KR0131376B1 - Fe-bane soft magnetic alloy & process for making same - Google Patents

Fe-bane soft magnetic alloy & process for making same

Info

Publication number
KR0131376B1
KR0131376B1 KR1019930011091A KR930011091A KR0131376B1 KR 0131376 B1 KR0131376 B1 KR 0131376B1 KR 1019930011091 A KR1019930011091 A KR 1019930011091A KR 930011091 A KR930011091 A KR 930011091A KR 0131376 B1 KR0131376 B1 KR 0131376B1
Authority
KR
South Korea
Prior art keywords
alloy
soft magnetic
based soft
magnetic alloy
prepared
Prior art date
Application number
KR1019930011091A
Other languages
Korean (ko)
Other versions
KR940006157A (en
Inventor
히로시 와따나베
요시히꼬 히로따
Original Assignee
다께바야시 쇼오고
미쓰이 세끼유 가가꾸 고오교오 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다께바야시 쇼오고, 미쓰이 세끼유 가가꾸 고오교오 가부시끼가이샤 filed Critical 다께바야시 쇼오고
Publication of KR940006157A publication Critical patent/KR940006157A/en
Application granted granted Critical
Publication of KR0131376B1 publication Critical patent/KR0131376B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

우수한 연성자기특성 특히, 저자기변형과 저철손을 갖는 신규한 Fe-기제 연자성 합금으로서, 특정원소 M를 소정량 바람직하게는 Zr등을 소정량 첨가하여 합금을 제조하며, 그에 Cu를 소정량 더 첨가한다. 그러한 조성을 갖는 급냉합금을 리본, 분말 또는 박막과 같은 형상으로 형성후 열처리하여 조직의 30% 이상이 미세한 결정입자를 구성하는 Fe-기제 연자성 합금을 제공할 수 있다.As a novel Fe-based soft magnetic alloy having excellent soft magnetic properties, in particular, low magnetic deformation and low iron loss, an alloy is prepared by adding a predetermined amount of a specific element M, preferably Zr, and the like, and a predetermined amount of Cu. Add more. The quench alloy having such a composition may be formed into a ribbon, powder, or thin film, and then heat-treated to provide a Fe-based soft magnetic alloy in which at least 30% of the tissue constitutes fine crystal grains.

Description

Fe-기제 연자성 합금 및 그의 제조방법Fe-based soft magnetic alloy and preparation method thereof

제1도는 본 발명의 Fe-기제 연자성 합금의 열처리후의 X-레이 회절패턴을 나타내는 그래프.1 is a graph showing an X-ray diffraction pattern after heat treatment of the Fe-based soft magnetic alloy of the present invention.

본 발명은 Fe-기제 연자성 합금에 관한 것이며, 특히 우수한 연성자기특성을 갖는 합금과 그의 제조방법에 관한 것이다.The present invention relates to a Fe-based soft magnetic alloy, and more particularly, to an alloy having excellent soft magnetic properties and a method of manufacturing the same.

고 포화 자속밀도를 같는 Fe-기제 비정질 자성합금이 자기헤드, 고주파 트랜스포머, 포화기능 리액터, 쵸크코일등의 자심재료로서 사용되는 것으로 알려져 있다. 그러나, Fe-기제 비정질 자성합금은 Co기제의 경우보다 염가이지만 전자가 고주파 영역에서 코아손실이 크고 또한 투자율이 낮은 단점을 갖는다. 그밖에도 그의 포화자기변형이 높다.Fe-based amorphous magnetic alloys having a high saturation magnetic flux density are known to be used as magnetic core materials such as magnetic heads, high frequency transformers, saturation functional reactors, and choke coils. However, Fe-based amorphous magnetic alloys are more inexpensive than Co-based, but have the disadvantage that electrons have a high core loss and a low permeability in the high frequency region. In addition, his saturation magnetostriction is high.

종래의 Fe-계 비정질 자성합금으로서 Fe-B계 합금이 공지되어 있다. 그러나, B(붕소)를 포함하는 합금은 원소 B가 고가이기 때문에 고가이다.Fe-B based alloys are known as conventional Fe-based amorphous magnetic alloys. However, alloys containing B (boron) are expensive because element B is expensive.

본 발명의 한 목적은 상술한 종래의 연자성체를 대신할 수 있고, 또한 포화자기변형이 낮고 또한 절손이 낮은 신규한 Fe-기제 연자성합금을 제공하는데 있다.One object of the present invention is to provide a novel Fe-based soft magnetic alloy which can replace the conventional soft magnetic material described above, and which has a low saturation magnetic deformation and low breakage.

