JPH06158239A - Fe base soft magnetic alloy and its production - Google Patents

Fe base soft magnetic alloy and its production

Info

Publication number
JPH06158239A
JPH06158239A JP4317112A JP31711292A JPH06158239A JP H06158239 A JPH06158239 A JP H06158239A JP 4317112 A JP4317112 A JP 4317112A JP 31711292 A JP31711292 A JP 31711292A JP H06158239 A JPH06158239 A JP H06158239A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic alloy
based soft
atomic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4317112A
Other languages
Japanese (ja)
Other versions
JP3558350B2 (en
Inventor
Yoshihiko Hirota
好彦 廣田
Kenji Odakawa
健二 小田川
Hiroshi Watanabe
洋 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP31711292A priority Critical patent/JP3558350B2/en
Publication of JPH06158239A publication Critical patent/JPH06158239A/en
Application granted granted Critical
Publication of JP3558350B2 publication Critical patent/JP3558350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce an Fe base soft magnetic alloy low in saturated magnetostriction and iron loss at a low cost by subjecting a rapidly cooled allay having a specified compsn. constituted of Fe and Co or Ni, Al, Nb or the like, Si or the like, B, P and C to specified heat treatment. CONSTITUTION:A rapidly cooled allay having a compsn. expressed by (Fe1-xAx)100-a-b-c-d-e-fAlaMbM'cBdPeCf (in the formula, A denotes Co and/or Ni, M denotes Nb, Mo, W, Ta, Zr, Hf, Ti, V, Cr, Mn, Y and Ce, M' denotes Si, Ga, Ge, Ru, Sn, Sb and Pdm and 0<=X<=0.2, 2<a<=15 atomic %, 3<=b<=20%, 0<=C<=6%, 1<=d<=9%, 2<e<=9%, 0.1<=f<=5% and 1<=e/f<=40) is produced by a quenching method, a thin film forming method or a powder forming method. After that, this rapidly cooled allay is held at 200 to 800 deg.C within 24hr and is subjected to heat treatment. In this way, the Fe base soft magnetic alloy in which >=30% of the structure is constituted of fine crystalline grains with >=1000Angstrom average grain size of bcc solid solution essentially consisting of iron and excellent in soft magnetic properties can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Fe基軟磁性合金に係
わり、特に良好な軟磁気特性を有するFe基軟磁性合金
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Fe-based soft magnetic alloy, and more particularly to an Fe-based soft magnetic alloy having good soft magnetic properties and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
磁気ヘッド、高周波トランス、可飽和リアクトル、チョ
ークコイル等の磁心材料として、高い飽和磁束密度を有
するFe系の非晶質磁性合金が広く知られている。しか
し、Fe系の非晶質磁性合金はCo系よりも安価ではあ
るが、一般的にコア損失が大きく、透磁率も低い。さら
に飽和磁歪も大きいためまだ磁気特性の面では十分とは
言えない。
2. Description of the Related Art In recent years,
As a magnetic core material for a magnetic head, a high frequency transformer, a saturable reactor, a choke coil, etc., an Fe-based amorphous magnetic alloy having a high saturation magnetic flux density is widely known. However, although Fe-based amorphous magnetic alloys are cheaper than Co-based alloys, they generally have large core loss and low magnetic permeability. Further, since the saturation magnetostriction is large, it cannot be said that the magnetic characteristics are sufficient.

【0003】本願発明は、このような従来のFe系非晶
質磁性に代わる軟磁性材料であって、しかも飽和磁歪お
よび鉄損が小さく、かつ、低コストである新規なFe基
軟磁性合金を提供することを目的とする。
The present invention provides a novel Fe-based soft magnetic alloy which is a soft magnetic material that replaces the conventional Fe-based amorphous magnetism, has a small saturation magnetostriction and iron loss, and is low in cost. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】このような目的を達成す
るため本発明者は、Fe基軟磁性合金について鋭意研究
の結果、Fe−B系Fe基軟磁性合金にAl及び特定の
元素M、特にNbを添加した場合、優れた軟磁気特性を
示し、例えば飽和磁歪が低いこと、またこのようなFe
−B−Al−M系Fe基軟磁性合金にリン(P)及び炭
素(C)を添加した場合、優れた軟磁気特性を示すこと
を見い出し、本発明に至ったものである。
In order to achieve such an object, the present inventor has conducted earnest research on an Fe-based soft magnetic alloy. As a result, the Fe-B type Fe-based soft magnetic alloy contains Al and a specific element M, In particular, when Nb is added, excellent soft magnetic characteristics are exhibited, for example, saturation magnetostriction is low, and such Fe
It was found that when phosphorus (P) and carbon (C) are added to a -B-Al-M Fe-based soft magnetic alloy, excellent soft magnetic characteristics are exhibited, and the present invention has been completed.

【0005】即ち、本発明のFe基軟磁性合金は、(F
1-xx100-a-b-c-d-e-fAla bM’cde
f(式中、AはCo及び/又はNi、MはNb、Mo、
W、Ta、Zr、Hf、Ti、V、Cr、Mn、Y、C
eから選ばれる1種又は2種以上の元素を表わし、M'
はSi、Ga、Ge、Ru、Sn、Sb、Pdから選ば
れる1種又は2種以上の元素を表わす。xは0≦x≦
0.2、またa、b、c、d、e、fは原子%を表わ
し、それぞれ、2<a≦15、3≦b≦20、0≦c≦
6、1≦d≦9、2<e≦9、0.1≦f≦5を満た
し、PとCの組成比e/f(原子比)が、1≦e/f≦
40を満たすものとする)で表わされるものであり、特
にその組織の少なくとも30%以上が微細な結晶粒で生
成されていることが好ましく、更に結晶粒は主として鉄
を主体としたbcc固溶体から成るものである。
That is, the Fe-based soft magnetic alloy of the present invention is (F
e1-xAx)100-abcdefAlaM bM ’cBdPeC
f(In the formula, A is Co and / or Ni, M is Nb, Mo,
W, Ta, Zr, Hf, Ti, V, Cr, Mn, Y, C
represents one or more elements selected from e, M '
Is selected from Si, Ga, Ge, Ru, Sn, Sb, Pd
Represents one or more elements. x is 0 ≦ x ≦
0.2, and a, b, c, d, e, f represent atomic%
, 2 <a ≦ 15, 3 ≦ b ≦ 20, 0 ≦ c ≦
6, 1 ≦ d ≦ 9, 2 <e ≦ 9, 0.1 ≦ f ≦ 5
However, the composition ratio e / f (atomic ratio) of P and C is 1 ≦ e / f ≦
40 is satisfied).
In addition, at least 30% or more of the structure is formed by fine crystal grains.
It is preferable that the crystal grains are mainly iron.
It is composed of a bcc solid solution mainly composed of.

【0006】本発明のFe基軟磁性合金の急冷直後の合
金構造は、非晶質状態が望ましいが、熱処理後に軟磁気
特性が得られる範囲内であれば一部結晶質が混在してい
てもよい。本発明のFe基軟磁性合金において、Feは
xが0から0.2の範囲でA(Co及び/又はNi)で
置換することができる。Aは熱処理時に生成するFeを
主体としたbcc結晶に固溶し、特にCoは飽和磁化、
Niは結晶磁気異方性定数の改善に寄与する。本発明に
おいて、Aの含有量(FeとAの合計を1とした場合の
Aの割合)xが0.2より多いとbcc構造以外の生成
相がみられ軟磁気特性が劣化する。このため、Aの含有
量xは、0.2以下であることが好ましい。さらに好ま
しくは、0.1以下である。
The alloy structure of the Fe-based soft magnetic alloy of the present invention immediately after quenching is preferably in an amorphous state, but if it is within a range where soft magnetic characteristics can be obtained after heat treatment, even if some crystalline materials are mixed. Good. In the Fe-based soft magnetic alloy of the present invention, Fe can be replaced with A (Co and / or Ni) in the range of x of 0 to 0.2. A is a solid solution in a bcc crystal mainly composed of Fe generated during heat treatment, and particularly Co is saturation magnetization,
Ni contributes to the improvement of the magnetocrystalline anisotropy constant. In the present invention, when the content of A (the ratio of A when the total of Fe and A is 1) x is more than 0.2, the generated phases other than the bcc structure are observed and the soft magnetic characteristics deteriorate. Therefore, the content x of A is preferably 0.2 or less. More preferably, it is 0.1 or less.

【0007】Alは本発明の合金の必須元素であり、A
lを特定量(2原子%を超え15原子%以下)添加する
ことにより、結晶磁気異方性の小さい軟磁性を示す結晶
(Fe基bcc固溶体)の結晶化温度(Tx1)と軟磁性
を阻害する結晶(例えばFe−B系結晶)の結晶化温度
(Tx2)との温度差(△T)を大きくすることができ、
熱処理時のFe−B系結晶等の生成を抑制すると共に、
比較的低い温度の熱処理で軟磁気特性を導出することが
できる。AlはNi(Co)と同様にFeとの相互パラ
メータが負であるため、Alを添加することによりFe
を主体とした固溶体中に固溶され、即ちα−Fe結晶構
造のFe原子の位置に置換される形で固溶されbcc結
晶を安定化する。また、Alは熱処理により生成した析
出結晶粒を微細化するものと推定される。以上のことか
ら、本合金系においてAl添加によって結晶磁気異方性
の小さい微細結晶粒が選択的に生成されるので、これに
よって優れた軟磁気特性が発現すると思われる。
Al is an essential element of the alloy of the present invention.
Addition of a specific amount of 1 (more than 2 atomic% and 15 atomic% or less) inhibits the crystallization temperature (Tx1) and soft magnetism of the soft magnetic crystal (Fe-based bcc solid solution) with small magnetocrystalline anisotropy. The temperature difference (ΔT) from the crystallization temperature (Tx2) of the crystal (for example, Fe-B type crystal) to be formed can be increased,
In addition to suppressing generation of Fe-B type crystals during heat treatment,
The soft magnetic characteristics can be derived by heat treatment at a relatively low temperature. Similar to Ni (Co), Al has a negative mutual parameter with Fe.
To form a solid solution in the solid solution, that is, in the form of being substituted at the position of the Fe atom in the α-Fe crystal structure to stabilize the bcc crystal. Further, Al is presumed to refine the precipitated crystal grains generated by the heat treatment. From the above, it is considered that the addition of Al in the present alloy system selectively produces fine crystal grains having a small magnetocrystalline anisotropy, and thereby excellent soft magnetic characteristics are exhibited.

【0008】本発明においてAlの含有量aは、2原子
%を超え15原子%、好ましくは2.5〜10原子%、
更に好ましくは3〜6原子%である。3〜6原子%の範
囲において、特に鉄損の小さい合金を得ることができ
る。本発明における元素MはNb、Mo、W、Ta、Z
r、Hf、Ti、V、Cr、Mn、Y、Ceから選ばれ
る1種又は2種以上の元素で、軟磁性の発現を阻害す
る、Fe−B、Fe−P系結晶の析出を抑制あるいは析
出開始温度を高い温度に移動させる効果があると推察さ
れる。さらに、元素Mの添加は結晶粒の微細化のみなら
ず非晶質形成能を向上させる効果がある。また、Mとし
てはNbが好適である。
In the present invention, the Al content a is more than 2 atomic% and 15 atomic%, preferably 2.5 to 10 atomic%.
More preferably, it is 3 to 6 atomic%. In the range of 3 to 6 atomic%, an alloy having a particularly small iron loss can be obtained. The element M in the present invention is Nb, Mo, W, Ta, Z.
Suppress precipitation of Fe-B or Fe-P-based crystals, which inhibits expression of soft magnetism, with one or more elements selected from r, Hf, Ti, V, Cr, Mn, Y, and Ce, or It is presumed that it has the effect of moving the precipitation start temperature to a higher temperature. Furthermore, the addition of the element M has the effect of improving not only the crystal grain refinement but also the amorphous forming ability. Further, Nb is preferable as M.

【0009】本発明における元素Mの含有量bは、3原
子%から20原子%、好ましくは3〜15原子%、更に
好ましくは5〜10原子%である。本発明における元素
M’は、Si、Ga、Ge、Ru、Sn、Sb、Pdか
ら選ばれる1種又は2種以上の元素で、Feと固溶体を
形成し、6原子%以下添加することにより軟磁性を向上
させる。
The content b of the element M in the present invention is 3 atom% to 20 atom%, preferably 3 to 15 atom%, more preferably 5 to 10 atom%. The element M ′ in the present invention is one or more elements selected from Si, Ga, Ge, Ru, Sn, Sb, and Pd, forms a solid solution with Fe, and is added by 6 atomic% or less to make it soft. Improve magnetism.

【0010】ホウ素(B)は本発明の合金の必須元素で
あり非晶質形成に寄与し、Bが9原子%を超えると磁気
特性が良好な熱処理条件では磁歪が大きくなる。よっ
て、好ましい範囲は、0.5原子%〜9原子%でありさ
らに好ましくは、1原子%〜9原子%、最も好ましい範
囲は2原子%〜8原子%である。本発明においてリン
(P)と炭素(C)はそれぞれ必須元素であり、元素P
は非晶質形成範囲の拡大に寄与する。またCは結晶粒を
微細化し軟磁気特性を向上させる。但しPが9原子%を
超えると熱処理によりFe−P系結晶が析出し軟磁性の
発現を阻害するので、Pの含有量eは、2原子%を超え
9原子%以下、好ましくは2.5原子%〜9原子%、更
に好ましくは3原子%〜7原子%である。
Boron (B) is an essential element of the alloy of the present invention and contributes to amorphous formation. When B exceeds 9 atom%, magnetostriction becomes large under heat treatment conditions with good magnetic properties. Therefore, the preferable range is 0.5 atom% to 9 atom%, more preferably 1 atom% to 9 atom%, and the most preferable range is 2 atom% to 8 atom%. In the present invention, phosphorus (P) and carbon (C) are essential elements, respectively.
Contributes to the expansion of the amorphous formation range. Further, C refines the crystal grains to improve the soft magnetic characteristics. However, when P exceeds 9 atomic%, Fe—P-based crystals are precipitated by heat treatment to inhibit the development of soft magnetism, so the content e of P is more than 2 atomic% and 9 atomic% or less, preferably 2.5 at%. Atomic% to 9 atomic%, and more preferably 3 atomic% to 7 atomic%.

【0011】またCが5原子%を超えると熱処理により
Fe−Cが生成しやすくなり軟磁性の発現を阻害するの
で、Cの含有量fは、0.1原子%〜5原子であり、好
ましくは、0.5原子%〜3原子%、更に好ましくは
0.5原子%〜2原子%である。また本発明の合金にお
いて、元素M、P及びCはともに耐食性を向上させる働
きがある。このような効果を得るために、これら元素の
含有量合計の好ましい範囲は、5.1原子%<b+e+
f≦34原子%であり、更に好ましくは10原子%<b
+e+f≦34原子%である。
Further, when C exceeds 5 atomic%, Fe—C is likely to be generated by heat treatment and inhibits the expression of soft magnetism. Therefore, the content f of C is 0.1 atomic% to 5 atomic, and preferably. Is 0.5 atom% to 3 atom%, and more preferably 0.5 atom% to 2 atom%. Further, in the alloy of the present invention, the elements M, P and C all have a function of improving the corrosion resistance. In order to obtain such an effect, the preferable range of the total content of these elements is 5.1 atom% <b + e +
f ≦ 34 atomic%, more preferably 10 atomic% <b
+ E + f ≦ 34 atomic%.

【0012】更に本発明の合金では、PとCとを複合添
加することにより、保磁力の低減および軟磁気特性(鉄
損および透磁率)が改善される。PとCの組成比率(原
子比e/f)において、好ましい範囲は、1≦e/f≦
40、好ましくは2<e/f<20であり、最も好まし
い範囲は、2≦e/f≦7である。本発明においては
N、S、Oなどの不可避的不純物を、目的とする特性が
劣化しない程度に含有している合金も本発明に含むもの
である。
Further, in the alloy of the present invention, by adding P and C in combination, the coercive force is reduced and the soft magnetic properties (iron loss and magnetic permeability) are improved. In the composition ratio of P and C (atomic ratio e / f), a preferable range is 1 ≦ e / f ≦
40, preferably 2 <e / f <20, and the most preferred range is 2 ≦ e / f ≦ 7. In the present invention, an alloy containing unavoidable impurities such as N, S, and O to such an extent that the intended characteristics are not deteriorated is also included in the present invention.

【0013】本発明のFe基軟磁性合金は、組織全体の
少なくとも30%以上が微細な結晶粒から成り、微結晶
粒以外の部分は主として非晶質およびまたは上記微結晶
粒以外の結晶質部分よりなる。本発明では、結晶粒の割
合が上記範囲にあるとき優れた(軟)磁気特性を示す。
なお、本発明では微細結晶粒の割合が実質的に100%
であっても優れた(軟)磁気特性を示す。本発明のFe
基軟磁性合金においては磁気特性の面から、組織全体の
少なくとも50%以上が微細な結晶粒から成ることが特
に好ましく、70%以上が微細な結晶粒から成ることが
最も好ましい。
In the Fe-based soft magnetic alloy of the present invention, at least 30% or more of the entire structure is composed of fine crystal grains, and the portions other than the fine crystal grains are mainly amorphous and / or the crystalline portions other than the fine crystal grains. Consists of. In the present invention, excellent (soft) magnetic properties are exhibited when the proportion of crystal grains is within the above range.
In the present invention, the proportion of fine crystal grains is substantially 100%.
Shows excellent (soft) magnetic properties. Fe of the present invention
From the viewpoint of magnetic properties, it is particularly preferable that at least 50% or more of the entire structure of the base soft magnetic alloy is composed of fine crystal grains, and most preferably 70% or more is composed of fine crystal grains.

【0014】また本発明の合金に含まれる微細結晶粒は
主としてbcc構造を有しており、Fe及びAlを主体
としてM、M'および微量のB、P、Cが固溶している
と考えられる。この微細結晶粒は1000オングストロ
ーム以下、好ましくは500オングストローム以下、更
に好ましくは50〜300オングストロームの平均粒径
を有している。本発明では平均粒径が1000オングス
トローム以下であることにより、優れた磁気特性が得ら
れるものである。
The fine crystal grains contained in the alloy of the present invention mainly have a bcc structure, and it is considered that Fe and Al are mainly contained in M, M ′ and a trace amount of B, P, and C to form a solid solution. To be The fine crystal grains have an average particle size of 1000 angstroms or less, preferably 500 angstroms or less, and more preferably 50 to 300 angstroms. In the present invention, when the average particle size is 1000 angstroms or less, excellent magnetic properties can be obtained.

【0015】なお、本発明において結晶粒の全体に占め
る割合は、実験的にX線回折法等により評価することが
できる。即ち、結晶化に伴い生じるX線回折線のX線回
折強度と、結晶化に伴い減少する非晶質特有のハローに
よるX線回折強度との比から評価することができる。ま
た、本発明において平均粒径はX線回折図形のbccピ
ーク反射(110)を用い、シェラーの式 (t=0.
9λ/βcosθ)によって導出したものである(カリ
ティ著、新版 X線回折要論(Element of X-ray Diffr
action (Second Edition)、B.D. Cullity)、 91〜
94頁)。
In the present invention, the proportion of crystal grains in the whole can be experimentally evaluated by an X-ray diffraction method or the like. That is, it can be evaluated from the ratio of the X-ray diffraction intensity of the X-ray diffraction line generated by crystallization and the X-ray diffraction intensity of the halo peculiar to amorphous that decreases with crystallization. Further, in the present invention, the average particle size uses the bcc peak reflection (110) of the X-ray diffraction pattern and the Scherrer's formula (t = 0.
9λ / β cos θ) (Element of X-ray Diffr
action (Second Edition), BD Cullity), 91-
Page 94).

【0016】更に本発明のFe基軟磁性合金は、磁歪が
小さく、磁束密度が大きく、好適には飽和磁歪λsが−
5×10-6≦λs≦+10×10-6の範囲にあるもので
あり、飽和磁束密度Bsが好ましくは1.2以上のもの
である。このような本発明のFe基軟磁性合金は、一般
にアモルファス合金を形成する液体急冷法、(例えば単
ロール法)、キャビテーション法、薄膜作製法(例えば
スパッタ法、メッキ法または蒸着法等)あるいは粉体作
製法(例えばメカニカルアロイング法)等により上記組
成の急冷合金をリボン状、粉末状、ファイバ状、繊維状
又は薄膜状等に形成した後、得られた急冷合金を必要に
応じて所定の形状に加工した後、熱処理し、少なくとも
一部、好ましくは試料全体の30%以上を結晶化するこ
とにより得られる。なおこの急冷合金は非晶質でもよ
く、あるいは非晶質と結晶質が混在する合金でもよい。
Further, the Fe-based soft magnetic alloy of the present invention has a small magnetostriction and a large magnetic flux density, and preferably has a saturated magnetostriction λs of −.
It is in the range of 5 × 10 −6 ≦ λs ≦ + 10 × 10 −6 , and the saturation magnetic flux density Bs is preferably 1.2 or more. Such an Fe-based soft magnetic alloy of the present invention is generally a liquid quenching method for forming an amorphous alloy, (for example, a single roll method), a cavitation method, a thin film forming method (for example, a sputtering method, a plating method or a vapor deposition method) or powder. After forming a quenched alloy of the above composition into a ribbon shape, a powder shape, a fiber shape, a fibrous shape or a thin film shape by a body manufacturing method (for example, a mechanical alloying method) or the like, the obtained quenched alloy is formed into a predetermined shape if necessary. After processing into a shape, heat treatment is performed, and at least a part, preferably 30% or more of the entire sample is crystallized. The quenched alloy may be amorphous, or may be an alloy in which amorphous and crystalline are mixed.

【0017】通常は、単にロール法により急冷薄帯を作
成し、これを巻磁心等の所定の形状にした後熱処理す
る。熱処理は真空中あるいはアルゴンガスもしくは窒素
ガス等の不活性ガス、H2等の還元性ガスもしくは空気
等の酸化性ガス雰囲気中で行なう。好ましくは真空中あ
るいは不活性ガス雰囲気中で行なう。熱処理温度は約2
00〜800℃程度、好ましくは300〜700℃程
度、更に好ましくは400〜700℃程度とする。熱処
理時間は24時間以内、好ましくは0.5〜5時間、更
に好ましくは0.5〜3時間とする。また、熱処理は無
磁場中でも、また磁場を印加して行なってもよい。本発
明では上記の温度範囲で且つ上記範囲の熱処理時間で上
記組成の非晶質または一部結晶質の混合した合金を熱処
理することにより本発明の特性に優れた軟磁性合金を得
ることができる。
Usually, a quenched ribbon is simply prepared by a roll method, and then it is heat treated after being formed into a predetermined shape such as a wound magnetic core. The heat treatment is performed in a vacuum or in an atmosphere of an inert gas such as argon gas or nitrogen gas, a reducing gas such as H 2 or an oxidizing gas such as air. It is preferably performed in a vacuum or an inert gas atmosphere. Heat treatment temperature is about 2
The temperature is about 00 to 800 ° C, preferably about 300 to 700 ° C, and more preferably about 400 to 700 ° C. The heat treatment time is within 24 hours, preferably 0.5 to 5 hours, more preferably 0.5 to 3 hours. Further, the heat treatment may be performed without a magnetic field or by applying a magnetic field. In the present invention, a soft magnetic alloy excellent in the characteristics of the present invention can be obtained by heat-treating the mixed alloy of amorphous or partially crystalline having the above composition within the above temperature range and the heat treatment time within the above range. .

【0018】本発明合金の用途は磁気ヘッド、高周波ト
ランス、可飽和リアクトル、チョークコイル等の材料と
して広く使用することができる。
The alloy of the present invention can be widely used as materials for magnetic heads, high frequency transformers, saturable reactors, choke coils and the like.

【0019】[0019]

【実施例】以下、実施例を挙げて更に説明する。 実施例1及び2、比較例 単ロール法を用いて、Fe、Al、Nb、B、P、Cを
含有する溶湯からアルゴンガス1気圧雰囲気中で幅5mm
程度、板厚約20μmの急冷薄帯を作成し試料とした。
この試料を窒素ガスの存在下600℃で約1時間無磁場
で熱処理した。
EXAMPLES The present invention will be further described below with reference to examples. Examples 1 and 2, Comparative Example Using a single roll method, a molten metal containing Fe, Al, Nb, B, P and C was heated to a width of 5 mm in an atmosphere of argon gas at 1 atmospheric pressure.
A thin strip having a thickness of about 20 μm was prepared and used as a sample.
This sample was heat-treated in the presence of nitrogen gas at 600 ° C. for about 1 hour without a magnetic field.

【0020】得られたFe基軟磁性合金の合金組成を表
1に示した。また、表2に得られたFe基軟磁性合金の
飽和磁束密度Bs(T)、保磁力Hc(mOe)、周波数
1KHz及び最大励磁磁界5mOeでの実効透磁率μ
(1KHz)、周波数100kHz及び最大磁束密度0.1
Tでの鉄損値Pc(W/Kg)、飽和磁歪λs(×10-6)を
示した。なお組成はC以外の元素はICP分析によって
決定し、Cは二酸化炭素に変換し、赤外線検出器で検出
し決定した。
The alloy composition of the obtained Fe-based soft magnetic alloy is shown in Table 1. Further, the saturation magnetic flux density Bs (T), coercive force Hc (mOe), effective magnetic permeability μ at a frequency of 1 KHz and a maximum magnetic field of 5 mOe of the Fe-based soft magnetic alloy obtained in Table 2 were obtained.
(1KHz), frequency 100kHz and maximum magnetic flux density 0.1
The iron loss value Pc (W / Kg) at T and the saturation magnetostriction λs (× 10 -6 ) are shown. The elements other than C were determined by ICP analysis, C was converted to carbon dioxide, and the composition was determined by detecting with an infrared detector.

【0021】なお、実施例1及び2において、α−Fe
(110)の回折強度と非晶質の回折強度から求めた熱
処理後の試料の結晶化度はいずれも80%以上であっ
た。またそれら結晶粒の平均粒径は実施例1の合金では
100オングストローム、実施例2の合金では120オ
ングストロームであった。また比較例としてFe78Si
913(比較例1、市販品)の特性を併せて表2に示し
た。
In Examples 1 and 2, α-Fe
The crystallinity of the sample after the heat treatment, which was determined from the diffraction intensity of (110) and the diffraction intensity of the amorphous material, was 80% or more. The average grain size of the crystal grains was 100 Å in the alloy of Example 1 and 120 Å in the alloy of Example 2. As a comparative example, Fe 78 Si
Table 2 also shows the properties of 9 B 13 (Comparative Example 1, commercial product).

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】表2からも明らかなように、本実施例のF
e基軟磁性合金は優れた磁性特性を示し、特に従来の磁
性合金に比べ優れた実行透磁率、低い鉄損を示した。
As is clear from Table 2, F of the present embodiment
The e-based soft magnetic alloy showed excellent magnetic properties, and in particular, showed excellent magnetic permeability and low iron loss as compared with conventional magnetic alloys.

【0025】[0025]

【発明の効果】以上の実施例からも明らかなように、本
発明によればFe−B系合金にAl及び特定の元素を添
加するとともに特定量のリン及び炭素を添加することに
より、優れた軟磁性特性のFe基軟磁性合金を提供でき
る。
As is apparent from the above examples, according to the present invention, it is possible to obtain excellent results by adding Al and a specific element to the Fe-B alloy and adding a specific amount of phosphorus and carbon. An Fe-based soft magnetic alloy having soft magnetic properties can be provided.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】一般式(Fe1-xx100-a-b-c-d-e-f
abM’cdef(式中、AはCo及び/又はN
i、MはNb、Mo、W、Ta、Zr、Hf、Ti、
V、Cr、Mn、Y、Ceから選ばれる1種又は2種以
上の元素を表わし、M'はSi、Ga、Ge、Ru、S
n、Sb、Pdから選ばれる1種又は2種以上の元素を
表わす。xは0≦x≦0.2、またa、b、c、d、
e、fは原子%を表わし、それぞれ、2<a≦15、3
≦b≦20、0≦c≦6、1≦d≦9、2<e≦9、
0.1≦f≦5を満たし、PとCの組成比e/f(原子
比)が、1≦e/f≦40を満たすものとする)で表わ
されることを特徴とするFe基軟磁性合金。
1. A general formula (Fe 1-x A x ) 100-abcdef A
l a M b M ′ c B d P e C f (where A is Co and / or N
i and M are Nb, Mo, W, Ta, Zr, Hf, Ti,
Represents one or more elements selected from V, Cr, Mn, Y and Ce, and M'is Si, Ga, Ge, Ru, S
Represents one or more elements selected from n, Sb, and Pd. x is 0 ≦ x ≦ 0.2, and a, b, c, d,
e and f represent atomic%, and 2 <a ≦ 15 and 3 respectively.
≦ b ≦ 20, 0 ≦ c ≦ 6, 1 ≦ d ≦ 9, 2 <e ≦ 9,
Fe-based soft magnetism, wherein 0.1 ≦ f ≦ 5 is satisfied and the composition ratio e / f (atomic ratio) of P and C is expressed as 1 ≦ e / f ≦ 40). alloy.
【請求項2】前記一般式において、b、e及びfがb+
e+f>10を満たすことを特徴とする請求項1記載の
Fe基軟磁性合金。
2. In the above general formula, b, e and f are b +
The Fe-based soft magnetic alloy according to claim 1, wherein e + f> 10 is satisfied.
【請求項3】組織の少なくとも30%以上が微細結晶粒
から成ることを特徴とする請求項1または2項記載のF
e基軟磁性合金。
3. The F according to claim 1 or 2, wherein at least 30% or more of the structure is composed of fine crystal grains.
e-based soft magnetic alloy.
【請求項4】前記結晶粒が主として鉄を主体としたbc
c固溶体であることを特徴とする請求項3記載のFe基
軟磁性合金。
4. A bc in which the crystal grains are mainly composed of iron.
The Fe-based soft magnetic alloy according to claim 3, which is a c solid solution.
【請求項5】前記結晶粒の平均粒径が1000オングス
トローム以下である請求項3または4項記載のFe基軟
磁性合金。
5. The Fe-based soft magnetic alloy according to claim 3, wherein the average grain size of the crystal grains is 1000 angstroms or less.
【請求項6】飽和磁歪λsが−5×10-6≦λs≦+10
×10-6の範囲にある請求項1ないし5のいずれか1項
記載のFe基軟磁性合金。
6. A saturated magnetostriction λs of −5 × 10 −6 ≦ λs ≦ + 10.
The Fe-based soft magnetic alloy according to any one of claims 1 to 5, which is in the range of x10 -6 .
【請求項7】飽和磁束密度Bsが1.2T以上の範囲に
ある請求項1ないし6のいずれか1項記載のFe基軟磁
性合金。
7. The Fe-based soft magnetic alloy according to claim 1, having a saturation magnetic flux density Bs of 1.2 T or more.
【請求項8】液体急冷法、薄膜作製法又は粉体作製法に
より作製された、(Fe1-xx10 0-a-b-c-d-e-fAla
bM’cdef(式中、AはCo及び/又はNi、
MはNb、Mo、W、Ta、Zr、Hf、Ti、V、C
r、Mn、Y、Ceから選ばれる1種又は2種以上の元
素を表わし、M'はSi、Ga、Ge、Ru、Sn、S
b、Pdから選ばれる1種又は2種以上の元素を表わ
す。xは0≦x≦0.2、またa、b、c、d、e、f
は原子%を表わし、それぞれ、2<a≦15、3≦b≦
20、0≦c≦6、1≦d≦9、2<e≦9、0.1≦
f≦5を満たし、PとCの組成比e/f(原子比)が、
1≦e/f≦40を満たすものとする)で表わされる組
成の急冷合金を熱処理してなるFe基軟磁性合金。
8. A (Fe 1-x A x ) 100 -abcdef Al a produced by a liquid quenching method, a thin film production method or a powder production method.
M b M ′ c B d P e C f (where A is Co and / or Ni,
M is Nb, Mo, W, Ta, Zr, Hf, Ti, V, C
Represents one or more elements selected from r, Mn, Y and Ce, and M ′ is Si, Ga, Ge, Ru, Sn, S
represents one or more elements selected from b and Pd. x is 0 ≦ x ≦ 0.2, and a, b, c, d, e, f
Represents atomic%, and 2 <a ≦ 15 and 3 ≦ b ≦, respectively.
20, 0 ≦ c ≦ 6, 1 ≦ d ≦ 9, 2 <e ≦ 9, 0.1 ≦
f ≦ 5 is satisfied, and the composition ratio e / f (atomic ratio) of P and C is
A Fe-based soft magnetic alloy obtained by heat-treating a quenched alloy having a composition represented by 1 ≦ e / f ≦ 40).
【請求項9】(Fe1-xx100-a-b-c-d-e-fAlab
M’cdef(式中、AはCo及び/又はNi、Mは
Nb、Mo、W、Ta、Zr、Hf、Ti、V、Cr、
Mn、Y、Ceから選ばれる1種又は2種以上の元素を
表わし、M'はSi、Ga、Ge、Ru、Sn、Sb、
Pdから選ばれる1種又は2種以上の元素を表わす。x
は0≦x≦0.2、またa、b、c、d、e、fは原子
%を表わし、それぞれ、2<a≦15、3≦b≦20、
0≦c≦6、1≦d≦9、2<e≦9、0.1≦f≦5
を満たし、PとCの組成比e/f(原子比)が、1≦e
/f≦40を満たすものとする)で表わされる組成の急
冷合金を液体急冷法、薄膜作製法又は粉体作製法により
作製した後、200℃〜800℃の熱処理温度で24時
間以内保持することを特徴とするFe基軟磁性合金の製
造方法。
9. (Fe 1-x A x ) 100-abcdef Al a M b
M ′ c B d P e C f (wherein A is Co and / or Ni, M is Nb, Mo, W, Ta, Zr, Hf, Ti, V, Cr,
Represents one or more elements selected from Mn, Y and Ce, and M ′ is Si, Ga, Ge, Ru, Sn, Sb,
Represents one or more elements selected from Pd. x
Is 0 ≦ x ≦ 0.2, and a, b, c, d, e, and f are atomic%, and 2 <a ≦ 15, 3 ≦ b ≦ 20,
0 ≦ c ≦ 6, 1 ≦ d ≦ 9, 2 <e ≦ 9, 0.1 ≦ f ≦ 5
And the composition ratio e / f (atomic ratio) of P and C is 1 ≦ e
/ F ≦ 40), a quenching alloy having a composition represented by the formula: liquid quenching method, thin film manufacturing method or powder manufacturing method, and then holding at a heat treatment temperature of 200 ° C. to 800 ° C. for 24 hours or less. A method for producing an Fe-based soft magnetic alloy, comprising:
JP31711292A 1992-11-26 1992-11-26 Fe-based soft magnetic alloy and manufacturing method Expired - Lifetime JP3558350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31711292A JP3558350B2 (en) 1992-11-26 1992-11-26 Fe-based soft magnetic alloy and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31711292A JP3558350B2 (en) 1992-11-26 1992-11-26 Fe-based soft magnetic alloy and manufacturing method

Publications (2)

Publication Number Publication Date
JPH06158239A true JPH06158239A (en) 1994-06-07
JP3558350B2 JP3558350B2 (en) 2004-08-25

Family

ID=18084576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31711292A Expired - Lifetime JP3558350B2 (en) 1992-11-26 1992-11-26 Fe-based soft magnetic alloy and manufacturing method

Country Status (1)

Country Link
JP (1) JP3558350B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226956A (en) * 2000-11-29 2002-08-14 Alps Electric Co Ltd Amorphous soft magnetic alloy
WO2006054822A1 (en) * 2004-11-22 2006-05-26 Kyungpook National University Industry-Academic Cooperation Foundation Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
CN107002208A (en) * 2014-12-05 2017-08-01 Posco公司 Excellent high silicon steel plate of magnetic property and preparation method thereof
JP2019123930A (en) * 2018-01-12 2019-07-25 Tdk株式会社 Soft magnetic alloy and magnetic component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226956A (en) * 2000-11-29 2002-08-14 Alps Electric Co Ltd Amorphous soft magnetic alloy
WO2006054822A1 (en) * 2004-11-22 2006-05-26 Kyungpook National University Industry-Academic Cooperation Foundation Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
US7815753B2 (en) 2004-11-22 2010-10-19 Kyungpook National University Industry-Academic Cooperation Foundation Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
CN107002208A (en) * 2014-12-05 2017-08-01 Posco公司 Excellent high silicon steel plate of magnetic property and preparation method thereof
JP2019123930A (en) * 2018-01-12 2019-07-25 Tdk株式会社 Soft magnetic alloy and magnetic component

Also Published As

Publication number Publication date
JP3558350B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
EP0271657B1 (en) Fe-base soft magnetic alloy and method of producing same
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JPH044393B2 (en)
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JP3231149B2 (en) Noise filter
JP3623970B2 (en) Fe-based soft magnetic alloy and manufacturing method
JP3655321B2 (en) Method for producing Fe-based soft magnetic alloy powder
JP2667402B2 (en) Fe-based soft magnetic alloy
JPH0711396A (en) Fe base soft magnetic alloy
WO1992009714A1 (en) Iron-base soft magnetic alloy
JP3558350B2 (en) Fe-based soft magnetic alloy and manufacturing method
JPH01290744A (en) Fe-base soft-magnetic alloy
JP3322407B2 (en) Fe-based soft magnetic alloy
JPH03177545A (en) Magnetic alloy material
JPH0610105A (en) Fe base soft magnetic alloy
JPH03271346A (en) Soft magnetic alloy
JPH0641698A (en) Fe-base soft-magnetic alloy
JPH04341544A (en) Fe base soft magnetic alloy
JPH05117818A (en) Ultramicrocrystalline soft magnetic alloy
JP2878472B2 (en) High saturation magnetic flux density Fe soft magnetic alloy
JPH0238520A (en) Manufacture of fe-base soft-magnetic alloy and magnetic core

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9