JPH03215650A - Ultrafine crystalline alloy having perminvar properties and its manufacture - Google Patents

Ultrafine crystalline alloy having perminvar properties and its manufacture

Info

Publication number
JPH03215650A
JPH03215650A JP1270913A JP27091389A JPH03215650A JP H03215650 A JPH03215650 A JP H03215650A JP 1270913 A JP1270913 A JP 1270913A JP 27091389 A JP27091389 A JP 27091389A JP H03215650 A JPH03215650 A JP H03215650A
Authority
JP
Japan
Prior art keywords
alloy
ultrafine
group
heat treatment
crystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1270913A
Other languages
Japanese (ja)
Other versions
JP2934460B2 (en
Inventor
Katsuto Yoshizawa
克仁 吉沢
Kiyotaka Yamauchi
山内 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1270913A priority Critical patent/JP2934460B2/en
Publication of JPH03215650A publication Critical patent/JPH03215650A/en
Application granted granted Critical
Publication of JP2934460B2 publication Critical patent/JP2934460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a ultrafine crystalline alloy with certain magnetic permeability in a low exciting magnetic field and to improve its perminvar properties by subjecting an amorphous alloy consisting essentially of Fe, an A group (Cu, Ag and Au) and an M group (Nb, W, Ta or the like) to heat treatment under specified conditions. CONSTITUTION:An amorphous alloy consisting essentially of Fe, an A group (at least one kind from among Cu, Ag and Au) and an M group (at least one kind from among Nb, W, Ta, Zr, Hf, Ti, V, Mn, Cr and Mo) is manufactured. This alloy is subjected to heat treatment in an atmosphere of a nitrogen gas or the like to convert at least >=50% of the crystals in the structure into fine ones having <=1000Angstrom average grain size. Next, the alloy is subjected to heat treatment at the Curie temp. or below of a bccFe solid soln. phase formed by crystallization. In this way, the ultrafine crystalline alloy showing perminvar properties having a constricted hysteresis loop, having high magnetic permeability and excellent in stability can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、低い励磁磁場における比較的一定の透磁率及
びくびれたヒステリシスループをもつパーミンバー特性
を備えた超微細な結晶粒組織からなる合金及びその製造
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an alloy consisting of an ultra-fine grain structure with perminbar characteristics having a relatively constant magnetic permeability and a constricted hysteresis loop at low excitation magnetic fields. It concerns its manufacturing method.

[従来の技術] 従来、励磁磁場が低い領域で比較的一定の透磁率を有す
る合金としては、Fe−Ni−Co系のパーミンバー合
金が知られている。これらの合金は通常結晶質であり、
代表的組成としては20%It%Fe−60tzt%C
o−20wt%Niや30wt%Fe−25wt%Co
−45wt%Ni等が知られている。代表的特性は直流
の保磁力Hcが0.5 0e,初透磁率μ。が100、
残留磁束密度が7.5kGである(7,5wt%Mo−
45wt%Ni−25wtlCo−22.5wt%Fe
)。
[Prior Art] Fe--Ni--Co based perminver alloys have been known as alloys that have a relatively constant magnetic permeability in a region where the excitation magnetic field is low. These alloys are usually crystalline;
Typical composition is 20%It%Fe-60tzt%C
o-20wt%Ni and 30wt%Fe-25wt%Co
-45wt%Ni etc. are known. Typical characteristics are DC coercive force Hc of 0.50e and initial magnetic permeability μ. is 100,
The residual magnetic flux density is 7.5 kG (7.5 wt% Mo-
45wt%Ni-25wtlCo-22.5wt%Fe
).

また、近年このような特性を示すものとして、Co−F
e−Ni系のアモルファス合金が報告されている(特開
昭62−170446号)。これによれば、Bsが0.
5T(5kG)〜1.OT (10kG)、励磁磁場が
低い領域における透磁率μが2000から30000程
度の値が得られている。
In recent years, Co-F has also been shown to exhibit such properties.
An e-Ni-based amorphous alloy has been reported (Japanese Unexamined Patent Publication No. 170446/1982). According to this, Bs is 0.
5T (5kG) ~1. OT (10 kG) and a magnetic permeability μ of about 2,000 to 30,000 in a region with a low excitation magnetic field have been obtained.