본 발명의 다른 목적은 저가의Fe-기제 연자성 합금을 제공하는데 있다.Another object of the present invention is to provide a low cost Fe-based soft magnetic alloy.

상술한 목적에 비추어 각종 Fe-기제 연자성 합금에 관한 꾸준한 연구결과, Fe-P계, Fe-기제 연자성 합금에 특정원소(M) 특히 Zr을 첨가하면 우수한 연선자기특성을 갖는 개선된 Fe-기제 Fe-Si-B-Aℓ 연자성 합금을 제공할 수 있고 또한 Fe--P-M계 Fe-기제 연자성 합금에 Cu를 첨가하면 우수한 연자성 합금을 효과적으로 얻을 수 있음을 밝혀냈다.In view of the above-mentioned objectives, the results of steady research on various Fe-based soft magnetic alloys have shown that Fe-P-based and Fe-based soft magnetic alloys have improved twisted-magnetic properties with excellent soft magnetic properties when certain elements (M), especially Zr, are added. It has been found that it is possible to provide a base Fe—Si—B—A 1 soft magnetic alloy and to add Cu to a Fe—PM based Fe—based soft magnetic alloy effectively to obtain an excellent soft magnetic alloy.

구체적으로, 본 발명에 의하면 하기식으로 나타낸 조성을 같는 Fe-기제연자성 합금이 제공된다.Specifically, according to the present invention, an Fe-based soft magnetic alloy having the composition represented by the following formula is provided.

Fe100-a-b-c-dPaMbM'cCud Fe 100-abcd P a M b M ' c Cu d

식 중, M은 Zr, Hf, Nb, Mo, W, Ta, Ti, V, Cr, Mn, Y 및 Ce로 구성된 그룹으로부터 선택한 적어도 1원소이고, M'는 Si, Aℓ, Ga, Ge, Ru, Co, Ni, Sn, Sb 및 Pd로 구성된 그룹으로부터 선택한 적어도 1원소이고, a,b,c 및 d는 각각 원자%이고 각각 0a≤25, 0b≤15, 0≤C≤20, 0≤d≤5를 만족한다. 특히, 합금조직의 적어도 30%가 미세한 결정입자로 점유되는 것이 좋으며 미세한 결정입자는 Fe를 주로 포함하는 bcc고용제로 구성되는 것이 좋다.Wherein M is at least one element selected from the group consisting of Zr, Hf, Nb, Mo, W, Ta, Ti, V, Cr, Mn, Y and Ce, and M 'is Si, Al, Ga, Ge, Ru At least one element selected from the group consisting of Co, Ni, Sn, Sb and Pd, a, b, c and d are each atomic% and each 0a≤25, 0b≤15, 0≤C≤20, 0≤d ≤ 5 is satisfied. In particular, it is preferable that at least 30% of the alloy structure is occupied by fine crystal grains, and the fine crystal grains are composed of a bcc solid solution mainly containing Fe.

P는 본 발명의 합금을 구성하는 필수원소이며, P를 특정량(0원자% 이상 25원자% 이하) 첨가하면 값비싼 원소 B(붕소)를 사용하지 않고 급냉후 비정질 합금의 형성범위를 확대하는 것이 가능하다. 그에 의해 합금의 제조비용을 줄일 수 있다.P is an essential element constituting the alloy of the present invention, and when P is added in a specific amount (0 atomic% or more and 25 atomic% or less), the formation range of the amorphous alloy after quenching is expanded without using expensive element B (boron). It is possible. Thereby, the manufacturing cost of an alloy can be reduced.

P의 함량(a)은 0원자% 이상, 25원자% 이하, 바람직하게는 1∼15원자%, 좀 더 바람직하게는 2∼12원자%가 좋다.The content (a) of P is preferably 0 atomic% or more, 25 atomic% or less, preferably 1 to 15 atomic%, and more preferably 2 to 12 atomic%.

본 발명의 Fe-기제 연자성 합금에 첨가된 원소(들) M은 합금의 연자성에 해를 주지 않는 Fe-P계 결정의 석출을 억제하거나 또는 그의 석출개시온도를 고온으로 상승시키는 것으로 추정된다. M으로서 Zr, Hf, Nb, Mo, W, Ta, Ti, V, Cr, Mn, Y 및 Ce로 구성된 그룹으로부터 선택한 원소들중 적어도 하나를 사용한다. 이들중 특히 Zr이 좋다. 원소(들)M을 첨가하면 결정입자를 미세화하고 또한 Fe-P계 합금에서 합금의 비정질을 형성하는 능력을 개선하는데 효과적이다.The element (s) M added to the Fe-based soft magnetic alloy of the present invention is supposed to suppress the precipitation of Fe-P-based crystals that do not harm the soft magnetic properties of the alloy or to raise the precipitation start temperature to a high temperature. As M, at least one of the elements selected from the group consisting of Zr, Hf, Nb, Mo, W, Ta, Ti, V, Cr, Mn, Y and Ce is used. Among these, Zr is particularly preferable. The addition of element (s) M is effective in miniaturizing crystal grains and improving the ability to form amorphous alloys in Fe—P based alloys.

M원소의 함량(b)은 0∼15원자%, 바람직하게는 2∼15원자%, 더욱 바람직하게는 3∼12원자%가 좋다.The content (b) of the element M is 0 to 15 atomic%, preferably 2 to 15 atomic%, more preferably 3 to 12 atomic%.

본 발명의 Fe-기제 연자성 합금에 첨가된 원소(들)M'는 Si, Aℓ, Ga, Ge, Ru, Co, Ni, Sn, Sb 및 Pb로 구성된 그룹으로부터 선택한 하나 이상의 원소이다. 이들 원소들은 Fe를 주체로 한 고용체중에 고용된 것으로 생각한다. 왜냐하면 그들의 원소는 Fe와의 상호파라메터가 부(負)이기 때문이다. 즉, 그 원소들은 α-Fe결정구조의 Fe원자 위치에 치환되기 때문에 고용되어 bcc결정을 안정화시키는 것으로 생각된다. 따라서, bcc결정의 진성적인 결정자기이방성 또는 저자기변형상수를 갖는 결정입자가 형성되기 때문에 우수한 연성자기특성을 나타내는 것으로 생각된다.The element (s) M 'added to the Fe-based soft magnetic alloy of the present invention is at least one element selected from the group consisting of Si, Al, Ga, Ge, Ru, Co, Ni, Sn, Sb and Pb. These elements are considered to be employed in a solid solution mainly composed of Fe. Because their elements are negative in terms of their mutual parameters with Fe. That is, the elements are considered to be dissolved to stabilize the bcc crystal because they are substituted at the Fe atom position of the α-Fe crystal structure. Therefore, since the crystal grains having the intrinsic crystallite anisotropy or the low-molecular strain constant of the bcc crystal are formed, it is considered to exhibit excellent soft magnetic properties.

M'원소(들)의 함량(C)은 0∼20원자%, 바람직하게는 1∼15원자%가 좋다.The content (C) of the M 'element (s) is preferably 0 to 20 atomic%, preferably 1 to 15 atomic%.

본 발명의 합금에서 Cu(동)는 비정질의 열처리에 의해 얻은 결정입자들의 미립자화에 효과적이다. 또한 입자들을 미립자화할때 효과적인 자기이방성 에너지가 진성적인 자기결정 이방성에너지보다 작아지기 때문에 합금의 자기특성을 개선할 수 있다. 그러나, 급냉직후의 합금이 부스러지는 경향이 있기 때문에 합금의 제조에 대해 동함량이 5원자% 이상이 되지않도록 해야한다. 따라서, Cu의 함량(d)은 0∼5원자%, 바람직하게는 0.5∼3원자%가 좋다.In the alloy of the present invention, Cu (copper) is effective for atomization of crystal grains obtained by amorphous heat treatment. In addition, the magnetic properties of the alloy can be improved because the effective magnetic anisotropy energy when the particles are granulated is smaller than the intrinsic magnetic crystal anisotropy energy. However, since the alloy after quenching tends to crumble, the copper content should not be more than 5 atomic% for the production of the alloy. Therefore, the content d of Cu is 0 to 5 atomic%, preferably 0.5 to 3 atomic%.

부수적으로, 이들 원소가 합금의 특성을 저하시키지 않는 정도까지 N, S, O등과 같은 불순물을 불가피하게 더 함유하는 합금도 본 발명의 범위내에 속한다.Incidentally, alloys which inevitably further contain impurities such as N, S, O and the like to the extent that these elements do not deteriorate the properties of the alloy also fall within the scope of the present invention.

본 발명에 의한 Fe-기제 연자성 합금은 조직전체의 적어도 30%(30∼100%)가 미세한 결정입자를 구성하며 상술한 결정입자이외의 부분은 상기 미세결정이외의 결정질 또는 비정질로 되어 있다. 그 조직에서 미세한 결정입자의 비가 상기 범위내에 있으면 우수한 연성자기특성을 갖는 합금을 제공할 수 있다. 본 발명에서는 결정입자들이 실질적으로 그 조직의 100%를 차지하더라도, 합금은 여전히 충분히 좋은 자기특성을 갖는다. 바람직하게는 자기특성 측면에서 볼때 미세한 결정입자가 합금조직의 적어도 50%, 더욱 바람직하게는 70%이상을 구성하는 것이 좋다.In the Fe-based soft magnetic alloy according to the present invention, at least 30% (30-100%) of the entire structure constitutes fine crystal grains, and portions other than the above-described crystal grains are crystalline or amorphous other than the above-mentioned microcrystals. When the ratio of the fine crystal grains in the structure is within the above range, it is possible to provide an alloy having excellent soft magnetic properties. In the present invention, even though the crystal grains occupy substantially 100% of the structure, the alloy still has sufficiently good magnetic properties. Preferably, in terms of magnetic properties, fine crystal grains constitute at least 50%, more preferably 70% or more of the alloy structure.

본 발명의 합금의 결정입자들은 주로 bcc구조를 가지며 또한 Fe를 주성분으로 하여 M, M'과, 소량의 P가 고용된 것으로 추측된다.It is estimated that the crystal grains of the alloy of the present invention mainly have a bcc structure, and M, M 'and a small amount of P are dissolved with Fe as a main component.

본 발명의 합금으로 형설될 결정입자들은 1000Å 이하 바람지하게는 500Å 이하, 더욱 바람직하게는 5∼300Å의 평균입경을 가지며 또한 본 발명의 우수한 자기특성을 갖는 합금을 제공한다.The crystal grains to be formed into the alloy of the present invention provides an alloy having an average particle diameter of 1000 Å or less, preferably 500 Å or less, more preferably 5 to 300 Å and having excellent magnetic properties of the present invention.

본 발명의 바람직한 Fe-기제 연자성 합금은 포화자기변형상수(λS)가 +10×10-5∼5×10-6이다.In the preferred Fe-based soft magnetic alloy of the present invention, the saturation magnetostriction constant (λ S ) is + 10 × 10 −5 to 5 × 10 −6 .

본 발명의 합금에서 결정입자와 전체 합금조직의 비율은 X-레이 회절법등에 의해 실험적으로 평가할 수 있다. 간단히 말해, 완전히 결정화한 상태(X-레이 회절강도가 포화된 상태)에서 Fe-기제 결정의 X-레이 회절강도를 기준으로 하여 그 기준값과 측정할 자성합금재료시료의 X-레이 회절강도의 비율을 실험에 의해 평가할 수 있다.In the alloy of the present invention, the ratio of crystal grains and total alloy structure can be experimentally evaluated by X-ray diffraction or the like. In short, the ratio between the reference value and the X-ray diffraction intensity of the magnetic alloy material sample to be measured based on the X-ray diffraction intensity of the Fe-based crystal in the fully crystallized state (the state where the X-ray diffraction intensity is saturated). Can be evaluated by experiment.

결정입자의 평균입경은 X-레이 회절패턴의 bcc피이크 반사를 사용하여 쉘러식(Scheller's equation)(t=0.9λ/β·cosθ)으로부터 도출된다.(X-레이 회절소자(제2판), 91-94페이지, B,D, Cullity저)The average particle diameter of the crystal grains is derived from the Scheller's equation (t = 0.9λ / β cosθ) using bcc peak reflection of the X-ray diffraction pattern (X-ray diffraction element (second edition), 91, 94, B, D, Cullity)

본 발명의 미세결정입자를 갖는 Fe기제 연자성 합금은 비정질 금속을 형성하는 통상의 방법에 의해 얻은 합금을 열처리하여 제조할 수 있다. 예를들어, 우선 비정질 합금을 단일 롤법 또는 쌍롤법등의 액체냉각법, 진공법, 스퍼터링법 또는 진공증착법등의 박막형성법 또는 기계적 합급등과 같은 분말형성법에 의해 리본, 분말, 섬유, 또는 박막형으로 형성한 다음, 얻은 비정질 합금을 소망하는 형상으로 임의로 가공한 후, 열처리하여 적어도 일부, 바람직하게는 시료전체의 30%이상을 결정화하여 본 발명의 합금을 얻을 수 있다.The Fe-based soft magnetic alloy having the microcrystalline particles of the present invention can be produced by heat-treating an alloy obtained by a conventional method for forming an amorphous metal. For example, first, an amorphous alloy is formed into a ribbon, powder, fiber, or thin film by a liquid forming method such as a single roll method or a twin roll method, a thin film forming method such as a vacuum method, a sputtering method or a vacuum deposition method or a powder forming method such as mechanical alloying. Next, the amorphous alloy obtained can be optionally processed into a desired shape, and then subjected to heat treatment to crystallize at least a portion, preferably at least 30% of the entire sample, to obtain the alloy of the present invention.

급냉후의 합금구조는 바람직하게는 비정질이 좋지만 열처리후 연성자기특성을 나타내는 범위이내면 결정질이 일부 혼재해도 좋다.Although the alloy structure after quenching is preferably good in amorphous state, some crystals may be mixed as long as it exhibits soft magnetic properties after heat treatment.

일반적으로 급냉합금 리본을 단일롤법으로 형성한 다음 권자심과 같은 소정의 형상으로 한후, 열처리한다. 열처리는 진공중에서, 아리곤가스 또는 질소가스 분위기와 같은 불활성 가스분위기 중에서, H2와 같은 환원가스 분위기 중에서 또는 공기와 같은 산화가스분위기 중에서 행한다. 바람직하게는 진공 또는 불활성가스 분위기 중에서 행하는 것이 좋다. 열처리 온도는 약 200∼800℃, 바람직하게는 약 300∼700℃, 좀더 바람직하게는 350∼700℃, 좀더 바람직하게는 400∼700℃이 좋다. 열처리시간은 24시간이내, 바람직하게는 약 0.5∼5시간이 좋다. 열처리는 무자장중에서도 자장중에서도 행할 수 있다. 자장을 인가함으로써 합금에 자기이방성을 부여할 수 있다.In general, the quenched alloy ribbon is formed by a single roll method, and then formed into a predetermined shape such as a winding core, followed by heat treatment. The heat treatment is performed in a vacuum, in an inert gas atmosphere such as argon gas or nitrogen gas atmosphere, in a reducing gas atmosphere such as H 2 or in an oxidizing gas atmosphere such as air. Preferably, it is performed in a vacuum or inert gas atmosphere. The heat treatment temperature is about 200 to 800 ° C, preferably about 300 to 700 ° C, more preferably 350 to 700 ° C, more preferably 400 to 700 ° C. The heat treatment time is within 24 hours, preferably about 0.5 to 5 hours. The heat treatment can be performed either in the absence of magnetic field or in the magnetic field. Magnetic anisotropy can be provided to the alloy by applying a magnetic field.

전술한 온도범위와 전술한 시간 범위내에서 비정질 합금을 열처리함으로써 우수한 특성을 갖는 연자성 합금이 얻어진다.By heat-treating the amorphous alloy within the above-described temperature range and the above-mentioned time range, a soft magnetic alloy having excellent characteristics is obtained.

실시예Example

본 발명의 실시예들에 대해 이하에 설명한다.Embodiments of the present invention will be described below.

실시예 1∼3Examples 1-3

단일롤법에 의해 1기압의 아르곤 가스분위기 중에서, Fe, P, Zr 및 Cu를 함유하는 용량으로 약 1.5㎜의 폭과 약 15∼24㎛의 두께를 갖는 급냉한 리본(박막)시료를 형성한 후, 시료를 질소가스 존재하는 무자장에서 약 1시간 동안 표 1에 나타낸 온도로 열처리했다.After forming a quenched ribbon (thin film) sample having a width of about 1.5 mm and a thickness of about 15 to 24 μm in a capacity containing Fe, P, Zr, and Cu in a single atmosphere of argon gas atmosphere by a single roll method. The sample was heat-treated at a temperature shown in Table 1 for about 1 hour in a magnetic field containing nitrogen gas.

각 시료의 철손(Pc W/㎏)을 100KHz의 주파수와 0.1T의 최대 자속밀도에서 측정했다. 1KHz의 주파수와 5mOe의 최대여자자계하에서 실효투자율(μ)(1KHz), 각 시료의 포화자화 Ms(emu/g)와 포화자기변형상수 λS(×10-6)을 측정했다. 합금시료들의 조성, 합급중의 미세한 결정입자의 함량 및 평균입경을 표 1에 나타낸다.Iron loss (Pc W / kg) of each sample was measured at a frequency of 100KH z and a maximum magnetic flux density of 0.1T. The effective magnetic permeability (μ) (1KH z ), the saturation magnetization Ms (emu / g) and the saturation magnetization strain λ S (× 10 −6 ) were measured under a frequency of 1 KH z and a maximum excitation field of 5 mOe. Table 1 shows the composition of the alloy samples, the content of fine crystal grains in the alloy and the average particle diameter.

[표 1]TABLE 1

표 1에 나타낸 바와같이 미세한 결정입자의 함량은 모든 시료들에서 60%이상이다. 합금의 조성은 IPC 분석으로 결정했다.As shown in Table 1, the content of fine crystal grains is more than 60% in all samples. The composition of the alloy was determined by IPC analysis.

자성특성을 표 2에 나타낸다.Magnetic properties are shown in Table 2.

비교예로서, Fe78Si9B13의 금냉합금(비교예, 시판제품)을 실시예 1과 동일한 조건에서 제조하고 이 시료들의 철손, 투자율, 포화자화 및 포화자기변형을 아래 표 2에 나타낸다.As a comparative example, a gold cold alloy (comparative example, commercially available product) of Fe 78 Si 9 B 13 was prepared under the same conditions as in Example 1, and the iron loss, permeability, saturation magnetization, and saturation magnetization of these samples are shown in Table 2 below.

[표 2]TABLE 2

위 표 2의 결과로부터 명백한 바와같이, 본 발명의 합금시료들의 철손과 투자율은 비교예와 거의 동일하며, 본 발명의 합금은 Fe-B계 비정질 연자성 합금을 대신하는 자성재료로서 충분히 실용적임이 밝혀졌다.As apparent from the results of Table 2, the iron loss and permeability of the alloy samples of the present invention is almost the same as the comparative example, the alloy of the present invention was found to be sufficiently practical as a magnetic material to replace the Fe-B-based amorphous soft magnetic alloy lost.

제1도는 단일 롤법에 의해 형성된 Fe88Zr9P2Cu1(원자%)(실시예 3)의 급냉합금을 620℃, 1시간 아르곤 분위기중에서 열처리한 경우의 X-레이 회절 곡선을 나타낸다. 도면으로부터 명백한 바와같이 열처리하여 얻은 합금의 구조는 주로 bcc구조를 갖는다.FIG. 1 shows an X-ray diffraction curve when the quenched alloy of Fe 88 Zr 9 P 2 Cu 1 (atomic%) (Example 3) formed by the single roll method was heat-treated in an argon atmosphere at 620 ° C. for 1 hour. As is apparent from the figure, the structure of the alloy obtained by heat treatment mainly has a bcc structure.

상술한 실시예의 결과로부터 명백한 바와 같이, 본 발명의 Fe-기제 연자성 합금은 Fe-P계 합금에 특정원소(들) 즉, 특히 Zr와 함께 Cu을 첨가함으로써 저철손, 고투자율 및 저포화자기변형과 같은 우수한 자성특성을 나타낸다. 따라서, 본 발명의 합금은 자기헤드, 고주파 트랜스포머, 포화기능 리액터, 쵸크코일등 Fe-B계 연자성 합금을 대신하는 자성재료로 널리 사용될 수 있다.As is apparent from the results of the above-described examples, the Fe-based soft magnetic alloy of the present invention is characterized by low iron loss, high permeability and low saturation by adding Cu to specific Fe (P) -based alloys, in particular Zr. Excellent magnetic properties such as deformation. Therefore, the alloy of the present invention can be widely used as a magnetic material to replace the Fe-B-based soft magnetic alloy such as a magnetic head, a high frequency transformer, a saturation functional reactor, a choke coil, and the like.

그밖에 본 발명의 Fe-기제 연자성 합금은 붕소(B)대신 인(P)을 사용하기 때문에 합금의 제조비를 줄일 수 있다.In addition, since the Fe-based soft magnetic alloy of the present invention uses phosphorus (P) instead of boron (B), the production cost of the alloy can be reduced.

Claims (12)

하기식으로 나타낸 바와같은 조성을 갖는 것이 특징인 Fe-기제 연자성 합금 Fe100-a-b-c-dPaMbM'cCud상기 식중 M은 Zr, Hf, Nb, Mo, W, Ta, Ti, V, Cr, Mn, Y 및 Ce로 구성된 그룹으로부터 선택한 적어도 하나의 원소이고, M'는 Si, Aℓ, Ga, Ge, Ru, Co, Ni, Sn, Sb 및 Pd로 구성된 그룹으로부터 선택한 적어도 하나의 원소이고, a, b, c 및 d는 각각 원자%이고 각각 0a≤25, 0b≤15, 0≤c≤20, 0≤d≤5를 만족한다.Fe-based soft magnetic alloy Fe 100-abcd P a M b M ' c Cu d characterized by having a composition as shown in the formula M is Zr, Hf, Nb, Mo, W, Ta, Ti, V, At least one element selected from the group consisting of Cr, Mn, Y and Ce, and M 'is at least one element selected from the group consisting of Si, Al, Ga, Ge, Ru, Co, Ni, Sn, Sb and Pd , a, b, c and d are each atomic% and satisfy 0a≤25, 0b≤15, 0≤c≤20 and 0≤d≤5, respectively. 제1항에 있어서, 상기 합금조직의 적어도 30%가 미세한 결정입자로 된 것이 특징인 Fe-기제 연자성 합금.2. The Fe-based soft magnetic alloy of claim 1, wherein at least 30% of the alloy structure is made of fine crystal grains. 제2항에 있어서, 상기 결정입자는 주로 철을 주체로 하는 bcc고용체인 것이 특징인 Fe-기제 연자성 합금.3. The Fe-based soft magnetic alloy of claim 2, wherein the crystal grain is a bcc solid solution mainly composed of iron. 제2항 또는 제3항에 있어서, 상기 결정입자의 평균 입경은 100㎚ 이하인 것이 특징인 Fe-기제 연자성 합금.The Fe-based soft magnetic alloy according to claim 2 or 3, wherein the average grain size of the crystal grains is 100 nm or less. 제1항에 있어서, 상기 합금의 포화자기변형(λS)은 +10×10-6∼-5×10-6의 범위내인 것이 특징인 Fe-기제 연자성 합금.The Fe-based soft magnetic alloy according to claim 1, wherein the saturation magnetostriction (λ S ) of the alloy is in the range of + 10 × 10 −6 to −5 × 10 −6 . 하기식으로 나타낸 조성을 갖는 급냉 합금을 액체급냉법, 박막형성법, 및 분말형성법으로부터 선택된 방법에 의해 제조하고, 상기 급냉 합금을 열처리하는 것이 특징인 Fe-기제 연자성 합금 제조방법.A quenching alloy having a composition represented by the following formula is prepared by a method selected from a liquid quenching method, a thin film forming method, and a powder forming method, and the quenching alloy is heat-treated. Fe100-a-b-c-dPaMbM'cCud Fe 100-abcd P a M b M ' c Cu d 상기 식중 M은 Zr, Hf, Nb, Mo, W, Ta, Ti, V, Cr, Mn, Y 및 Ce로 구성된 그룹으로부터 선택한 적어도 하나의 원소이고, M'는 Si, Aℓ, Ga, Ge, Ru, Co, Ni, Sn, Sb 및 Pd로 구성된 그룹으로부터 선택한 적어도 하나의 원소이고, a,b,c 및 d는 각각 원자%이고 각각 0a≤25, 0b≤15, 0≤c≤20, 0≤d≤5를 만족한다.Wherein M is at least one element selected from the group consisting of Zr, Hf, Nb, Mo, W, Ta, Ti, V, Cr, Mn, Y and Ce, and M 'is Si, Al, Ga, Ge, Ru At least one element selected from the group consisting of Co, Ni, Sn, Sb and Pd, a, b, c and d are each atomic% and are 0a≤25, 0b≤15, 0≤c≤20, 0≤ d≤5 is satisfied. 제6항에 있어서, 상기 급냉 합금의 열처리가 350∼700℃의 온도에서 24시간 이하동안 유지하는것인 Fe-기제 연자성 합금 제조방법.The method for producing a Fe-based soft magnetic alloy according to claim 6, wherein the heat treatment of the quenched alloy is maintained at a temperature of 350 to 700 ° C for 24 hours or less. 제6항에 있어서, 제1항 기재의 합금을 제조하는 것이 특징인 Fe-기제 연자성 합금 제조방법.7. The method of producing a Fe-based soft magnetic alloy according to claim 6, wherein the alloy of claim 1 is prepared. 제6항에 있어서, 제2항 기재의 합금을 제조하는 것이 특징인 Fe-기제 연자성 합금 제조방법.The method of producing a Fe-based soft magnetic alloy according to claim 6, wherein the alloy of claim 2 is prepared. 제6항에 있어서, 제3항 기재의 합금을 제조하는 것이 특징인 Fe-기제 연자성 합금 제조방법.The method of producing a Fe-based soft magnetic alloy according to claim 6, wherein the alloy of claim 3 is prepared. 제6항에 있어서, 제4항 기재의 합금을 제조하는 것이 특징인 Fe-기제 연자성 합금 제조방법.The method for producing an Fe-based soft magnetic alloy according to claim 6, wherein the alloy according to claim 4 is prepared. 제6항에 있어서, 제7항 기재의 합금을 제조하는 것이 특징인 Fe-기제 연자성 합금 제조방법.The method for producing an Fe-based soft magnetic alloy according to claim 6, wherein the alloy according to claim 7 is prepared.
KR1019930011091A 1992-06-17 1993-06-17 Fe-bane soft magnetic alloy & process for making same KR0131376B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15833892A JP3623970B2 (en) 1992-06-17 1992-06-17 Fe-based soft magnetic alloy and manufacturing method
JP92-158338 1992-07-17

Publications (2)

Publication Number Publication Date
KR940006157A KR940006157A (en) 1994-03-23
KR0131376B1 true KR0131376B1 (en) 1998-04-24

Family

ID=15669458

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930011091A KR0131376B1 (en) 1992-06-17 1993-06-17 Fe-bane soft magnetic alloy & process for making same

Country Status (5)

Country Link
EP (1) EP0575190B1 (en)
JP (1) JP3623970B2 (en)
KR (1) KR0131376B1 (en)
CA (1) CA2098532A1 (en)
DE (1) DE69313938T2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4444482A1 (en) * 1994-12-14 1996-06-27 Bosch Gmbh Robert Soft magnetic material
KR100916602B1 (en) * 2002-11-11 2009-09-11 엘지디스플레이 주식회사 Liquid crystal display device with soda-lime glass and method for fabricating of the same
CN102360670B (en) * 2011-10-24 2014-01-08 南京信息工程大学 Composite material with ferrite magnetic layer and amorphous soft magnetic core as well as preparation method thereof
CN104962821B (en) * 2015-05-26 2017-03-22 北京科技大学 Machining method of wire printer yoke iron seat part
JP7106919B2 (en) * 2018-03-23 2022-07-27 Tdk株式会社 Soft magnetic thin films, thin film inductors and magnetic products
US11349113B2 (en) 2018-04-10 2022-05-31 Lg Energy Solution, Ltd. Method of producing iron phosphide, positive electrode for lithium secondary battery comprising iron phosphide, and lithium secondary battery comprising same
WO2019198949A1 (en) * 2018-04-10 2019-10-17 주식회사 엘지화학 Method of producing iron phosphide, positive electrode for lithium secondary battery comprising iron phosphide, and lithium secondary battery comprising same
KR102229460B1 (en) * 2018-04-10 2021-03-18 주식회사 엘지화학 Method for manufacturing iron phosphide
DE102019105215A1 (en) * 2019-03-01 2020-09-03 Vacuumschmelze Gmbh & Co. Kg Alloy and method of making a magnetic core
KR20220038899A (en) * 2020-09-21 2022-03-29 엘지전자 주식회사 Alloy powder and method of fabrication the same
CN112176222B (en) * 2020-10-30 2021-12-17 东北大学 Ce-containing Fe-Ni permalloy material and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2713711B2 (en) * 1987-11-17 1998-02-16 日立金属株式会社 Security sensor marker
JPH04272159A (en) * 1991-01-08 1992-09-28 Sumitomo Metal Ind Ltd Ferrous magnetic alloy

Also Published As

Publication number Publication date
EP0575190A3 (en) 1994-01-26
EP0575190A2 (en) 1993-12-22
DE69313938D1 (en) 1997-10-23
JPH062076A (en) 1994-01-11
CA2098532A1 (en) 1993-12-18
JP3623970B2 (en) 2005-02-23
EP0575190B1 (en) 1997-09-17
DE69313938T2 (en) 1998-03-05
KR940006157A (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
EP0271657B1 (en) Fe-base soft magnetic alloy and method of producing same
JPH044393B2 (en)
KR0131376B1 (en) Fe-bane soft magnetic alloy & process for making same
JP3357386B2 (en) Soft magnetic alloy, method for producing the same, and magnetic core
JP3231149B2 (en) Noise filter
JP3655321B2 (en) Method for producing Fe-based soft magnetic alloy powder
JP2667402B2 (en) Fe-based soft magnetic alloy
EP0513385B1 (en) Iron-base soft magnetic alloy
JPH07103453B2 (en) Alloy with excellent permeability and method for producing the same
JP2919886B2 (en) Fe-based soft magnetic alloy
JP3558350B2 (en) Fe-based soft magnetic alloy and manufacturing method
JP2718261B2 (en) Magnetic alloy and method for producing the same
JP3322407B2 (en) Fe-based soft magnetic alloy
JPH03271346A (en) Soft magnetic alloy
JPH04341544A (en) Fe base soft magnetic alloy
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
KR0153174B1 (en) Fe-al based feeble magnetic alloy having high magnetic permeability
JPH04272159A (en) Ferrous magnetic alloy
JPH0578794A (en) Thin strip and powder of hyperfine-grained alloy and magnetic core using the same
EP0868733B1 (en) Soft magnetic alloys
JPH0448004A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
JPH0641698A (en) Fe-base soft-magnetic alloy
JPH0641700A (en) Thin magnetic film
JPH03215650A (en) Ultrafine crystalline alloy having perminvar properties and its manufacture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee