酸化物が好ましい。
As this X, the effect can be obtained at least if it is a ceramic material that can be melted at the time of producing the quenched body, that is, an inorganic compound, but due to the ease of melting, the melting point is 1800
Compounds with a temperature below ℃ are preferred. Further, in consideration of this meltability, oxides are preferable.

このような酸化物としては、Cub、Cu  O1Sn
O、Bi  O、WO、Ta  0Nb O、MoO、
MnO、Gem□ Ga203、CdOなどが例示され、特にCu2O,C
uOが好ましい。
Such oxides include Cub, CuO1Sn
O, Bi O, WO, Ta 0Nb O, MoO,
Examples include MnO, Gem□ Ga203, CdO, and especially Cu2O, C
uO is preferred.

これらXによる効果は、その含有量が0.1at%とな
るあたりから得られるが、5at%を超えると脆くなっ
て、その製造工程における急冷時にたとえば長尺な薄帯
を形成することが困難となることから、Xの含有量は0
.1at%〜5at%の範囲とする。Xのより好ましい
含有量は0.3 a t%〜4at%の範囲である。
These effects of X can be obtained when the content is around 0.1 at%, but if it exceeds 5 at%, it becomes brittle and it becomes difficult to form a long ribbon during rapid cooling in the manufacturing process. Therefore, the content of X is 0
.. The range is 1 at% to 5 at%. A more preferable content of X is in the range of 0.3 at% to 4 at%.

Cuは、Xと同様に、熱処理によって微細な結晶粒を比
較的低温で析出させ、がっ結晶粒の粗大化を抑制し、軟
磁気特性の向上に有効な元素である。Cuの含有量が、
0.1at%未渦では前記効果が得られにくく、また5
at%以上では薄帯の長尺化が困難となるためその範囲
は 0.1at%〜5at%とする。Cuのより好ましい含
有量は0.3at%〜4at%の範囲であり、さらにX
とCuの含有量を合わせて0.5at%〜8at%の範
囲が好ましい。
Like X, Cu is an element that precipitates fine crystal grains at a relatively low temperature through heat treatment, suppresses coarsening of the Cu crystal grains, and is effective in improving soft magnetic properties. The content of Cu is
With 0.1at% non-vortex, it is difficult to obtain the above effect, and 5
If it exceeds at%, it becomes difficult to lengthen the ribbon, so the range is set to 0.1 at% to 5 at%. A more preferable content of Cu is in the range of 0.3 at% to 4 at%, and
The combined content of Cu and Cu is preferably in the range of 0.5 at% to 8 at%.

Mは、XおよびCuと同様に結晶粒の粗大化を抑制する
とともに、軟磁気特性を劣化させる化合物、たとえば2
としてBを用いた場合のFe  BやF e 23 B
 6などの析出を抑制するものである。
Like X and Cu, M is a compound that suppresses coarsening of crystal grains and deteriorates soft magnetic properties, such as 2
Fe B or Fe 23 B when B is used as
6 and the like is suppressed from precipitation.

上記したM元素のうち、大気中で作製する場合は、特に
Nb、Ta、Mo、W、Vが好ましい。
Among the above-mentioned M elements, Nb, Ta, Mo, W, and V are particularly preferable when fabricating in the atmosphere.

これらMによる効果は、その含有量が0.1at%とな
るあたりから得られるが、10at%を超えるとアモル
ファス化することが困難となるため、Mの含有量は0.
1at%〜10at%の範囲とする。Mのより好ましい
含有量は 0.5at%〜8at%の範囲である。
These effects of M can be obtained when the content is around 0.1 at%, but if it exceeds 10 at%, it becomes difficult to make it amorphous, so the M content should be reduced to 0.1 at%.
The range is 1 at% to 10 at%. A more preferable content of M is in the range of 0.5 at% to 8 at%.

またM′ は、微細結晶粒が析出した合金の軟磁気特性
をさらに改善するのに有効な元素である。
Furthermore, M' is an effective element for further improving the soft magnetic properties of the alloy in which fine crystal grains are precipitated.

ただし7、M′の含有量があまり多いと、飽和磁束密度
の低下を招くため、10at%以下とする。
However, if the content of 7. M' is too large, the saturation magnetic flux density will decrease, so the content should be 10 at % or less.

上記したM′元素のうち、特に白金族元素は耐食性の改
善に有効であり、またAI、Gaは微細結晶粒の主相で
あるbee−Fe固溶体の安定化に有効である。 Si
および2は、急冷時における溶融状態のセラミックスを
含む合金溶湯をアモルファス化するために必須の元素で
あり、かつ微細結晶粒の析出を助成する元素である。特
にSiは、微細粒の主成分であるFeに固溶し、磁気異
方性および磁歪の低減に寄与する。
Among the above-mentioned M' elements, platinum group elements are particularly effective in improving corrosion resistance, and AI and Ga are effective in stabilizing the bee-Fe solid solution which is the main phase of fine crystal grains. Si
and 2 are essential elements for making the molten alloy containing ceramics in a molten state amorphous during rapid cooling, and are elements that assist the precipitation of fine crystal grains. In particular, Si dissolves in Fe, which is the main component of the fine grains, and contributes to reducing magnetic anisotropy and magnetostriction.

Siの含有量は、5at%未満ではアモルファス化が困
難となり、また25at%を超えると超急冷効果がが小
さくなり、比較的粗大な結晶粒が析出しやすくなるため
、5at%〜25at%の範囲とする。また、Siの含
有量が12at%〜2゜at%の範囲で磁歪が零となる
ため、特に好ましい。また、Zの含有量が2at%未満
ではアモルファス化が困難となり、また20at%を超
えると熱処理により結晶化した際に磁気特性が劣化しや
すくなるため、2at%〜20at%の範囲とする。上
記した2元素のうち、特にBが薄帯作製の容易さの観点
から好ましい。なお、Siと2との合計量は12at%
〜30at%の範囲が好ましく、またSi /Hの比を
1以上とすることが優れた軟磁気特性を得るために好ま
しい。
If the Si content is less than 5 at%, it will be difficult to make it amorphous, and if it exceeds 25 at%, the ultra-quenching effect will be reduced, and relatively coarse crystal grains will be likely to precipitate. shall be. Moreover, magnetostriction becomes zero when the Si content is in the range of 12 at% to 2 at%, which is particularly preferable. Further, if the content of Z is less than 2 at%, it becomes difficult to make it amorphous, and if it exceeds 20 at%, the magnetic properties tend to deteriorate when crystallized by heat treatment, so it is set in the range of 2 at% to 20 at%. Among the above two elements, B is particularly preferred from the viewpoint of ease of fabricating the ribbon. Note that the total amount of Si and 2 is 12 at%
The range is preferably from 30 at % to 30 at %, and the Si/H ratio is preferably 1 or more in order to obtain excellent soft magnetic properties.