ところで、このようなバーミンバー特性を示す合金は,
各種センサー材として非常に有用である。
By the way, alloys that exhibit such verminvar characteristics are:
Very useful as various sensor materials.

たとえば、低励磁磁場領域で比較的一定の透磁率を示す
ことから、微弱な電流を検出する電流センサーに利用で
きる。また非線形なヒステリシス曲線を示すため、高周
波で励磁し磁化した場合、高調波が発生し、これを検出
することにより盗難防止センサー等にも利用できる。こ
れらの用途に対しては低磁場領域で比較的一定の透磁率
を示すことだけでなく、感度の点から低励磁磁場におい
てできるだけ高い透磁率を示すことも必要である。
For example, since it exhibits a relatively constant magnetic permeability in a low excitation magnetic field region, it can be used in current sensors that detect weak currents. Furthermore, since it exhibits a nonlinear hysteresis curve, when it is excited and magnetized at a high frequency, harmonics are generated, which can be detected and used as anti-theft sensors. For these applications, it is necessary not only to exhibit a relatively constant magnetic permeability in the low magnetic field region, but also to exhibit a magnetic permeability as high as possible in the low excitation magnetic field from the viewpoint of sensitivity.

また、信頼性の点から、経時変化が小さいことも要求さ
れる。更には、飽和磁束密度が高いことも部品の小型化
の面で重要となる。
In addition, from the viewpoint of reliability, it is also required that the change over time is small. Furthermore, a high saturation magnetic flux density is also important in terms of miniaturization of components.

[発明が解決しようとする課題コ しかしながら、従来の結晶質のパーミンバー合金は、H
cが大きいため低磁場領域の透磁率μ。が低く十分な感
度が得られない問題がある。これに対して,パーミンバ
ー特性を示すアモルファス合金の場合はμ。は大きいが
、熱安定性や経時安定性に劣り、過酷な条件下や特性の
変化を嫌う用途には不適である。また飽和磁束密度は前
述のアモルファス合金の場合IT(10kG)以下であ
り、十分とはいえない。
[Problems to be Solved by the Invention] However, conventional crystalline Perminvar alloys are
Since c is large, the magnetic permeability μ in the low magnetic field region. There is a problem that the sensitivity is low and sufficient sensitivity cannot be obtained. On the other hand, in the case of an amorphous alloy that exhibits perminvar characteristics, μ. Although it has a large value, it has poor thermal stability and stability over time, making it unsuitable for applications where harsh conditions or changes in properties are averse. Further, the saturation magnetic flux density is less than IT (10 kG) in the case of the amorphous alloy mentioned above, which is not sufficient.

[課題を解決するための手段コ 上記問題点を解決するために,本発明者らは鋭意検討の
結果、Fe,A(Cu,Ag及びAuからなる群から選
ばれた少なくとも一種の元素)およびM(ただし阿はN
b,W,Ta,Zr,Hf,Ti,W,Mn,Cr及び
MOからなる群から選ばれた少なくとも一種の元素)を
必須元素として含み,組織の少なくとも50%が平均粒
径1000人以下の微細な結晶粒からなる合金を、前記
組成の非晶質合金を製造し、これを加熱し、組織の少な
くとも50%が平均粒径1000人以下の微細な結晶と
なるように熱処理した後に、結晶化により形成したbc
cFe固溶体相のキュリー温度以下の温度で熱処理する
ことにより製造した場合に、低い励磁磁界における比較
的一定な透磁率μ。及びくびれたヒステリシスループを
もつパーミンバー特性を示す合金が得られることを見い
だし本発明に想到した。
[Means for Solving the Problems] In order to solve the above problems, the present inventors, as a result of intensive studies, found that Fe, A (at least one element selected from the group consisting of Cu, Ag and Au) and M (but A is N)
b, W, Ta, Zr, Hf, Ti, W, Mn, Cr, and MO) as an essential element, and at least 50% of the structure has an average grain size of 1000 grains or less. An alloy consisting of fine crystal grains is produced by producing an amorphous alloy with the above composition, heating it, and heat-treating it so that at least 50% of the structure becomes fine crystals with an average grain size of 1000 grains or less. bc formed by
Relatively constant magnetic permeability μ at low excitation magnetic fields when produced by heat treatment at temperatures below the Curie temperature of the cFe solid solution phase. The present inventors have discovered that an alloy exhibiting perminver characteristics with a constricted hysteresis loop can be obtained, and have conceived the present invention.

本発明においてA (Cu , Ag及びAuからなる
群から選ばれた少なくとも一種の元素)およびM(ただ
しXはZr , Hf , Ti , V , Mn 
, Cr及びMoからなる群から選ばれる少なくとも一
種の元素)は必須元素である。A及びHの複合添加効果
により組織は著しく微細化され、低い励磁磁界における
比較的一定な透磁率及びくびれたヒステリシスループを
もつパーミンバー特性を示しかつ高透磁率で安定性に優
れた合金が得られる。組織の少なくとも50%は平均粒
径1000人以下の微細な結晶粒からなる必要がある。
In the present invention, A (at least one element selected from the group consisting of Cu, Ag and Au) and M (where X is Zr, Hf, Ti, V, Mn)
, Cr, and Mo) are essential elements. Due to the combined addition effect of A and H, the structure is significantly refined, and an alloy with high magnetic permeability and excellent stability is obtained, which exhibits perminbar characteristics with a relatively constant magnetic permeability and a constricted hysteresis loop in a low excitation magnetic field. . At least 50% of the structure must consist of fine crystal grains with an average grain size of 1000 grains or less.

これは、結晶粒が50%未満、粒径が1000人以上に
なると軟磁気特性が劣下し、バーミンバー特性を示して
も初透磁率μ。が低くなり好ましくなく、かつ熱安定性
及び経時安定性にも劣り好ましくないためである。より
好ましい平均粒径は500人以下、特に好ましくは、2
0人から200人である。代表的合金組成としては、 組成式: (Fe1−aMa)x n a −x−F−z−(X−
4−yA,SxyB,M’ al’l” axy(at
%) (但し、旧よCo及び/またはNiであり、AはCu,
 Ag、Auから選ばれる少なくとも一種の元素、『は
Nb,W,Ta,Zr,Hf,Ti,W,Mn,Cr及
びMOからなる群から選ばれた少なくとも1種の元素、
κ″はAl,白金族元素,Sc,Y,Zn,Sn,Re
からなる群から選ばれた少なくとも1種の元素,XはC
,Ge,P,Ga,Sb,In,Be,Asからなる群
から選ばれた少なくとも1種の元素であり、a,X+V
+Z+C1tβ及びγはそれぞれO≦a≦0.5,0.
1≦x≦3,0≦y≦30,0≦2≦25,5≦y+z
≦30.0.1≦α≦30.0≦β≦10,0≦γ≦1
0を満たす。)により表される組成が挙げられる。組織
の残部は通常非晶質であるが、実質的に結晶質からなる
合金でも同様な特性が得られる。
This is because when the crystal grain content is less than 50% and the grain size is 1000 or more, the soft magnetic properties deteriorate, and even if Verminvar properties are exhibited, the initial magnetic permeability μ is low. This is because the thermal stability and stability over time are also poor, which is not preferable. The average particle size is more preferably 500 or less, particularly preferably 2
From 0 to 200 people. A typical alloy composition is as follows: (Fe1-aMa) x na -x-F-z-(X-
4-yA, SxyB, M'al'l'axy(at
%) (However, in the old case, it was Co and/or Ni, and A was Cu,
at least one element selected from Ag, Au; at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, W, Mn, Cr and MO;
κ″ is Al, platinum group element, Sc, Y, Zn, Sn, Re
At least one element selected from the group consisting of, X is C
, Ge, P, Ga, Sb, In, Be, As, and a, X+V
+Z+C1tβ and γ are O≦a≦0.5, 0.
1≦x≦3, 0≦y≦30, 0≦2≦25, 5≦y+z
≦30.0.1≦α≦30.0≦β≦10, 0≦γ≦1
Fills 0. ). Although the remainder of the structure is usually amorphous, similar properties can be obtained with substantially crystalline alloys.

もう一つの本発明は、前記組成の非晶質合金を製造する
工程とこれを加熱し、組織の少なくとも50%が平均粒
径1000人以下の微細な結晶となるように熱処理する
工程と、結晶化により形成したbccFe固溶体相のキ
ュリー温度以下の温度で熱処理する工程からなることを
特徴とする低い励磁磁界における比較的一定な透磁率μ
。及びくびれたヒステリシスループをもつパーミンバー
特性を備えた超微結晶合金の製造方法である。
Another aspect of the present invention includes a step of manufacturing an amorphous alloy having the above composition, a step of heating the amorphous alloy so that at least 50% of the structure becomes fine crystals with an average grain size of 1000 grains or less, and A relatively constant magnetic permeability μ in a low excitation magnetic field, characterized by comprising a step of heat-treating the bccFe solid solution phase formed by oxidation at a temperature below the Curie temperature.
. and a method for producing an ultrafine crystalline alloy having perminver characteristics with a constricted hysteresis loop.

上記製造方法により超微結晶合金において、低い励磁磁
界における比較的一定な透磁率μ。及びくびれたヒステ
リシスループをもつパーミンバー特性が得られかつ、初
透磁率が高く安定性にも優れた合金を製造できる。はじ
めの熱処理は組織を微細化し優れた軟磁気特性と熱的安
定性、経時安定性を得るために行い、bccFe固溶体
のキュリー温度以下で行う熱処理は比較的一定な透磁率
μ。
In the ultrafine-crystalline alloy produced by the above manufacturing method, the magnetic permeability μ is relatively constant at a low excitation magnetic field. It is possible to produce an alloy that has perminver characteristics with a constricted hysteresis loop, has a high initial magnetic permeability, and has excellent stability. The initial heat treatment is performed to refine the structure and obtain excellent soft magnetic properties, thermal stability, and stability over time.The heat treatment performed below the Curie temperature of the bccFe solid solution results in a relatively constant magnetic permeability μ.

及びくびれたヒステリシスループをもつバーミンバー特
性を得るために行う。より好ましいキュリー温度以下の
温度の熱処理条件は300℃以上で4時間以上である。
This is done in order to obtain vermin bar characteristics with a constricted hysteresis loop. A more preferable heat treatment condition at a temperature below the Curie temperature is 300° C. or above for 4 hours or more.

この範囲で特に優れたパーミンバー特性が得られる。ま
た、Co,Nu等の元素を含む合金の場合よりパーミン
バー特性が得られ易い。
Particularly excellent perminver properties can be obtained within this range. Further, perminbar properties are more easily obtained than in the case of alloys containing elements such as Co and Nu.

くびれたB−Hカーブが得られる理由は、十分明かには
なっていないが、次の理由が考えられる。
The reason why a constricted B-H curve is obtained is not fully clear, but the following reasons can be considered.

結晶化し微細結晶粒が形成した合金をキュリー温度以下
で熱処理を行うと合金の磁区構造を反映した内部磁場の
方向に構成原子が異方的に配列し誘導磁気異方性が生ず
る。このため、磁区の固着が起こり、ある方向に磁場を
印加した場合磁化しにくい領域が合金中に形成し、パー
ミンバー特性を示すようになると考えられる。しかし、
このような異方性は本発明合金の場合室温付近では生じ
にくく、非晶質合金に較べて著しく安定である.非晶質
合金の場合は、100℃付近の低い温度でも特性が変化
し安定性に欠け実用的でない。
When an alloy that has crystallized into fine grains is heat-treated below the Curie temperature, the constituent atoms are arranged anisotropically in the direction of the internal magnetic field that reflects the magnetic domain structure of the alloy, resulting in induced magnetic anisotropy. For this reason, it is thought that fixation of magnetic domains occurs, and a region that is difficult to magnetize when a magnetic field is applied in a certain direction is formed in the alloy, causing the alloy to exhibit perminbar characteristics. but,
Such anisotropy hardly occurs in the case of the alloy of the present invention near room temperature, and it is significantly more stable than an amorphous alloy. In the case of amorphous alloys, the properties change even at low temperatures around 100° C., resulting in lack of stability and impractical use.

[実施例] 以下本発明を実施例に基づいて説明するが本発明はこれ
らに限定されるものではない。
[Examples] The present invention will be described below based on Examples, but the present invention is not limited thereto.

実施例1 原子2でCul.2%,Nb2.9%SL13.7%,
88.8%残部実質的にFeからなる合金溶湯を単ロー
ル法により急冷し、厚さ17μm、幅2mmの非晶質合
金薄帯を作製した。
Example 1 Cul. 2%, Nb2.9%SL13.7%,
A molten alloy consisting essentially of 88.8% Fe was rapidly cooled by a single roll method to produce an amorphous alloy ribbon having a thickness of 17 μm and a width of 2 mm.

次いで、この合金薄帯を長さ100mmに切断した。Next, this alloy ribbon was cut into a length of 100 mm.

次ぎにこの磁心を窒素ガス雰囲気中570℃で1時間熱
処理した。熱処理後の合金は透過電子顕微鏡による観察
の結果、結晶粒径約100人程度の超微細な結晶が組織
のほとんどを占めていることが確認された。主相である
bccFe相のキュリー温度は約570℃であった。
Next, this magnetic core was heat treated at 570° C. for 1 hour in a nitrogen gas atmosphere. After the heat treatment, the alloy was observed using a transmission electron microscope, and it was confirmed that ultrafine crystals with a crystal grain size of approximately 100 nm accounted for most of the structure. The Curie temperature of the bccFe phase, which is the main phase, was about 570°C.

この熱処理後の合金を次ぎに450℃に12h保持し本
発明合金を作製し直流B−Hカーブを測定した。
The alloy after this heat treatment was then held at 450° C. for 12 hours to produce an alloy of the present invention, and its DC B-H curve was measured.

得られた結果を第1図に示す。The results obtained are shown in FIG.

くびれたヒステリシスカーブを示し、パーミンバー特性
を示すことが分かる。また、保磁力は小さく初期の透磁
率が高く優れていることが分かる。
It can be seen that it shows a constricted hysteresis curve and exhibits perminver characteristics. Furthermore, it can be seen that the coercive force is small and the initial magnetic permeability is high and excellent.

また、飽和磁束密度は1 2kG以上ありCo基の非晶
質合金より優れている。
Furthermore, the saturation magnetic flux density is 12 kG or more, which is superior to Co-based amorphous alloys.

実施例2 原子%テcul.1%,Nb3.2%,Si13.0%
,85.1%,Mo0.6%残部実質的にFeからなる
合金溶湯を単ロール法により急冷し、板厚16μm,幅
1.5mmの非晶質合金を作製した。次ぎにこの合金を
150+amに切断し窒素ガス雰囲気中575℃で45
分間熱処理した。熱処理後の合金は透過電子顕微鏡によ
る観察の結果、結晶粒径約100人程度の超微細な結晶
が組織のほとんどを占めていることが確認された。主相
であるbccFe相のキュリー温度は約570’Cであ
った。次ぎに熱処理後の合金を第2図に示す熱処理温度
で12時間熱処理した。熱処理後の直流B−Hカーブを
第2図に示す。
Example 2 Atomic % tecul. 1%, Nb3.2%, Si13.0%
, 85.1%, Mo 0.6%, and the balance substantially Fe was rapidly cooled by a single roll method to produce an amorphous alloy having a plate thickness of 16 μm and a width of 1.5 mm. Next, this alloy was cut into 150+ am pieces and heated at 575°C in a nitrogen gas atmosphere at 45°C.
Heat treated for minutes. After the heat treatment, the alloy was observed using a transmission electron microscope, and it was confirmed that ultrafine crystals with a crystal grain size of approximately 100 nm accounted for most of the structure. The Curie temperature of the bccFe phase, which is the main phase, was about 570'C. Next, the heat treated alloy was heat treated for 12 hours at the heat treatment temperature shown in FIG. FIG. 2 shows the DC B-H curve after heat treatment.

特に300℃以上の熱処理の場合に大きくくびれだヒス
テリシスカーブとなり顕著なパーミンバー特性を示すこ
とが分かる。
In particular, it can be seen that in the case of heat treatment at 300° C. or higher, the hysteresis curve becomes significantly constricted and exhibits remarkable perminbar characteristics.

実施例3 原子% テA u 1 . O%,Nb3.4%Si1
3.7%,89.2%,V0.6%残部実質的にFeか
らなる合金溶湯を単ロール法により急冷し、板厚16μ
m,幅1.1+n+nの非晶質合金を作製した。次ぎに
この合金を140mmに切断しArガス雰囲気中580
℃で40分熱処理した。熱処理後の合金は透過電子顕微
鏡による観察の結果、結晶粒径約100人程度の超微細
な結晶が組織のほとんどを占めていることが確認された
。主相であるbccFe相のキュリー温度は約570℃
であった。次ぎに熱処理後の合金を第3図に示す熱処理
時間熱処理を行った。熱処理温度はキュリー温度より低
い400℃とした。熱処理後の直流B−Hカーブを第3
図に示す。
Example 3 Atomic % TeA u 1 . O%, Nb3.4%Si1
A molten alloy consisting of 3.7%, 89.2%, V0.6% and the remainder substantially Fe was rapidly cooled by a single roll method to form a plate with a thickness of 16 μm.
An amorphous alloy with a width of 1.1+n+n and a width of 1.1+n+n was produced. Next, this alloy was cut into 140 mm pieces and 580 mm was cut into 140 mm pieces in an Ar gas atmosphere.
Heat treatment was performed at ℃ for 40 minutes. After the heat treatment, the alloy was observed using a transmission electron microscope, and it was confirmed that ultrafine crystals with a crystal grain size of approximately 100 nm accounted for most of the structure. The Curie temperature of the main phase, bccFe phase, is approximately 570°C
Met. Next, the heat-treated alloy was heat-treated for the heat treatment time shown in FIG. The heat treatment temperature was 400°C, which is lower than the Curie temperature. The DC B-H curve after heat treatment is the third
As shown in the figure.

実施例4 第1表に示す組成の非晶質合金を単ロール法、スパッタ
法により作製し、結晶化熱処理後、450℃で4h熱処
理を行った。熱処理後の合金は透過電子顕微鏡による観
察の結果、結晶粒径約100人程度の超微細な結晶が組
織のほとんどを占めていることが確認された。
Example 4 Amorphous alloys having the compositions shown in Table 1 were produced by a single roll method and a sputtering method, and after a crystallization heat treatment, a heat treatment was performed at 450° C. for 4 hours. After the heat treatment, the alloy was observed using a transmission electron microscope, and it was confirmed that ultrafine crystals with a crystal grain size of approximately 100 nm accounted for most of the structure.

第 1 表 次ぎにこの合金をキュリー温度以下で熱処理し、直流B
−Hカーブ及び透磁率μ。を測定した。熱処理後の合金
は実施例1と同様にパーミンバー特性を示した。次ぎに
この合金を150℃に保持し、初期の透磁率μ。。,と
100時間後のμ。100を測定した。
Table 1 Next, this alloy was heat treated below the Curie temperature, and the direct current B
-H curve and magnetic permeability μ. was measured. The alloy after heat treatment exhibited perminver characteristics similar to Example 1. This alloy is then held at 150°C and its initial magnetic permeability μ. . , and μ after 100 hours. 100 was measured.

初期の透磁率μ。。,と100時間後のμ。100の比
μ。。/μo100を示す。
Initial permeability μ. . , and μ after 100 hours. 100 ratio μ. . /μo100 is shown.

本発明合金は従来の非晶質合金に較べμ。。/μ。The alloy of the present invention has a smaller μ than conventional amorphous alloys. . /μ.

100の値が1に近く安定である。また従来の結晶材に
較べ著しくμ。が大きく感度を高くできるため磁気応用
により適することがわかる。
The value of 100 is close to 1 and stable. Also, the μ is significantly smaller than that of conventional crystalline materials. It can be seen that this method is more suitable for magnetic applications because the sensitivity can be increased.

[発明の効果] 本発明によれば、低い励磁磁界における比較的一定な透
磁率及びくびれたヒステリシスループをもつパーミンバ
ー特性を示し、透磁率が高く安定性にも優れた超微結晶
合金及びその製法を提供できるためその効果は著しいも
のがある。
[Effects of the Invention] According to the present invention, an ultrafine-crystalline alloy exhibiting perminver characteristics with relatively constant magnetic permeability and a constricted hysteresis loop in a low excitation magnetic field, and exhibiting high magnetic permeability and excellent stability, and a method for producing the same are provided. The effect is remarkable because it can provide the following.

【図面の簡単な説明】 第1図は、本発明合金の直流B−Hカーブの一例を示し
た図、第2図は本発明番J係わる合金の直流B−}1カ
ーブの熱処理温度による変化を示した図、第3図は本発
明に係わる合金の直流B−Hカーブの熱処理時間による
変化を示した図である。 第 1 図 第 2 図 第 3 図 手 続 補 正 」茎 口 (自発) 平成 2年 5月22日 特a庁長官 殿 1、事イ′1の表示 重成 1年 特 許 願 第27091 3号 2、発明の名称 パーミンバー特性を備えた超微結晶台金及ひ゛その製1
人 3、補[I:.ち・する者 事イ1との関係
[Brief Description of the Drawings] Figure 1 is a diagram showing an example of the DC B-H curve of the alloy of the present invention, and Figure 2 is a diagram showing changes in the DC B-1 curve of the alloy according to the present invention No. J depending on the heat treatment temperature. FIG. 3 is a diagram showing changes in the DC B-H curve of the alloy according to the present invention depending on the heat treatment time. Figure 1 Figure 2 Figure 3 Figure 3 Procedural Amendments” (Spontaneous) May 22, 1990 To the Commissioner of the Special Agency for Special Agents 1, Indication of Matter A’1 Patent Application No. 27091 No. 3 2, Invention Ultrafine crystal base metal with perminbar properties and its manufacture 1
Person 3, supplementary [I:. Relationship with 1.

Claims (6)

【特許請求の範囲】[Claims] (1)Fe,A(Cu,Ag及びAuからなる群から選
ばれた少なくとも一種の元素)およびM(ただしMはN
b,W,Ta,Zr,Hf,Ti,V,Mn,Cr及び
Moからなる群から選ばれた少なくとも一種の元素)を
必須元素として含み、組織の少なくとも50%が平均粒
径1000Å以下の微細な結晶粒からなり、低い励磁磁
界における比較的一定な透磁率及びくびれたヒステリシ
スループをもつパーミンバー特性を備えたことを特徴と
する超微結晶合金。
(1) Fe, A (at least one element selected from the group consisting of Cu, Ag, and Au) and M (where M is N
b, W, Ta, Zr, Hf, Ti, V, Mn, Cr, and Mo) as an essential element, and at least 50% of the structure is fine with an average grain size of 1000 Å or less An ultrafine-crystalline alloy characterized by having relatively constant magnetic permeability in a low excitation magnetic field and perminbar characteristics having a constricted hysteresis loop.
(2)組成式: (Fe_1_−_aM_a)_1_0_0_−_x_−
_y_−_z_−_α_−_β_−_γA_xSi_y
B_zM’_αM”_βX_γ(at%) (但し、MはCo及び/またはNiであり、AはCu、
Ag、Auから選ばれる少なくとも一種の元素、M’は
Nb,W,Ta,Zr,Hf,Ti,V,Mn,Cr及
びMoからなる群から選ばれた少なくとも1種の元素、
M”はAl,白金族元素,Sc,Y,Zn,Sn,Re
からなる群から選ばれた少なくとも1種の元素、XはC
,Ge,P,Ga,Sb,In,Be,Asからなる群
から選ばれた少なくとも1種の元素であり、a,x,y
,z,α,β及びγはそれぞれ0≦a≦0.5,0.1
≦x≦3,0≦y≦30,0≦z≦25,5≦y+z≦
30,0.1≦α≦30,0≦β≦10,0≦γ≦10
を満たす。)により表される組成からなることを特徴と
する請求項1に記載の超微結晶磁性合金。
(2) Composition formula: (Fe_1_-_aM_a)_1_0_0_-_x_-
_y_−_z_−_α_−_β_−_γA_xSi_y
B_zM'_αM”_βX_γ(at%) (However, M is Co and/or Ni, A is Cu,
At least one element selected from Ag and Au; M' is at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, V, Mn, Cr and Mo;
M” is Al, platinum group element, Sc, Y, Zn, Sn, Re
at least one element selected from the group consisting of, X is C
, Ge, P, Ga, Sb, In, Be, As, at least one element selected from the group consisting of a, x, y
, z, α, β and γ are 0≦a≦0.5, 0.1, respectively
≦x≦3, 0≦y≦30, 0≦z≦25, 5≦y+z≦
30, 0.1≦α≦30, 0≦β≦10, 0≦γ≦10
satisfy. ) The ultrafine-crystalline magnetic alloy according to claim 1, wherein the ultrafine-crystalline magnetic alloy has a composition represented by:
(3)組織の残部が非晶質であることを特徴とする請求
項1乃至2のいずれかに記載の超微結晶磁性合金。
(3) The ultrafine-crystalline magnetic alloy according to claim 1, wherein the remainder of the structure is amorphous.
(4)実質的に結晶質からなることを特徴とする請求項
1乃至2のいずれかに記載の超微結晶磁性合金。
(4) The ultrafine-crystalline magnetic alloy according to any one of claims 1 to 2, characterized in that it is substantially crystalline.
(5)前記組成の非晶質合金を製造する工程とこれを加
熱し、組織の少なくとも50%が平均粒径1000Å以
下の微細な結晶となるように熱処理する工程と、結晶化
により形成したbccFe固溶体相のキュリー温度以下
の温度で熱処理する工程からなることを特徴とする低い
励磁磁界における比較的一定な透磁率及びくびれたヒス
テリシスループをもつパーミンバー特性を備えた超微結
晶合金の製造方法。
(5) A process of manufacturing an amorphous alloy having the above composition, a process of heating the amorphous alloy so that at least 50% of the structure becomes fine crystals with an average grain size of 1000 Å or less, and bccFe formed by crystallization. A method for producing an ultrafine-crystalline alloy having perminver properties with a relatively constant magnetic permeability and a constricted hysteresis loop in a low excitation magnetic field, the method comprising the step of heat treatment at a temperature below the Curie temperature of a solid solution phase.
(6)キュリー温度以下の温度の熱処理を300℃以上
でかつ4時間以上行うことを特徴とする請求項5に記載
の超微結晶磁性合金の製造方法。
(6) The method for producing an ultrafine-crystalline magnetic alloy according to claim 5, characterized in that the heat treatment at a temperature below the Curie temperature is carried out at 300° C. or above for 4 hours or more.
JP1270913A 1989-10-18 1989-10-18 Ultra-microcrystalline alloy with permimber properties and method for producing the same Expired - Lifetime JP2934460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1270913A JP2934460B2 (en) 1989-10-18 1989-10-18 Ultra-microcrystalline alloy with permimber properties and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1270913A JP2934460B2 (en) 1989-10-18 1989-10-18 Ultra-microcrystalline alloy with permimber properties and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03215650A true JPH03215650A (en) 1991-09-20
JP2934460B2 JP2934460B2 (en) 1999-08-16

Family

ID=17492735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1270913A Expired - Lifetime JP2934460B2 (en) 1989-10-18 1989-10-18 Ultra-microcrystalline alloy with permimber properties and method for producing the same

Country Status (1)

Country Link
JP (1) JP2934460B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525655A (en) * 2003-04-02 2006-11-09 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト Iron core and its manufacture and use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525655A (en) * 2003-04-02 2006-11-09 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト Iron core and its manufacture and use

Also Published As

Publication number Publication date
JP2934460B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
US4152144A (en) Metallic glasses having a combination of high permeability, low magnetostriction, low ac core loss and high thermal stability
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
US5160379A (en) Fe-base soft magnetic alloy and method of producing same
JPH044393B2 (en)
JPH0639663B2 (en) Magnetic metallic glass at least 90% glassy and method of making same
JP4101868B2 (en) Improved harmonic marker formed from Fe-Ni-based soft magnetic alloy with nanocrystalline structure
JP3623970B2 (en) Fe-based soft magnetic alloy and manufacturing method
JP2005520931A (en) Iron-based amorphous alloy with linear BH loop
JPH02236259A (en) Alloy excellent in iso-permeability and its production
JPH01290744A (en) Fe-base soft-magnetic alloy
JPH03215650A (en) Ultrafine crystalline alloy having perminvar properties and its manufacture
JP2718261B2 (en) Magnetic alloy and method for producing the same
JP3558350B2 (en) Fe-based soft magnetic alloy and manufacturing method
JPH0277555A (en) Fe-base soft-magnetic alloy
JP3322407B2 (en) Fe-based soft magnetic alloy
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH01247556A (en) Fe-base magnetic alloy excellent in iso-permeability characteristic
JPH03271346A (en) Soft magnetic alloy
JPH01290746A (en) Soft-magnetic alloy
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JPH04272159A (en) Ferrous magnetic alloy
KR920009167B1 (en) Soft magnetic materials
JPH0448004A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same