また、Feの一部をCoやNiで置換することも可能で
あるが、置換量があまり多いと逆に軟磁気特性の劣化を
招くため、40at%以下とする。
It is also possible to partially replace Fe with Co or Ni, but if the amount of substitution is too large, the soft magnetic properties will deteriorate, so the amount should be 40 at % or less.

なお、本発明のFe基軟磁性合金おいて、0、S、 N
などの通常のFe系合金にも含まれているような不可避
的な不純物を微量含んでいても、本発明の効果を損なう
ものではない。
In addition, in the Fe-based soft magnetic alloy of the present invention, 0, S, N
Even if it contains trace amounts of unavoidable impurities such as those contained in ordinary Fe-based alloys, the effects of the present invention will not be impaired.

上記組成を有する本発明のFe基軟磁性合金、面積比で
合金組織の50%以上が微細結晶粒により構成されてい
るものであり、上記微細結晶粒は合金組織中に均一に分
布して存在している。
In the Fe-based soft magnetic alloy of the present invention having the above composition, 50% or more of the alloy structure is composed of fine crystal grains in terms of area ratio, and the fine crystal grains are uniformly distributed in the alloy structure. are doing.

この微細結晶粒は、bee−Fe固溶体を主体とするも
のであり、特に少なくとも一部に規則格子が存在する場
合に、優れた軟磁気特性が得られる。ここで、上記規則
格子の存在は、X線回折によって規則格子のピークが出
現することによって確認される。 上記微細結晶粒によ
る合金組織の構成比を面積比で50%以上と規定したの
は、微細結晶粒の存在が面積比で50%未満となると、
磁歪が大きくなり、また透磁率が低く、鉄損が高くなり
、目的とする軟磁気特性が得られないためである。より
好ましい微細結晶粒による合金組織の構成比は、面積比
で60%〜100%の範囲である。なお、ここで言う微
細結晶粒の存在比は、合金組織を高倍率で拡大(たとえ
ば透過型電子顕微鏡により20万倍)して測定したもの
である。
These fine crystal grains are mainly composed of a bee-Fe solid solution, and excellent soft magnetic properties can be obtained especially when an ordered lattice exists in at least a portion of the fine crystal grains. Here, the existence of the above-mentioned regular lattice is confirmed by the appearance of a peak of the regular lattice by X-ray diffraction. The reason why the composition ratio of the alloy structure by fine crystal grains was defined as 50% or more in terms of area ratio is that when the presence of fine crystal grains becomes less than 50% in terms of area ratio,
This is because magnetostriction increases, magnetic permeability decreases, and iron loss increases, making it impossible to obtain the desired soft magnetic properties. A more preferable composition ratio of the alloy structure by fine crystal grains is in the range of 60% to 100% in terms of area ratio. The abundance ratio of fine crystal grains mentioned here is measured by enlarging the alloy structure at a high magnification (for example, 200,000 times using a transmission electron microscope).

本発明のFe基軟磁性合金中に存在する微細結晶粒は、
上記(I)式中のXで表される酸化物などのセラミック
ス材料の存在によって超微細化されたものであり、50
nm以下という極めて小さい平均粒径を有するものであ
る。この結晶粒の超微細化は、酸化物などのセラミック
ス材料がFeとほとんど固溶しないことから、セラミッ
クス材料が析出により生成した結晶粒界、あるいは三重
点に存在し、これによって結晶粒の成長が抑制されるた
めに起こるものと考えられる。
The fine crystal grains present in the Fe-based soft magnetic alloy of the present invention are
It is ultra-fine due to the presence of a ceramic material such as an oxide represented by X in the above formula (I), and is
It has an extremely small average particle size of not more than nm. This ultra-fine grain formation occurs because ceramic materials such as oxides hardly form a solid solution with Fe, so they exist at grain boundaries or triple points formed by the precipitation of ceramic materials, thereby inhibiting the growth of crystal grains. This is thought to be caused by being suppressed.

そして、本発明のFe基軟磁性合金おいては、上述した
ように合金組織中に存在する結晶粒を超微細化すること
によって、軟磁気特性が熱処理温度に依存することを抑
制し、優れた軟磁気特性の再現性を高めている。すなわ
ち結晶粒の粒径を超微細化することによって磁気異方性
がより小さくなり、これが熱処理温度条件を緩和する。
In the Fe-based soft magnetic alloy of the present invention, as described above, by making the crystal grains present in the alloy structure ultra-fine, the dependence of the soft magnetic properties on the heat treatment temperature is suppressed, and excellent Improves reproducibility of soft magnetic properties. That is, by making the grain size of the crystal grains ultra-fine, the magnetic anisotropy becomes smaller, which relaxes the heat treatment temperature conditions.

また、本質的には結晶粒の微細化が軟磁気特性を向上さ
せるものであり、平均結晶粒径が50nmを超えると初
期の磁気特性が得られなくなる。
Further, essentially, the refinement of crystal grains improves the soft magnetic properties, and if the average crystal grain size exceeds 50 nm, the initial magnetic properties cannot be obtained.

上記熱処理温度に対する軟磁気特性の依存性を低減させ
る点からは、平均結晶粒径が20nm以下とすることが
好ましい。なお、上記平均結晶粒径は各結晶粒の最大径
を測定し、それを平均した値である。
From the viewpoint of reducing the dependence of the soft magnetic properties on the heat treatment temperature, the average crystal grain size is preferably 20 nm or less. Note that the above average crystal grain size is a value obtained by measuring the maximum diameter of each crystal grain and averaging them.

次に本発明のFe基軟磁性合金製造方法について説明す
る。
Next, the method for manufacturing the Fe-based soft magnetic alloy of the present invention will be explained.

まず、溶融状態のFe基合金およびセラミックス材料を
含有する溶湯を作製する。上述した本発明のFe基軟磁
性合金作製するためには、この溶湯の組成を上記(I)
式の組成を満足させる。
First, a molten metal containing a molten Fe-based alloy and a ceramic material is prepared. In order to produce the above-mentioned Fe-based soft magnetic alloy of the present invention, the composition of this molten metal is changed to the above (I).
satisfies the composition of Eq.

このような溶湯は、 ■ 母合金を作製する段階で他の金属材料と同様にセラ
ミックス材料を配合し、上記(I)式の組成を満足させ
た母合金を作製し、この母合金の融点以上に加熱して溶
融する。
Such a molten metal is: (1) At the stage of producing a master alloy, a ceramic material is blended in the same way as other metal materials to produce a master alloy that satisfies the composition of formula (I) above, and the melting point is higher than the melting point of this master alloy. Heat to melt.

■ 上記(I)式の組成がらXを除いた母合金を作製し
、この母合金とセラミックス材料とを上記(I)式の組
成を満足するように混合し、この混合物を上記母合金お
よびセラミックス材料の融点以上に加熱して溶融する。
■ Prepare a master alloy with the composition of the above formula (I) except for X, mix this master alloy with a ceramic material so as to satisfy the composition of the above formula (I), and add this mixture to the above master alloy and ceramic material. Melt by heating above the melting point of the material.

などの方法によって作製される。It is produced by methods such as.

次に、上記溶湯を単ロール法、双ロール法などの公知の
超急冷法によって急冷する。
Next, the molten metal is rapidly cooled by a known ultra-quenching method such as a single roll method or a twin roll method.

ここで、本発明においては上記急冷工程によって、良好
なアモルファス状態を得ることが、超微細な結晶粒を得
る上で好ましい。また、急冷体の形状は、板状(帯状)
、線状、粉末状、薄片状など、用途に応じて各種形状を
選択することが可能である。なお、急冷体を板状とする
場合には板厚を3μm〜1100p、線状とする場合に
は線径200pm以下、粉末状とする場合はその長径が
1〜500pmかつアスペクト比(長径/板厚)を5〜
15,000の範囲とすることが好ましい。
Here, in the present invention, it is preferable to obtain a good amorphous state by the above-mentioned quenching step in order to obtain ultrafine crystal grains. In addition, the shape of the rapidly cooled body is plate-like (band-like).
Various shapes can be selected depending on the application, such as linear, powder, and flaky shapes. In addition, when the quenched body is in the form of a plate, the plate thickness is 3 μm to 1100p, when it is in the form of a line, the wire diameter is 200 pm or less, and when it is in the form of a powder, the major axis is 1 to 500 pm, and the aspect ratio (major axis/plate) thickness) from 5 to
Preferably, the range is 15,000.

この後、上記アモルファス状態の急冷体に、この急冷体
の結晶化温度付近あるいはそれ以上の温度による熱処理
を施し、bcc−Fe固溶体を主とする超微細結晶粒を
析出させる。
Thereafter, the amorphous quenched body is subjected to heat treatment at a temperature near or higher than the crystallization temperature of the quenched body to precipitate ultrafine crystal grains mainly composed of bcc-Fe solid solution.

この熱処理工程は、たとえば巻回コアのように、所望の
形状を得るために変形を伴う加工を必要とする場合には
、所望の形状に成形した後に行うことが好ましい。
This heat treatment step is preferably carried out after forming into the desired shape in the case of a wound core that requires processing accompanied by deformation to obtain the desired shape.

上記熱処理は、急冷体の結晶化温度に対して、−50℃
〜+200℃の範囲内で行うことが可能である。熱処理
温度条件が結晶化温度に対して一50℃の温度より低い
と微細な結晶粒が析出しにくく、また結晶化温度に対し
て+200℃の温度を超えるとbee−Fe固溶体以外
の相が析出しやすくなるためである。
The above heat treatment is performed at -50°C with respect to the crystallization temperature of the rapidly cooled body.
It is possible to carry out within the range of ~+200°C. If the heat treatment temperature condition is lower than -50℃ relative to the crystallization temperature, fine crystal grains are difficult to precipitate, and if the temperature exceeds +200℃ relative to the crystallization temperature, phases other than the bee-Fe solid solution will precipitate. This is because it is easier to do.

上記したような広い熱処理温度条件下で所望の軟磁気特
性を満足するFe基軟磁性合金得られるのは、上述した
ように析出する結晶粒を超微細化させることが可能であ
るためであり、本発明の重要な特徴の一つである。これ
によって優れた軟磁気特性を有するFe基軟磁性合金再
現性よく得ることが可能となる。なお、実際の設定温度
は、熱処理時の温度上昇(結晶化による発熱)などの不
確定要素を見込んで、急冷体の結晶化温度に対して一2
0℃〜+150℃の範囲とすることが好ましい。
The reason why a Fe-based soft magnetic alloy that satisfies the desired soft magnetic properties can be obtained under the wide range of heat treatment temperature conditions as described above is because it is possible to make the precipitated crystal grains ultra-fine as described above. This is one of the important features of the present invention. This makes it possible to obtain a Fe-based soft magnetic alloy with excellent soft magnetic properties with good reproducibility. Note that the actual set temperature is set at 12 times higher than the crystallization temperature of the rapidly cooled body, taking into account uncertain factors such as temperature rise during heat treatment (heat generation due to crystallization).
It is preferable to set it as the range of 0 degreeC - +150 degreeC.

なお、本発明でいう結晶化温度は、昇温速度10 d 
e g / m i nで測定した値を示す。
Note that the crystallization temperature in the present invention is defined as a temperature increase rate of 10 d.
Values measured in e g/min are shown.

また、熱処理時間は、使用した合金組成や熱処理温度に
よって適宜設定するものであるが、通常2分〜24時間
の範囲が好ましい。熱処理時間が2分未満では結晶粒の
析出を充分に行うことが困難であり、また24時間を超
えるとbee−Fe固溶体以外の相が析出しやすくなる
ためである。
Further, the heat treatment time is appropriately set depending on the alloy composition used and the heat treatment temperature, but it is usually preferably in the range of 2 minutes to 24 hours. This is because if the heat treatment time is less than 2 minutes, it is difficult to sufficiently precipitate crystal grains, and if it exceeds 24 hours, phases other than the bee-Fe solid solution tend to precipitate.

より好ましい熱処理時間は、5分〜10時間の範囲であ
る。また、熱処理時の雰囲気としては、窒素中、アルゴ
ン中などの不活性雰囲気中、真空中、水素中などの還元
性雰囲気中、あるいは大気中など、各種雰囲気を使用す
ることが可能である。
A more preferable heat treatment time is in the range of 5 minutes to 10 hours. Further, as the atmosphere during the heat treatment, various atmospheres can be used, such as an inert atmosphere such as nitrogen or argon, a reducing atmosphere such as vacuum or hydrogen, or air.

なお、上記熱処理後の冷却は、急冷で徐冷でもよく、特
に制限はない。
Note that the cooling after the above heat treatment may be rapid cooling or slow cooling, and is not particularly limited.

また、上記熱処理後の冷却過程、あるいは−旦冷却した
後に、微細結晶粒が析出しなFe基軟磁性合金対して磁
場を印加しく磁場熱処理を含む)、特性を変化させて用
途に合った磁気特性を付与することも可能である。この
際の磁場は、直流磁場、交流磁場のいずれでもよく、ま
た磁場の印加方向は、薄帯軸方向、輻方向、板厚方向の
いずれでもよく、さらに回転磁場でもよい。
In addition, during the cooling process after the heat treatment mentioned above, or after cooling, a magnetic field is applied to the Fe-based soft magnetic alloy (including magnetic field heat treatment in which fine crystal grains are not precipitated) to change the characteristics and create a magnetic material suitable for the application. It is also possible to add properties. The magnetic field at this time may be either a direct current magnetic field or an alternating current magnetic field, and the direction of application of the magnetic field may be any of the ribbon axis direction, radial direction, plate thickness direction, and may also be a rotating magnetic field.

本発明のFe基軟磁性合金高周波域での軟磁気特性に優
れているため、たとえば磁気ヘッド、薄膜ヘッド、大電
力用を含む高周波トランス、可飽和リアクトル、コモン
モードチョークコイル、平滑チョークコイル、ノーマル
モードチョークコイル、高電圧パルス用ノイズフィルタ
、レーザ電源などに用いられる磁気スイッチなど高周波
で用いられる磁心、電流センサー、方位センサー、セキ
ュリティセンサーなどの各種センサー用の磁性材料など
、磁性部品用の合金として優れた特性を有している。
The Fe-based soft magnetic alloy of the present invention has excellent soft magnetic properties in the high frequency range, so it can be used, for example, in magnetic heads, thin film heads, high frequency transformers including those for high power, saturable reactors, common mode choke coils, smooth choke coils, normal As an alloy for magnetic components, such as mode choke coils, noise filters for high voltage pulses, magnetic cores used at high frequencies such as magnetic switches used in laser power supplies, and magnetic materials for various sensors such as current sensors, orientation sensors, and security sensors. It has excellent properties.

本発明のFe基軟磁性合金用いた磁心としては、超微細
結晶粒を有するFe基軟磁性合金薄帯巻回体や積層体な
どが例示される。これら磁心は、必要に応じて薄帯の少
なくとも片面に絶縁層を設けることによって層間絶縁を
行う。
Examples of the magnetic core using the Fe-based soft magnetic alloy of the present invention include wound bodies and laminates of Fe-based soft magnetic alloy ribbons having ultrafine crystal grains. These magnetic cores perform interlayer insulation by providing an insulating layer on at least one side of the ribbon, if necessary.

この絶縁層は、たとえばMgO粉末やSio2粉末を(
−1着させることによって形成したり、金属アルコキシ
ド溶液の塗布、焼成(結晶粒析出のための熱処理で可)
によって形成する。また、エポキシ系樹脂を含浸させる
ことによっても、同様な効果が得られる。この樹脂含浸
け、カットコアなどを作製する際に有効である。さらに
樹脂含浸は、絶縁処理ばかりでなく、さび防止や耐環境
性の向上などにも寄与する。なお、耐環境性の向上は、
磁心をケースに収納したり、ボビンに巻くことなどによ
っても達成される。
This insulating layer is made of, for example, MgO powder or Sio2 powder (
-It can be formed by applying a metal alkoxide solution and firing (heat treatment for precipitation of crystal grains is possible)
formed by A similar effect can also be obtained by impregnating it with an epoxy resin. This resin impregnation is effective when producing cut cores, etc. Furthermore, resin impregnation contributes not only to insulation treatment but also to preventing rust and improving environmental resistance. In addition, the improvement of environmental resistance is
This can also be achieved by storing the magnetic core in a case or winding it around a bobbin.

さらに、Fe基軟磁性合金薄帝を絶縁フィルムとともに
巻回し、層間絶縁を行ってもよい。この方法は、レーザ
ー電源用磁気圧縮回路に用いられる場合などに有効であ
る。ここで用いる絶縁フィルムとしては、ポリイミド系
、ポリエステル系、ガラス繊維系などが例示されるが、
本発明で用いる薄帯は、通常1、脆化した状態で優れた
軟磁気特性が得られるため、ポリイミド系フィルムを用
いることが好ましい。
Furthermore, interlayer insulation may be performed by winding a thin Fe-based soft magnetic alloy together with an insulating film. This method is effective when used in a magnetic compression circuit for a laser power source. Examples of the insulating film used here include polyimide-based, polyester-based, glass fiber-based, etc.
The thin ribbon used in the present invention usually has excellent soft magnetic properties even in a brittle state, so it is preferable to use a polyimide film.

また、磁心を形成する場合、特に巻回による場合には、
巻き始めおよび巻き終りに端末処理を施すことが好まし
い。これによって、熱処理操作などにおける不都合が防
止される。端末処理としては、レーザー照射、スポット
溶接などによる局部的層間接着やポリイミド系などの耐
熱性フィルムによる接着などが用いられる。
In addition, when forming the magnetic core, especially by winding,
It is preferable to perform terminal treatment at the beginning and end of winding. This prevents inconveniences in heat treatment operations and the like. As the terminal treatment, local interlayer adhesion by laser irradiation, spot welding, etc., adhesion by heat-resistant film such as polyimide, etc. are used.

(実施例) 以下に、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例1 式:Fe  (CuO)  (Cu 20 ) 0.5
 Cu 1NbSiBで表される組成を有する母合金を
1400℃に加熱して溶融し、溶融状態のFe基合金お
よびセラミックス材料とを含有する溶湯を作製した。次
いで、この溶湯を単ロール法によって急冷してアモルフ
ァス化し、IH10mmX 板厚18pmの長尺なアモ
ルファス薄帯を得た。なお、このアモルファス薄帯の結
晶化温度(昇温速度10 d e g / m i n
で測定)は、495℃であつた。
Example 1 Formula: Fe (CuO) (Cu 20 ) 0.5
A master alloy having a composition represented by Cu 1NbSiB was heated to 1400°C and melted to produce a molten metal containing a molten Fe-based alloy and a ceramic material. Next, this molten metal was rapidly cooled to become amorphous by a single roll method to obtain a long amorphous ribbon having an IH of 10 mm and a thickness of 18 pm. In addition, the crystallization temperature of this amorphous ribbon (heating rate 10 d e g / min
) was 495°C.

次に、上記アモルファス薄帯を巻回し、外径18rnm
X内径12mmX高さ5mmのトロイダルコアを複数成
形した。これら複数のトロイダルコアに対して、窒素雰
囲気中において各種温度条件下で、1時間の熱処理を施
し、超微細結晶粒を析呂させて磁心を作製した。
Next, the amorphous ribbon was wound to an outer diameter of 18 nm.
A plurality of toroidal cores each having an inner diameter of 12 mm and a height of 5 mm were molded. These plurality of toroidal cores were subjected to heat treatment for 1 hour under various temperature conditions in a nitrogen atmosphere to deposit ultrafine crystal grains to produce magnetic cores.

以下、上記実施例1における特性評価について述べる。Characteristic evaluation in Example 1 will be described below.

まず、各磁心の100kHz、2kGでの鉄損と1. 
k Hzでの初透磁率を、U関数計およびLCRメータ
ーを用いて測定した。その結果を第1図に示す。
First, the iron loss of each magnetic core at 100kHz and 2kG and 1.
The initial permeability at kHz was measured using a U-function meter and an LCR meter. The results are shown in FIG.

なお、本発明との比較のために、Fe73Cu1N b
 a S 114 B 9組成を有するアモルファス薄
帯を用いて、上記実施例と同様に熱処理を行って微細結
晶粒を析出させ、磁心を作製した。この比較例による磁
心についても同様に100kI(z、2kGでの鉄損と
1 k Hzでの初透磁率を測定した。その結果を同様
に第1図に示 す。
In addition, for comparison with the present invention, Fe73Cu1N b
Using an amorphous ribbon having a S 114 B 9 composition, heat treatment was performed in the same manner as in the above example to precipitate fine crystal grains, thereby producing a magnetic core. Regarding the magnetic core according to this comparative example, the iron loss at 100 kI (z, 2 kG) and the initial magnetic permeability at 1 kHz were similarly measured. The results are similarly shown in FIG.

第1図から明らかなように、上記実施例による磁心にお
いては、広い温度範囲で低鉄損および高透磁率が得られ
ているのに対し、比較例による磁心では低鉄損および高
透磁率を得るための最適熱処理範囲が狭いことが分る。
As is clear from FIG. 1, the magnetic core according to the above example has low iron loss and high magnetic permeability over a wide temperature range, whereas the magnetic core according to the comparative example has low iron loss and high magnetic permeability. It can be seen that the optimum heat treatment range for obtaining

なお、飽和磁束密度は1.3.2kGであった。Note that the saturation magnetic flux density was 1.3.2 kG.

次に、上記実施例において、580℃で熱処理を行った
磁心の熱処理前(急冷後)の薄帯と熱処理を施して磁心
として得た後の薄帯に対し、それぞれX線回折を行った
。それらのX線回折パターンを第2図(熱処理前:第2
図(a)、熱処理後;第2図(b))に示す。また、6
50’Cで熱処理を施した試料に対しても同様にX線回
折を行いパターンを第3図に示す。
Next, in the above example, X-ray diffraction was performed on the ribbon before heat treatment (after quenching) of the magnetic core heat-treated at 580° C. and on the ribbon after heat treatment was performed to obtain a magnetic core. Figure 2 shows their X-ray diffraction patterns (before heat treatment:
Figure 2(a) shows the results after heat treatment; Figure 2(b) shows the results. Also, 6
A sample heat-treated at 50'C was similarly subjected to X-ray diffraction, and the pattern is shown in FIG.

第2図から明らかなように、熱処理以前にはアモルファ
ス状態になっており、580℃による熱処理後にはbe
e−Fe固溶体のみの回折線も認められる。また、低角
度側に規則格子に基づく回折線も認められる。一方、6
50℃による熱処理では、第3図に示すように、bcc
相以外にFeB、Fe23B6、CuOの回折線が見ら
れ、上述した磁気特性の劣化と一致している。
As is clear from Figure 2, it was in an amorphous state before heat treatment, and after heat treatment at 580°C, it was in an amorphous state.
Diffraction lines of only the e-Fe solid solution are also observed. Diffraction lines based on regular gratings are also observed on the low angle side. On the other hand, 6
In the heat treatment at 50°C, as shown in Figure 3, bcc
In addition to the phase, diffraction lines of FeB, Fe23B6, and CuO are observed, which is consistent with the deterioration of the magnetic properties described above.

また、上記X線回折ピークの半価幅から、上記580℃
で熱処理を行った磁心における結晶粒径を求めたところ
、9.0nmであった。この値は透過型電子顕微鏡によ
って測定した値とほぼ一致した。なお、比較例における
結晶粒径は16nmであった。また、透過型電子顕微鏡
による拡大像(20万倍)から合金組織中の微細結晶粒
が占める面積比を求めたところ、90%であった。
In addition, from the half width of the X-ray diffraction peak, the above 580°C
The crystal grain size of the magnetic core heat-treated was determined to be 9.0 nm. This value almost coincided with the value measured using a transmission electron microscope. Note that the crystal grain size in the comparative example was 16 nm. Further, the area ratio occupied by fine crystal grains in the alloy structure was determined from an enlarged image (200,000 times) with a transmission electron microscope, and was found to be 90%.

実施例2 第1表に示す各組成のアモルファス薄帯からなる磁心を
それぞれ実施例1と同様にして作製し、これら各薄帯に
各アモルファス薄帯の結晶化温度に対して+50℃の温
度で1.5時間の熱処理を行った。
Example 2 Magnetic cores made of amorphous ribbons having the respective compositions shown in Table 1 were prepared in the same manner as in Example 1, and each of these ribbons was heated at a temperature of +50°C relative to the crystallization temperature of each amorphous ribbon. Heat treatment was performed for 1.5 hours.

このようにして得た各Fe基軟磁性合金薄帯特性を実施
例1と同様にして求めた。それらの測定結果を同様に急
冷したセンダスト薄帯の測定結果と併せて第1表に示す
The characteristics of each Fe-based soft magnetic alloy ribbon thus obtained were determined in the same manner as in Example 1. The measurement results are shown in Table 1 together with the measurement results of Sendust ribbon that was similarly rapidly cooled.

(以下余白) 第 表 キトX線回折ピークの半価幅から測定。(Margin below) No. table Measured from the half width of the chito X-ray diffraction peak.

”2 : 100kHz、2kGの条件で測定。"2: Measured under the conditions of 100kHz and 2kG.

′h3 ストレインゲージにてンpす定。'h3 Determine the pressure using a strain gauge.

(第1表つづき) (L・A14?′、白) 第1表の測定結果から明らかなように、実施例2による
Fe基軟磁性合金薄帯、極めて微細な結晶粒を有し、低
鉄損、低磁歪が得られていることが分る。
(Continued from Table 1) (L・A14?', White) As is clear from the measurement results in Table 1, the Fe-based soft magnetic alloy ribbon according to Example 2 has extremely fine crystal grains and is low in iron. It can be seen that low loss and low magnetostriction are obtained.

実施例3 第2表に示す各組成のアモルファス薄%からなる磁心を
それぞれ実施例1と同様にして作製し、これら各薄帯に
各アモルファス薄帯の結晶化温度に対して+80℃の温
度で1時間の熱処理を行った。
Example 3 A magnetic core consisting of amorphous thin % of each composition shown in Table 2 was prepared in the same manner as in Example 1, and each of these thin strips was heated at a temperature of +80°C relative to the crystallization temperature of each amorphous ribbon. Heat treatment was performed for 1 hour.

このようにして得た各Fe基軟磁性合金薄帝の特性を実
施例1と同様にして求めた。それらの測定結果を同様に
急冷したセンダスト薄帯の測定結果と併せて第2表に示
す。
The characteristics of each of the Fe-based soft magnetic alloys thus obtained were determined in the same manner as in Example 1. The measurement results are shown in Table 2 together with the measurement results of Sendust ribbon that was similarly rapidly cooled.

(以下余白) (し々v6≧5 ) 第2表の測定結果から明らかなように、実施例3による
Fe基軟磁性合金薄帯、極めて微細な結晶を有し、低鉄
損、低磁歪が得られていることが分る。
(Left below) (Shishiv6≧5) As is clear from the measurement results in Table 2, the Fe-based soft magnetic alloy ribbon according to Example 3 has extremely fine crystals, low iron loss, and low magnetostriction. I can see that you are getting it.

実施例4 第3表に示す各組成のアモルファス薄帯からなるをそれ
ぞれ実施例1と同様にして作製し、これら各薄帯に各ア
モルファス薄帯の結晶化温度に対して+60℃の温度で
2時間の熱処理を行った。
Example 4 Amorphous ribbons having the respective compositions shown in Table 3 were prepared in the same manner as in Example 1, and each of these ribbons was heated at a temperature of +60°C with respect to the crystallization temperature of each amorphous ribbon. Heat treatment was performed for an hour.

このようにして得た各Fe基軟磁性合金薄帯特性を実施
例1と同様にして求めた。それらの測定結果を同様に急
冷したセンダスト薄帯の測定結果と併せて第3表に示す
The characteristics of each Fe-based soft magnetic alloy ribbon thus obtained were determined in the same manner as in Example 1. The measurement results are shown in Table 3 together with the measurement results of Sendust ribbon which was similarly rapidly cooled.

(以下余白) 第3表の測定結果から明らかのように、実施例4による
Fe基軟磁性合金薄帯、極めて微細な結晶粒を有し、低
鉄損、低磁歪が得られていることが分かる。
(Leaving space below) As is clear from the measurement results in Table 3, the Fe-based soft magnetic alloy ribbon according to Example 4 has extremely fine crystal grains, and low iron loss and low magnetostriction are obtained. I understand.

[発明の効果] 以上説明したように本発明によれば、高周波域において
低鉄損、高飽和磁束密度、低磁歪を満足し、かつ安価で
汎用性に優れたFe基軟磁性合金提供することが可能と
なる。そして、本発明のFe基軟磁性合金、その軟磁気
特性が広範囲な熱処理条件下で得られるため、安定供給
が可能となり、各種スイッチング電源用磁性部品、パル
ス圧縮回路用可飽和コア、磁気ヘッド、各種センサー、
磁気シールドなどに有効である。
[Effects of the Invention] As explained above, according to the present invention, it is possible to provide an Fe-based soft magnetic alloy that satisfies low iron loss, high saturation magnetic flux density, and low magnetostriction in a high frequency range, and is inexpensive and has excellent versatility. becomes possible. Since the Fe-based soft magnetic alloy of the present invention can obtain its soft magnetic properties under a wide range of heat treatment conditions, it can be stably supplied to magnetic components for various switching power supplies, saturable cores for pulse compression circuits, magnetic heads, etc. various sensors,
Effective for magnetic shielding, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例および比較例による磁心の熱
処理温度と磁気特性との関係を示すグラフ、第2図(a
)は本発明に用いた合金薄帯の熱処理前のX線回折パタ
ーンを示す図、第2図(b)は本発明に用いた合金薄帯
に最適熱処理を施した時のX線回折パターンを示す図、
第3図は本発明に用いた合金薄帯を650℃で熱処理し
た時のX線回折パターンを示す図である。
FIG. 1 is a graph showing the relationship between heat treatment temperature and magnetic properties of magnetic cores according to an example of the present invention and a comparative example, and FIG.
) shows the X-ray diffraction pattern of the alloy ribbon used in the present invention before heat treatment, and Figure 2(b) shows the X-ray diffraction pattern when the alloy ribbon used in the present invention was subjected to optimal heat treatment. diagram showing,
FIG. 3 is a diagram showing an X-ray diffraction pattern when the alloy ribbon used in the present invention was heat-treated at 650°C.

Claims (1)

【特許請求の範囲】 (1)一般式: Fe_1_0_0_−_a_−_b_−_c_−_d_
−_e_−_f_−_gX_aCu_bM_cM´_d
A_eSi_fZg(式中、Xは急冷体作製時に溶融可
能なセラミックス材料から選ばれた少なくとも1種の化
合物を、MはTi、Zr、Hf、V、Nb、Ta、Cr
、MoおよびWから選ばれた少なくとも1種の元素を、
M′はMn、白金族元素、Ag、Au、Zn、Al、G
a、In、Sn、希土類元素から選ばれた少なくとも1
種の元素を、AはCoおよびNiから選ばれた少なくと
も1種の元素を、ZはB、C、PおよびGeから選ばれ
た少なくとも1種の元素を表し、a、b、c、d、e、
fおよびgは、下記の式を満足する数である。ただし、
下記式中の全ての数字はat%を示す。 0.1≦a≦5 0.1≦b≦5 0.1≦c≦10 0≦d≦10 0≦e≦40 5≦f≦25 2≦g≦20 12≦f+g≦30。) で実質的に表される組成を有し、かつ面積比で組織の5
0%以上が微細結晶粒により構成されていることを特徴
とするFe基軟磁性合金。 (2)請求項1記載のFe基軟磁性合金において、前記
微細結晶粒の平均径が50nm以下であることを特徴と
するFe基軟磁性合金。 (3)請求項1記載のFe基軟磁性合金において、前記
微細結晶粒は、主としてbcc−Fe固溶体からなり、
かつその少なくとも一部が規則相であることを特徴とす
るFe基軟磁性合金。 (4)請求項1記載のFe基軟磁性合金において、前記
Xは、CuO、Cu_2O、SnO_2、Bi_2O_
3、WO_3、Ta_2O_5、Nb_2O_5、Mo
O_3、MnO、GeO_2、Ga_2O_3およびC
dOから選ばれた少なくとも1種の酸化物であることを
特徴とするFe基軟磁性合金。 (5)溶融状態のFe基合金およびセラミックス材料と
を含有する溶湯を急冷する工程と、前記急冷工程で得た
急冷体に、該急冷体の結晶化温度付近あるいはそれ以上
の温度で熱処理を施し、組織内に微細結晶粒を析出させ
る工程とを有することを特徴とするFe基軟磁性合金の
製造方法。 (6)請求項5記載のFe基軟磁性合金の製造方法にお
いて、 前記溶湯の組成が、 一般式: Fe_1_0_0_−_a_−_b_−_c_−_d_
−_e_−_f_−_gX_aCu_bM_cM_dA
_eSi_fZ_g(式中、Xは急冷体作製時に溶融可
能なセラミックス材料から選ばれた少なくとも1種の化
合物を、MはTi、Zr、Hf、V、Nb、Ta、Cr
、MoおよびWから選ばれた少なくとも1種の元素を、
M′はMn、白金族元素、Ag、Au、Zn、Al、G
a、In、Sn、希土類元素から選ばれた少なくとも1
種の元素を、AはCoおよびNiから選ばれた少なくと
も1種の元素を、ZはB、C、PおよびGeから選ばれ
た少なくとも1種の元素を表し、a、b、c、d、e、
fおよびgは、下記の式を満足する数である。ただし、
下記式中の全ての数字はat%を示す。 0.1≦a≦5 0.1≦b≦5 0.1≦c≦10 0≦d≦10 0≦e≦40 5≦f≦25 2≦g≦20 12≦f+g≦30。) で実質的に表されることを特徴とするFe基軟磁性合金
の製造方法。 (7)請求項5記載のFe基軟磁性合金の製造方法にお
いて、 前記熱処理は、前記急冷体の昇温温度10deg/mi
nで測定した結晶化温度に対し、−50℃〜+200℃
の範囲の温度で行うことを特徴とするFe基軟磁性合金
の製造方法。 (8)請求項5記載のFe基軟磁性合金の製造方法にお
いて、 前記熱処理によって、平均粒径50nm以下の微細結晶
粒を面積比で組織の50%以上となるように析出させる
ことを特徴とするFe基軟磁性合金の製造方法。 (9)請求項1記載のFe基軟磁性合金を巻回あるいは
積層してなることを特徴とする磁心。
[Claims] (1) General formula: Fe_1_0_0_-_a_-_b_-_c_-_d_
-_e_-_f_-_gX_aCu_bM_cM'_d
A_eSi_fZg (wherein,
, at least one element selected from Mo and W,
M' is Mn, platinum group element, Ag, Au, Zn, Al, G
At least one selected from a, In, Sn, and rare earth elements
A represents at least one element selected from Co and Ni; Z represents at least one element selected from B, C, P, and Ge; a, b, c, d, e,
f and g are numbers that satisfy the following formula. however,
All numbers in the formula below indicate at%. 0.1≦a≦5 0.1≦b≦5 0.1≦c≦10 0≦d≦10 0≦e≦40 5≦f≦25 2≦g≦20 12≦f+g≦30. ) and has a composition substantially represented by
An Fe-based soft magnetic alloy characterized in that 0% or more of the alloy is composed of fine crystal grains. (2) The Fe-based soft magnetic alloy according to claim 1, wherein the average diameter of the fine crystal grains is 50 nm or less. (3) In the Fe-based soft magnetic alloy according to claim 1, the fine crystal grains mainly consist of a bcc-Fe solid solution,
An Fe-based soft magnetic alloy, characterized in that at least a portion thereof is an ordered phase. (4) In the Fe-based soft magnetic alloy according to claim 1, the X is CuO, Cu_2O, SnO_2, Bi_2O_
3, WO_3, Ta_2O_5, Nb_2O_5, Mo
O_3, MnO, GeO_2, Ga_2O_3 and C
An Fe-based soft magnetic alloy comprising at least one oxide selected from dO. (5) A step of rapidly cooling a molten metal containing a molten Fe-based alloy and a ceramic material, and heat-treating the quenched body obtained in the quenching step at a temperature near or higher than the crystallization temperature of the quenched body. A method for producing an Fe-based soft magnetic alloy, comprising the steps of: precipitating fine crystal grains within the structure. (6) In the method for producing a Fe-based soft magnetic alloy according to claim 5, the composition of the molten metal has the general formula: Fe_1_0_0_-_a_-_b_-_c_-_d_
−_e_-_f_-_gX_aCu_bM_cM_dA
_eSi_fZ_g (wherein,
, at least one element selected from Mo and W,
M' is Mn, platinum group element, Ag, Au, Zn, Al, G
At least one selected from a, In, Sn, and rare earth elements
A represents at least one element selected from Co and Ni; Z represents at least one element selected from B, C, P, and Ge; a, b, c, d, e,
f and g are numbers that satisfy the following formula. however,
All numbers in the formula below indicate at%. 0.1≦a≦5 0.1≦b≦5 0.1≦c≦10 0≦d≦10 0≦e≦40 5≦f≦25 2≦g≦20 12≦f+g≦30. ) A method for producing a Fe-based soft magnetic alloy, characterized in that it is substantially represented by: (7) In the method for producing a Fe-based soft magnetic alloy according to claim 5, the heat treatment is performed at a temperature of 10 deg/mi to increase the temperature of the rapidly solidified body.
-50°C to +200°C relative to the crystallization temperature measured at n
1. A method for producing a Fe-based soft magnetic alloy, the method being carried out at a temperature in the range of . (8) The method for producing a Fe-based soft magnetic alloy according to claim 5, characterized in that the heat treatment causes fine crystal grains with an average grain size of 50 nm or less to precipitate so as to account for 50% or more of the structure in terms of area ratio. A method for producing a Fe-based soft magnetic alloy. (9) A magnetic core characterized by being formed by winding or laminating the Fe-based soft magnetic alloy according to claim 1.
JP2155298A 1989-12-28 1990-06-15 Fe-based soft magnetic alloy, method for producing the same, and magnetic core using the same Expired - Fee Related JP2877452B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2155298A JP2877452B2 (en) 1990-06-15 1990-06-15 Fe-based soft magnetic alloy, method for producing the same, and magnetic core using the same
EP90314358A EP0435680B1 (en) 1989-12-28 1990-12-27 Fe-based soft magnetic alloy, method of producing same and magnetic core made of same
DE69018422T DE69018422T2 (en) 1989-12-28 1990-12-27 Iron-based soft magnetic alloy, its manufacturing process and magnetic core made from it.
KR1019900022570A KR940006334B1 (en) 1989-12-28 1990-12-28 Fe-softmagnetic materials and making method thereof
US08/217,219 US5522948A (en) 1989-12-28 1994-03-24 Fe-based soft magnetic alloy, method of producing same and magnetic core made of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2155298A JP2877452B2 (en) 1990-06-15 1990-06-15 Fe-based soft magnetic alloy, method for producing the same, and magnetic core using the same

Publications (2)

Publication Number Publication Date
JPH0448053A true JPH0448053A (en) 1992-02-18
JP2877452B2 JP2877452B2 (en) 1999-03-31

Family

ID=15602840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2155298A Expired - Fee Related JP2877452B2 (en) 1989-12-28 1990-06-15 Fe-based soft magnetic alloy, method for producing the same, and magnetic core using the same

Country Status (1)

Country Link
JP (1) JP2877452B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113889312A (en) * 2021-10-12 2022-01-04 湖南航天磁电有限责任公司 Fine-grain high-insulation-performance composite soft magnetic alloy powder and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113889312A (en) * 2021-10-12 2022-01-04 湖南航天磁电有限责任公司 Fine-grain high-insulation-performance composite soft magnetic alloy powder and preparation method thereof
CN113889312B (en) * 2021-10-12 2024-05-28 湖南航天磁电有限责任公司 Fine-grain high-insulation composite soft magnetic alloy powder and preparation method thereof

Also Published As

Publication number Publication date
JP2877452B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
US5966064A (en) Nanocrystalline alloy having excellent pulse attenuation characteristics, method of producing the same, choke coil, and noise filter
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JPH03219009A (en) Production of fe-base soft-magnetic alloy
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JP2008231534A5 (en)
JP3357386B2 (en) Soft magnetic alloy, method for producing the same, and magnetic core
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JPH0448005A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
JP2848667B2 (en) Method for manufacturing ultra-thin soft magnetic alloy ribbon
JPH05255820A (en) Fe base alloy having iso-permeability and its manufacture, and fe base magnetic core using the same
JP4437563B2 (en) Magnetic alloy with excellent surface properties and magnetic core using the same
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP2000119825A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JP4217038B2 (en) Soft magnetic alloy
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JPH08153614A (en) Magnetic core
JPH0448053A (en) Fe-base soft-magnetic alloy and its production and magnetic core using the same
JPH0754108A (en) Magnetic alloy having iso-permeability, production thereof and magnetic core using the same
JP2835113B2 (en) Fe-based soft magnetic alloy, method for producing the same, and magnetic core using the same
JP2945122B2 (en) Fe-based soft magnetic alloy and method for producing the same
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees