JP2005068451A - Fe BASED SOFT MAGNETIC BULK AMORPHOUS-NANOCRYSTAL DUAL PHASE ALLOY, AND ITS PRODUCTION METHOD - Google Patents

Fe BASED SOFT MAGNETIC BULK AMORPHOUS-NANOCRYSTAL DUAL PHASE ALLOY, AND ITS PRODUCTION METHOD Download PDF

Info

Publication number
JP2005068451A
JP2005068451A JP2003209153A JP2003209153A JP2005068451A JP 2005068451 A JP2005068451 A JP 2005068451A JP 2003209153 A JP2003209153 A JP 2003209153A JP 2003209153 A JP2003209153 A JP 2003209153A JP 2005068451 A JP2005068451 A JP 2005068451A
Authority
JP
Japan
Prior art keywords
alloy
soft magnetic
atomic
temperature
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003209153A
Other languages
Japanese (ja)
Other versions
JP3983207B2 (en
Inventor
Akihisa Inoue
明久 井上
Horyu Chin
宝龍 沈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003209153A priority Critical patent/JP3983207B2/en
Publication of JP2005068451A publication Critical patent/JP2005068451A/en
Application granted granted Critical
Publication of JP3983207B2 publication Critical patent/JP3983207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Fe based fine crystal soft magnetic alloy having excellent soft magnetic properties and capable of producing a bulk sample. <P>SOLUTION: In the Fe based soft magnetic bulk amorphous-nanocrystal dual phase alloy, a bulk metal glass alloy expressed by (Fe<SB>1-a</SB>M<SB>a</SB>)<SB>100-x-y-z-w</SB>Si<SB>x</SB>B<SB>y</SB>Cu<SB>z</SB>T<SB>w</SB>[wherein, M is either Co or Ni or both; 0.05≤a≤0.36 is satisfied; T is at least one kind of element selected from Nb, Zr, Ta, W, Mo, Hf and Ti; and, 2≤w≤8(atomic%), 5≤x≤15(atomic%), 5≤y≤15(atomic%) and 0.01≤z≤4(atomic%) are satisfied], and in which the temperature spacing ΔTx of a supercooled liquid is ≥20K, and conversion glass temperature Tg/T1 is ≥0.59 is crystallized, so that the average crystal grain size is ≤30 nm, and the volume fraction of nanocrystals is 40 to 85%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁気ヘッド、トランス、チョークコイル等のコア材に使用できる軟磁気特性に優れたFe基軟磁性バルク非晶質・ナノ結晶二相合金に関する。
【0002】
【従来の技術】
一般に、磁気ヘッドのコア若しくはパルスモータの磁心又はトランスやチョークコイルなどに用いられている軟磁性合金に要求される特性は、飽和磁束密度が高いこと、透磁率が高いこと、低保磁力であること、薄い形状が得やすいことなどである。したがって、軟磁性合金の開発においては、これらの観点から種々の合金系において材料研究がなされている。従来、前述の用途に対する材料として、センダスト、パーマロイ、けい素鋼等の結晶質合金が用いられてきた。
【0003】
前記のセンダストは、軟磁気特性には優れるものの、飽和磁束密度が約1.1T程度と低い欠点があり、パーマロイも同様に、軟磁気特性に優れる合金組成においては飽和磁束密度が約0.8Tと低い欠点があり、けい素鋼は飽和磁束密度は高いものの、軟磁気特性に劣る欠点がある。
【0004】
最近では、Fe系やCo系の非晶質合金も使用されるようになってきている。
Co基の非晶質合金は、軟磁気特性には優れるものの、飽和磁束密度が1T程度と不十分である。また、液体急冷法で製造したFe−B−M(M=Ti,Zr,Hf,Nb,V,Ta,Mo,W)系等の非晶質合金は、飽和磁束密度が高く、1.5T又はそれ以上のものが得られるが、軟磁気特性が不十分な傾向がある。更に、非晶質合金の熱安定性は十分ではなく、未解決の面がある。以上のことから、従来の材料では、高飽和磁束密度と優れた軟磁気特性を兼備することは難しい。
【0005】
そこで、Fe系合金に非晶質化元素とCuを添加して非晶質薄帯を製造し、これを熱処理して一部結晶化させる軟磁性薄帯の製造方法が知られている(特許文献1〜8)。これらの特許出願に係る発明の合金は、非晶質相と微細な結晶相を混在させたものであり、優秀な軟磁気特性と高い飽和磁束密度と高硬度を兼ね備えるものであった。
【0006】
これらのFe基軟磁性ナノ結晶合金は、液体急冷法により作製されたアモルファス合金を結晶化させることにより実現したものである。したがって、試料の大きさは液体急冷により作製されたアモルファス合金の寸法に左右される。すなわち、従来のFe基アモルファス合金は、アモルファス形成能が低いため、得られる試料の形状は薄帯、薄膜、粉末、線材に限定され、バルク状試料の作製はできなかった。このため、このような材料を用いた電磁変換機器は高価であまり普及していない。
【0007】
本発明者らは、1995年に初めて銅鋳型鋳造法によりFe−Al−Ga−P−C−Bからなる組成のFe基軟磁性バルクガラス合金を開発した。その後引き続き、Fe−(Nb,Cr,Mo)−(Al,Ga)−(P,C,B)、Fe−(Nb,Cr,Mo)−(P,C,B) 、Fe−Co−Ga−(P,C,B)、Fe−Ga−(P,C,B)、Fe−(Nb,Cr,Mo)−Ga−(P,C,B)、Fe−(Zr,Hf,Nb)−B、Fe−(Cr,Mo)−C−B、Fe−B−Si−Nb等のFe基軟磁性バルクガラス合金を開発した(例えば、特許文献9〜19、非特許文献1)。
【0008】
【特許文献1】
特願昭62−317189号(特公平4−4393号公報)
【特許文献2】
特願平4−335524号(特開平7−11396号公報)
【特許文献3】
特願平3−42051号(特開平4−280949号公報)
【特許文献4】
特願平3−360321号(特開平6−17204号、特許第3357386号公報)
【特許文献5】
特願平3−22791号(特開平5−93249号、特許第2857257号公報)
【特許文献6】
特願平9−124803号(特開平10−60607号、特許第33159936号公報)
【特許文献7】
特願平7−18291号(特開平7−258728号公報)
【特許文献8】
特願平7−166579号(特開平9−20965号公報)
【特許文献9】
特願平8−243756号(特開平9−320827号公報)
【特許文献10】
特願平9−35342号(特開平10−226856号公報)
【特許文献11】
特願平9−235277号(特開平11−71647号公報)
【特許文献12】
特願平10−11798号(特開平11−131199号公報)
【特許文献13】
特願平11−60912号(特開2000−256812号公報)
【特許文献14】
(特開2001−152301号公報)
【特許文献15】
特願2000−79055号(特開2001−262292号公報)
【特許文献16】
特願2000−289491号(特開2001−316782号公報)
【特許文献17】
特願2000−293576号(特開2002−105607号公報)
【特許文献18】
特願2000−391567号(特開2002−194514号公報)
【特許文献19】
特願2001−197157号(特開2002−226956号公報)
【非特許文献1】
A.Inoue and B.L.Shen,Mater.Trans.43,766(2002)
【0009】
【発明が解決しようとする課題】
電子・電気機器の小型化、高性能化に対応するために、より高性能の軟磁性合金材料が望まれている。従来のアモルファス薄帯に代わるバルク金属ガラスにおいて、さらに優れた軟磁気特性を保持しつつ形状の自由度を高めることが可能になれば、アモルファスないしナノ結晶軟磁性金属の応用分野は格段に拡大し、ひいては省エネ、省資源、地球温暖化対策にも効果が期待できるものと考えられる。本発明は、前記事情を背景になされたものであり、Fe−SiーB系バルク金属ガラス合金において、さらに優れた軟磁気特性を有し、バルク試料の作製が容易であるFe基軟磁性合金を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、上述の課題を解決することを目的として種々の合金組成について探査した結果、(Fe1−a100−x−y−z−wSiCu(ただし、MはCo,Niのいずれか、又は、両方であり、かつ0.05≦a≦0.36、TはNb,Zr, Ta, W, Mo,Hf及びTiの中から選ばれる少なくとも1種の元素であり、かつ2≦w≦8(原子%)、5≦x≦15(原子%)、5≦y≦15(原子%)、0.01≦z≦4(原子%)である)系合金において、明瞭なガラス遷移と広い過冷却液体域を示し、ガラス形成能がより高い合金組成を見出した。さらに、銅鋳型鋳造法により得られたそれらバルク金属ガラス合金を結晶化させ、優れた軟磁気特性を示すFe基バルク非晶質・ナノ結晶二相合金が得られ、本発明を完成するに至った。なお、本件明細書において「バルク」とは径又は厚みが0.75mm以上の合金をいう。
【0011】
上記の合金組成において、銅鋳型鋳造法により直径又は厚みが1mm〜2mmの金属ガラス合金が作製できる。これらの金属ガラス合金はこれまでの金属ガラス合金と違って、Cu元素を含有するため、示差走査熱量計(DSC)で測定した結果、ガラス遷移Tgを示す前に、Cuクラスタの凝集Tpが現れ、それらCuクラスタは結晶核として均一に分散し、熱処理を加えると、ナノ結晶が均一に析出することができる。
【0012】
作製した金属ガラスのΔTx=Tx−Tg(ただし、Txは結晶化開始温度、Tgはガラス遷移温度)の式で表される過冷却液体の温度間隔ΔTxは20K以上、好ましくは25K以上で、換算ガラス化温度Tg/Tl(Tgはガラス遷移温度、Tlは液相線温度(いずれも絶対温度))が0.59以上、好ましくは0.61以上である。
【0013】
上記バルク金属ガラス合金を熱処理によって結晶化させることによって、平均結晶粒径30nm以下、その結晶粒の体積分率が約40〜85%のFe、Co及び/又はNiの固溶体である微細なbcc結晶粒からなるナノ結晶相と、bcc結晶粒の粒界に存在する粒界非晶質相の二相を主体とする微結晶合金、すなわち、バルク非晶質・ナノ結晶二相合金の作製ができる。
【0014】
また、このバルク非晶質・ナノ結晶二相合金は、飽和磁束密度(Bs)が1T以上、保磁力(Hc)が10A/m以下、1KHzでの透磁率(me)が10,000以上の軟磁気特性を有する軟磁性合金である。
【0015】
【発明の実施の形態】
次に、本発明の実施の形態を説明する。本発明の上記合金組成は、基本的に下記6種の元素を構成要素としている。Fe:軟磁性バルクナノ結晶合金の基となる元素、M群元素:Co、Niのうちの1種又は2種、T群元素:Nb,Zr,Ta,W,Mo,Hf及びTiの中から選ばれる少なくとも1種の元素、Si:けい素、B:ホウ素、Cu:銅。
【0016】
これら元素の構成比率は、M群元素(Co、Niのうちの1種又は2種)が3原子%〜32原子%の範囲であり、T群元素は2原子%〜8原子%の範囲内であり、Siは5原子%〜15原子%の範囲内であり、Bも同じく5原子%〜15原子%の範囲内であり、Cuは0.01原子%〜4原子%の範囲内である。
【0017】
本発明のFe基バルク非晶質・ナノ結晶二相合金は、銅鋳型鋳造法により作製されたFe基バルク金属ガラス合金を結晶化させることにより実現した。したがって、試料の大きさは合金のガラス形成能に左右される。このFe基バルク金属ガラス合金において、前記の各元素群は一体となって非晶質合金を形成しているが、それぞれの元素群は下記の特性に寄与していると考えられる。
【0018】
Fe:合金の基となり磁性を担う。
M群元素:これも磁性を担う元素であるが、特に、Co及び/又はNiが5原子%以上配合されるとガラス形成能を示す過冷却液体領域の温度幅ΔTxが増大し、ガラス状態が得やすくなる。ただし、32原子%を超えると過冷却液体領域の温度幅ΔTxが減少し好ましくない。M群元素は、より好ましくは、7.5原子%〜20原子%である。
【0019】
このように、Feの一部をCo、Niに置換すると、合金のガラス形成能が向上するのみならず、bcc−(Fe,Co)相及び/又はbcc−(Fe,Ni)が析出して、合金の誘導磁気異方性も増大する。この誘導磁気異方性は合金の高周波領域での軟磁気特性を維持することができる。M群元素を多くするにつれてガラス遷移温度は高まり、過冷却液体温度範囲はわずかに小さくなる。FeをCo及び/又はNiの最適量で置換することによって、銅鋳型鋳造法によるガラス形成能を高めることができ、引き続いて熱処理することによって得られるナノ結晶bccバルク合金はCo及び/又はNiを含有しないFe−B−Si−Nb−Cu合金と比べて軟磁性が向上する。
【0020】
T群元素:過冷却液体領域の温度幅ΔTxを拡大する効果があり、非晶質を形成しやすくする効果がある。また、本発明のFe基軟磁性合金において、T群元素は、比較的遅い拡散種であり、T群元素の添加は、微細結晶核の成長速度を小さくする効果を持つと考えられ、組織の微細化に不可欠である。しかし、T群元素の添加量が2原子%を下回る値になると、核成長速度を小さくする効果が失われ、この結果、結晶粒径が粗大化し良好な軟磁性が得られない。T群元素の添加量が8原子%を超えると、T群元素−B系又はFe−T群元素系の化合物の生成傾向が大きくなり、良好な特性が得られない。よって、T群元素の添加範囲を2〜8原子%とした。
【0021】
また、前記T群の添加元素の中でもNbとMoは、酸化物の生成自由エネルギーの絶対値が小さく、熱的に安定であり、製造時に酸化しずらいものである。よって、これらの元素を添加している場合は、製造条件が容易で安価に製造することができ、また、製造コストの面でも有利である。これらの元素を添加して前記軟磁性合金を製造する場合に、具体的には、溶湯を急冷する際に使用する坩堝のノズルの先端部に、不活性ガスを部分的に供給しつつ大気中で製造もしくは大気中の雰囲気で製造することができる。
【0022】
Si:ガラス形成能の向上に効果があり、また、軟磁気特性の改善にも効果がある。配合量は5原子%未満ではガラス形成能と軟磁気特性の向上に効果がないため好ましくない。また、15原子%を超えると磁気特性が低下し、特に、磁化が低下するため好ましくない。より好ましいSiの含有量は7原子%〜13原子%である。
【0023】
B:ホウ素 には本発明合金のガラス形成能を高める効果、及び前記熱処理工程において磁気特性に悪影響を及ぼす化合物相の生成を抑制する効果があると考えられ、このためホウ素添加は必須である。ホウ素の添加量が5原子%を下回る場合、粒界の非晶質相が不安定となるため、十分な添加効果が得られない。また、ホウ素の添加量が15原子%を超えると、B−T群元素系及びFe−B系において、ほう化物の生成傾向が強くなり、この結果、微細結晶組織を得るための熱処理条件が制約され、良好な軟磁気特性が得られなくなる。このように、適切な量のホウ素を添加することで析出する微細結晶相の平均結晶粒径を20nm以下に調整することができる。より好ましいホウ素の含有量は9原子%〜14原子%である。また、Si+Bにおいては、より好ましい含有量は15原子%〜25原子%である。
【0024】
また、本来、α−Feに対してZr、Hfはほとんど固溶しないが、前記組成の合金の全体を急冷して非晶質化することで、ZrとHfを過飽和に固溶させ、この後に施す熱処理によりこれら元素の固溶量を調節して一部結晶化し、微細結晶相として析出させることで、得られる軟磁性合金の軟磁気特性を向上させ、合金の磁歪を小さくできる。
【0025】
また、微結晶相を析出させ、その微結晶相の結晶粒の粗大化を抑制するには、結晶粒成長の障害となり得る非晶質相を粒界に残存させることが必要であると考えられる。さらに、この粒界非晶質相は、熱処理温度の上昇によってα−Feから排出されるZr,Hf,Nb等のT群元素を固溶することで、軟磁性を劣化させるFe−M群元素系化合物の生成を抑制すると考えられる。よってFe−Zr(Hf)系の合金にホウ素を添加することが重要となる。
【0026】
Cu:バルクガラス合金の形成に最適なホウ素含有量を減らして微量のCuを添加すると、ガラス形成能とともに結晶化モードが一段階から二段階に変化する。二段階の結晶化により残留するガラス相に埋め込まれたナノ結晶bcc相が形成される。ナノ結晶bcc合金は良好な軟磁性をもたらす。本発明においては、Cuを0.01原子%〜4原子%含むことが好ましい。添加量が0.01原子%より少ないと前記の熱処理工程により優れた軟磁気特性を得ることが難しく、4原子%を超えると磁化が低下するため好ましくない。
【0027】
本発明のFe基非晶質軟磁性合金はガラス転移点Tgを有し、このガラス転移点Tgと結晶化開始温度Txとの差、すなわちΔTx=Tx−Tg(式中、Txは結晶化開始温度、Tgはガラス転移点である)の式で表される過冷却液体領域の温度幅ΔTxが、20K以上であり、25K以上とされていることが好ましい。また、換算ガラス化温度Tg/Tl(Tgはガラス遷移温度、Tlは液相線温度(いずれも絶対温度))が0.59以上、より好ましくは0.61以上である。これらの条件を充たす組成物は、溶融状態から冷却するとき、結晶化することなく温度の低下に伴ってこの過冷却液体領域の温度幅ΔTxを経過した後に、ガラス転移点Tgに至って非結晶質のいわゆる金属ガラス合金を形成する。
【0028】
本発明の上記合金組成において、組成域からのずれにより、ガラス形成能が劣り、溶湯から凝固過程にかけて、結晶核が生成・成長し、ガラス相に結晶相が混在した組織になる。また、この組成範囲から大きく離れると、ガラス相が得られず、結晶相となる。
【0029】
本発明の上記合金組成において、ガラス形成能が高いため、銅鋳型鋳造すると直径最大2mmの金属ガラス丸棒が作製できるが、同様な冷却速度で、回転水中紡糸法により、直径0.55mmまでの細線、アトマイズ法により、直径0.6mmまでの粒子の金属ガラスを作製できる。
【0030】
それらバルク金属ガラス合金に上記熱処理工程を施すと、軟磁性バルクナノ結晶合金を得ることができる。なお、特に規定しない限り、以下に示す実施例では、550〜650℃の温度で10分間保持後、水焼入れした後の磁気特性を示す。
【0031】
本発明に係る合金は、後述する種々の組成を有し、体積分率でその組織の少なくとも40%以上が、平均結晶粒径30nm以下の体心立方構造(bcc構造)、より好ましくは平均結晶粒径20nm以下の体心立方構造の微細なナノ結晶粒からなる結晶相と、その粒界に存在する粒界非晶質相とを主体としてなる組織を有する。bcc微細結晶が多いほうが、飽和磁化は高くなる。一方、粒界相である残存アモルファス相は結晶粒成長を抑制する役割があり、一定の量を保つ必要があるので、微細な結晶粒からなる結晶相の割合の上限は体積分率で85%程度が好ましい。
【0032】
前記組成と組織を有する合金を製造するには、前記組成になるように合金原料を混合して溶解し合金溶湯を得た後、銅鋳型鋳造法を実施する。この銅鋳型鋳造法により非晶質状態のバルク状の試料を得ることができる。このバルク状試料を得たならば、試料に対し、550〜670℃で加熱した後に急冷、好ましくは水焼入れする熱処理を行う。もし、空冷や炉冷すると、熱量の発散が遅くなり、結晶粒が余熱により成長し、軟磁気特性に悪い影響を齎す。そこで、本発明は、水焼き入れの方法で、バルク材の熱を一気に奪うようにする。
【0033】
この金属ガラス合金は熱処理によって第一、第二の2段階の発熱反応によって結晶化する。第一の段階は約10nmの結晶粒径を有するナノスケールのbcc−(Fe,Co)相の析出である。第二の段階は残留した非晶質相の(Fe,Co)B,(Fe,Co)23,(Fe,Co)Si 及び (Fe,Co)Nb相への分解である。550℃未満の温度で熱処理すると、温度が低いため、析出したbcc結晶粒の含有量が少なく、飽和磁化は低下する。
【0034】
一方、670℃を超える温度では、第二の発熱ピークの温度範囲に入るため、この温度範囲内で熱処理を施すと、bcc結晶粒の他に、第二の発熱ピークによる(Fe,Co)B, (Fe,Co)23,(Fe,Co)Si 及び (Fe,Co)Nbなど化合物が析出し、軟磁気特性に悪い影響を与え、保磁力が増大して透磁率が低下する。この熱処理温度は、より好ましくは、580〜630℃である。この熱処理により非晶質相の中に微細結晶相が析出して本発明に係る組織の合金薄帯を得ることができ、この熱処理によりバルク合金の軟磁気特性が向上する。
【0035】
前記組成の軟磁性合金は、1.0〜1.8T(テスラ)程度の高い飽和磁束密度(Bs)を発揮し、保磁力(Hc)が10A/m以下、0.5A/m以上、しかも、1kHzで10000以上の高い透磁率(μe)を示すものとなる。また、組成によっては透磁率として1kHzで30,000〜60,000の優れた値を得ることができる。
【0036】
【実施例】
実施例1〜11、比較例1〜8
以下、実施例及び比較例に基づき本発明を具体的に図面を参照して説明する。表1に示すような組成になるように材料を調製し、銅鋳型鋳造法を実施し、バルク合金を得た。表1に、実施例1〜11、比較例1〜8の合金組成及び示差走査熱量計を用いて測定したガラス遷移温度(Tg)、結晶化開始温度(Tx)を示す。また、試料中に含まれるガラス相の率(Vf−体積分率(Vf−amo.)は、示差走査熱量計を用いて、結晶化による発熱量を完全ガラス化した単ロール型液体急冷法による薄帯との比較により評価した。また、熱処理後の平均結晶粒径およびナノ結晶粒の体積分率は透過電子顕微鏡観察結果から得られた。
【0037】
得られたバルク金属ガラス合金を550〜650℃で10分間加熱後、水焼入れを施して各軟磁性合金試料を得、これらの軟磁性合金試料の飽和磁束密度(Bs)、保磁力(Hc)及び透磁率μe(1kHz)はそれぞれ試料振動型磁力計(VSM)、直流B−Hループトレーサー及びインピーダンスアナライザーにより測定した。また、各実施例及び比較例の鋳造塊のガラス化の確認及び熱処理後の組織観察をX線回折法及び透過電子顕微鏡観察で行った。それらの結果を表1にまとめて示す。また、表1に平均結晶粒径、ナノ結晶粒の体積分率を示す。
【0038】
【表1】

Figure 2005068451
【0039】
本発明の実施例1〜11は、ΔTx=Tx−Tg(ただし、Txは結晶化開始温度、Tgはガラス遷移温度)の式で表される過冷却液体の温度間隔ΔTxは27〜37Kであり、また、換算ガラス化温度Tg/Tl(Tgはガラス遷移温度、Tlは液相線温度(いずれも絶対温度))が0.61〜0.63であるため、直径1mm〜2mmの鋳造塊でガラス相の体積分率(Vf−amo.)は100%である。
【0040】
それらバルク金属ガラス合金に上記の熱処理工程を施すと、平均結晶粒径30nm以下の結晶粒が均一に析出し、ナノ結晶バルク材を得ることができる。
【0041】
これに対して、比較例1、2はCoの含有量が32at%を超えたため、ガラス遷移が現れず、直径0.5mmの鋳造棒で結晶質であった。その試料は一般の鋳造材であり、結晶粒径が大きく、軟磁気特性が悪い。さらに熱処理工程を加えると、結晶粒がさらに成長し、軟磁気特性を得ることが不可能である。
【0042】
比較例3はCoが含有されないため、銅鋳型鋳造で0.5mmのバルクアモルファス材しか作製できず、それ以上の直径では、結晶質であった。
比較例4はCuが含有されないため、直径1mmのバルク金属ガラスは作製できるが、Cuクラスタが存在しないため、熱処理後均一なナノ結晶組織は得られず、粗粒材であり、軟磁気特性を得ることが不可能である。
【0043】
比較例5の合金は、T群元素であるNbの含有量は本発明の合金組成の範囲内であるが、Bの含有量が16.5at%と高く、直径0.5mmの鋳造棒で結晶質であった。その試料は一般の鋳造材であり、結晶粒径が大きく、軟磁気特性が悪い。さらに熱処理工程を加えると、結晶粒がさらに成長し、軟磁気特性を得ることが不可能である。
【0044】
比較例6の合金は、T群元素であるNbの含有量は本発明の合金組成の範囲内であるが、Siの含有量が4at%と少なく、一方、Bの含有量が19.5at%と高く、直径0.5mm鋳造棒で結晶質であった。それらの試料も一般の鋳造材であり、結晶粒径が大きく、軟磁気特性が悪い。さらに熱処理工程を加えると、結晶粒がさらに成長し、軟磁気特性を得ることが不可能である。
【0045】
比較例7、8の合金は、Fe、Co、Si、B、Cu元素の含有量は本発明の合金組成の範囲内であるが、T群元素であるNbの含有量が少なすぎるか多すぎるので、直径0.5mmの鋳造棒で結晶質であった。その試料も一般の鋳造材であり、結晶粒径が大きく、軟磁気特性が悪い。さらに熱処理工程を加えると、結晶粒がさらに成長し、軟磁気特性を得ることが不可能である。
【0046】
比較例9の合金は、Fe、Co、Si、B、T群元素の含有量は本発明の合金組成の範囲内であるが、Cu元素が5at%と多く、直径0.5mmの鋳造棒で結晶質であった。その試料も一般の鋳造材であり、結晶粒径が大きく、軟磁気特性が悪い。さらに熱処理工程を加えると、結晶粒がさらに成長し、軟磁気特性を得ることが不可能である。
【0047】
図1に、実施例1、3、4、5、6、7及び比較例1,2の示差走査熱量計(DSC)の測定結果を示す。図1に示すように、キュリー温度(Tc)が現れた後、Coの含有量が30at%までは、Cu元素の凝集(Tp)後、ガラス遷移Tgが現れる一方、Coの含有量35at%、40at%の組成では、Cu元素の凝集後、ガラス遷移は現れなかった。
【0048】
図2に、実施例1、3、4、5、6、7のバルクガラス合金の熱処理後のX線回折図形を示す。図2に示すように、熱処理後の試料は、bcc−(Fe,Co)相のみが析出している。
【0049】
図3に、その一例として、実施例3により得られた直径2mmのバルク合金における熱処理前後のX線回折図形を示す。図3に示すように、熱処理前の試料はアモルファス特有のハロー図形を示し、アモルファス構造を有することがわかる。一方、熱処理後の試料は、bcc−(Fe,Co)相のみが析出したことがわかる。
【0050】
図4に、上記熱処理後の試料の透過電子顕微鏡観察結果を示す。図4に示すように、均一に析出している直径約10nm、体積分率約75%の球状bcc−(Fe,Co)ナノ結晶及び結晶粒の間に残留した幅約2nmのアモルファス相が観察され、バルクナノ結晶合金の作製が可能であることが確認された。
【0051】
実施例12
実施例3と同じ組成を有する溶融合金を通常のメルトスピン法で急冷凝固し、厚さ0.03mm、幅2mmのリボン材を作製し、実施例3と同じく水焼入れした。図5に、試料振動型磁力計を用いて測定した実施例3により得られた直径2mmのバルクナノ結晶合金と本実施例のリボン材のB−Hヒステリシス曲線を示す。図5に示すように、バルクナノ結晶合金はリボン材と同じく、軟磁気特性を示している。
【図面の簡単な説明】
【図1】図1は、実施例1、3、4、5、6、7及び比較例1、2の示差走査熱量計(DSC)の測定結果を示すグラフである。
【図2】図2は、実施例1、3、4、5、6、7のバルクガラス合金の熱処理後のX線回折図形を示すグラフである。
【図3】図3は、実施例3により得られた直径2mmのバルク合金における熱処理前後のX線回折図形を示すグラフである。
【図4】図4は、実施例3により得られた直径2mmのバルク合金における熱処理後の試料の透過電子顕微鏡観察結果を示す図面代用写真である。
【図5】図5は、実施例3により得られた直径2mmのバルクナノ結晶合金と実施例12により得られたリボン材のB−Hヒステリシス曲線を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an Fe-based soft magnetic bulk amorphous / nanocrystalline two-phase alloy having excellent soft magnetic properties that can be used for a core material such as a magnetic head, a transformer, and a choke coil.
[0002]
[Prior art]
In general, the characteristics required for a soft magnetic alloy used in the core of a magnetic head, the magnetic core of a pulse motor, or a transformer or choke coil are high saturation magnetic flux density, high permeability, and low coercivity. That is, it is easy to obtain a thin shape. Therefore, in the development of soft magnetic alloys, material research has been conducted in various alloy systems from these viewpoints. Conventionally, crystalline alloys such as Sendust, Permalloy, and silicon steel have been used as materials for the aforementioned applications.
[0003]
Although the above sendust is excellent in soft magnetic properties, it has a drawback that the saturation magnetic flux density is as low as about 1.1 T. Similarly, permalloy also has a saturation magnetic flux density of about 0.8 T in an alloy composition excellent in soft magnetic properties. Although silicon steel has a high saturation magnetic flux density, silicon steel has a disadvantage inferior in soft magnetic properties.
[0004]
Recently, Fe-based and Co-based amorphous alloys have been used.
A Co-based amorphous alloy is excellent in soft magnetic properties, but has a saturation magnetic flux density of about 1 T, which is insufficient. In addition, an amorphous alloy such as Fe-BM (M = Ti, Zr, Hf, Nb, V, Ta, Mo, W) manufactured by a liquid quenching method has a high saturation magnetic flux density, and 1.5 T Or more than that, but soft magnetic properties tend to be insufficient. Furthermore, the thermal stability of amorphous alloys is not sufficient and there are unsolved aspects. From the above, it is difficult for conventional materials to have both high saturation magnetic flux density and excellent soft magnetic properties.
[0005]
Therefore, a method for producing a soft magnetic ribbon is known in which an amorphous ribbon is added to an Fe-based alloy by adding an amorphizing element and Cu, and this is heat-treated to partially crystallize (patent) Literature 1-8). The alloys of the inventions according to these patent applications are a mixture of an amorphous phase and a fine crystal phase, and have excellent soft magnetic properties, high saturation magnetic flux density, and high hardness.
[0006]
These Fe-based soft magnetic nanocrystal alloys are realized by crystallizing an amorphous alloy produced by a liquid quenching method. Therefore, the size of the sample depends on the dimensions of the amorphous alloy produced by liquid quenching. That is, since the conventional Fe-based amorphous alloy has low amorphous forming ability, the shape of the obtained sample is limited to a ribbon, a thin film, a powder, and a wire, and a bulk sample cannot be produced. For this reason, the electromagnetic conversion apparatus using such a material is expensive and not widely used.
[0007]
In 1995, the present inventors first developed an Fe-based soft magnetic bulk glass alloy having a composition composed of Fe—Al—Ga—P—C—B by a copper mold casting method. Subsequently, Fe- (Nb, Cr, Mo)-(Al, Ga)-(P, C, B), Fe- (Nb, Cr, Mo)-(P, C, B), Fe-Co-Ga. -(P, C, B), Fe-Ga- (P, C, B), Fe- (Nb, Cr, Mo) -Ga- (P, C, B), Fe- (Zr, Hf, Nb) Fe-based soft magnetic bulk glass alloys such as -B, Fe- (Cr, Mo) -CB, and Fe-B-Si-Nb have been developed (for example, Patent Documents 9 to 19 and Non-Patent Document 1).
[0008]
[Patent Document 1]
Japanese Patent Application No. 62-317189 (Japanese Patent Publication No. 4-4393)
[Patent Document 2]
Japanese Patent Application No. 4-335524 (Japanese Patent Laid-Open No. 7-11396)
[Patent Document 3]
Japanese Patent Application No. 3-42051 (Japanese Patent Laid-Open No. 280949)
[Patent Document 4]
Japanese Patent Application No. 3-360321 (Japanese Patent Laid-Open No. 6-17204, Japanese Patent No. 3357386)
[Patent Document 5]
Japanese Patent Application No. 3-22791 (Japanese Patent Laid-Open No. 5-93249, Japanese Patent No. 2857257)
[Patent Document 6]
Japanese Patent Application No. 9-124803 (Japanese Patent Application Laid-Open No. 10-60607, Japanese Patent No. 33159936)
[Patent Document 7]
Japanese Patent Application No. 7-18291 (Japanese Patent Laid-Open No. 7-258728)
[Patent Document 8]
Japanese Patent Application No. 7-166579 (Japanese Patent Laid-Open No. 9-20965)
[Patent Document 9]
Japanese Patent Application No. 8-243756 (Japanese Patent Laid-Open No. 9-320827)
[Patent Document 10]
Japanese Patent Application No. 9-35342 (Japanese Patent Laid-Open No. 10-226856)
[Patent Document 11]
Japanese Patent Application No. 9-235277 (Japanese Patent Laid-Open No. 11-71647)
[Patent Document 12]
Japanese Patent Application No. 10-11798 (Japanese Patent Laid-Open No. 11-131199)
[Patent Document 13]
Japanese Patent Application No. 11-60912 (Japanese Patent Laid-Open No. 2000-256812)
[Patent Document 14]
(Japanese Patent Laid-Open No. 2001-152301)
[Patent Document 15]
Japanese Patent Application No. 2000-79055 (Japanese Patent Laid-Open No. 2001-262292)
[Patent Document 16]
Japanese Patent Application No. 2000-289491 (Japanese Patent Laid-Open No. 2001-316682)
[Patent Document 17]
Japanese Patent Application No. 2000-293576 (Japanese Patent Laid-Open No. 2002-105607)
[Patent Document 18]
Japanese Patent Application No. 2000-391567 (Japanese Patent Laid-Open No. 2002-194514)
[Patent Document 19]
Japanese Patent Application No. 2001-197157 (Japanese Patent Laid-Open No. 2002-226955)
[Non-Patent Document 1]
A. Inoue and B.M. L. Shen, Mater. Trans. 43,766 (2002)
[0009]
[Problems to be solved by the invention]
In order to cope with the downsizing and high performance of electronic and electrical equipment, higher performance soft magnetic alloy materials are desired. If it becomes possible to increase the degree of freedom in shape while maintaining excellent soft magnetic properties in bulk metal glass that replaces conventional amorphous ribbons, the application field of amorphous or nanocrystalline soft magnetic metals will expand dramatically. As a result, energy saving, resource saving and global warming countermeasures can be expected. The present invention has been made in the context of the above circumstances, and is an Fe-based soft magnetic alloy that has superior soft magnetic properties and is easy to produce a bulk sample in an Fe-Si-B bulk metal glass alloy. The purpose is to provide.
[0010]
[Means for Solving the Problems]
As a result of exploring various alloy compositions for the purpose of solving the above-mentioned problems, the present inventors have found (Fe 1-a M a ) 100-x-yz-w Si x B y Cu z T w (However, M is either Co or Ni, or both, and 0.05 ≦ a ≦ 0.36, T is selected from at least Nb, Zr, Ta, W, Mo, Hf, and Ti. 1 element and 2 ≦ w ≦ 8 (atomic%), 5 ≦ x ≦ 15 (atomic%), 5 ≦ y ≦ 15 (atomic%), 0.01 ≦ z ≦ 4 (atomic%) In a certain alloy, an alloy composition having a clear glass transition and a wide supercooled liquid region and a higher glass forming ability was found. Furthermore, these bulk metallic glass alloys obtained by the copper mold casting method are crystallized to obtain an Fe-based bulk amorphous / nanocrystalline two-phase alloy exhibiting excellent soft magnetic properties, which led to the completion of the present invention. It was. In this specification, “bulk” refers to an alloy having a diameter or thickness of 0.75 mm or more.
[0011]
In the above alloy composition, a metallic glass alloy having a diameter or thickness of 1 mm to 2 mm can be produced by a copper mold casting method. Unlike conventional metallic glass alloys, these metallic glass alloys contain Cu elements, and as a result of measurement with a differential scanning calorimeter (DSC), an aggregation Tp of Cu clusters appears before showing the glass transition Tg. These Cu clusters are uniformly dispersed as crystal nuclei, and when heat treatment is applied, nanocrystals can be uniformly deposited.
[0012]
The temperature interval ΔTx of the supercooled liquid expressed by the equation ΔTx = Tx−Tg (where Tx is the crystallization start temperature and Tg is the glass transition temperature) of the produced metal glass is 20K or more, preferably 25K or more. The vitrification temperature Tg / Tl (Tg is the glass transition temperature and Tl is the liquidus temperature (both absolute temperatures)) is 0.59 or more, preferably 0.61 or more.
[0013]
By crystallizing the above bulk metal glass alloy by heat treatment, fine bcc crystal which is a solid solution of Fe, Co and / or Ni having an average crystal grain size of 30 nm or less and a volume fraction of crystal grains of about 40 to 85%. It is possible to produce a microcrystalline alloy mainly composed of two phases, a nanocrystalline phase consisting of grains and a grain boundary amorphous phase present at the grain boundary of bcc grains, that is, a bulk amorphous / nanocrystalline two-phase alloy. .
[0014]
Further, this bulk amorphous / nanocrystalline two-phase alloy has a saturation magnetic flux density (Bs) of 1 T or more, a coercive force (Hc) of 10 A / m or less, and a permeability (me) at 1 KHz of 10,000 or more. A soft magnetic alloy having soft magnetic properties.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described. The above alloy composition of the present invention basically comprises the following six elements. Fe: Element to be the basis of soft magnetic bulk nanocrystal alloy, M group element: one or two of Co, Ni, T group element: Nb, Zr, Ta, W, Mo, Hf and Ti At least one element, Si: silicon, B: boron, Cu: copper.
[0016]
The composition ratio of these elements is within the range of 3 atomic% to 32 atomic% for the M group element (one or two of Co and Ni), and within the range of 2 atomic% to 8 atomic% for the T group element. Si is in the range of 5 atomic% to 15 atomic%, B is also in the range of 5 atomic% to 15 atomic%, and Cu is in the range of 0.01 atomic% to 4 atomic%. .
[0017]
The Fe-based bulk amorphous / nanocrystalline two-phase alloy of the present invention was realized by crystallizing an Fe-based bulk metallic glass alloy produced by a copper mold casting method. Therefore, the size of the sample depends on the glass forming ability of the alloy. In this Fe-based bulk metallic glass alloy, each of the above element groups integrally forms an amorphous alloy, but each element group is considered to contribute to the following characteristics.
[0018]
Fe: It becomes the basis of the alloy and bears magnetism.
Group M element: This is also an element responsible for magnetism, but in particular, when Co and / or Ni is blended in an amount of 5 atomic% or more, the temperature range ΔTx of the supercooled liquid region showing the glass forming ability increases, and the glass state It becomes easy to obtain. However, if it exceeds 32 atomic%, the temperature width ΔTx of the supercooled liquid region decreases, which is not preferable. More preferably, the M group element is 7.5 atom% to 20 atom%.
[0019]
Thus, when a part of Fe is replaced by Co or Ni, not only the glass forming ability of the alloy is improved, but also the bcc- (Fe, Co) phase and / or bcc- (Fe, Ni) is precipitated. Also, the induced magnetic anisotropy of the alloy is increased. This induced magnetic anisotropy can maintain the soft magnetic properties of the alloy in the high frequency region. As the M group element increases, the glass transition temperature increases and the supercooled liquid temperature range slightly decreases. By substituting Fe with the optimum amount of Co and / or Ni, the glass forming ability by the copper mold casting method can be increased, and the nanocrystalline bcc bulk alloy obtained by subsequent heat treatment can replace Co and / or Ni. Soft magnetism is improved as compared with an Fe-B-Si-Nb-Cu alloy that is not contained.
[0020]
T group element: has an effect of expanding the temperature range ΔTx of the supercooled liquid region, and has an effect of facilitating formation of an amorphous state. In the Fe-based soft magnetic alloy of the present invention, the T group element is a relatively slow diffusing species, and the addition of the T group element is considered to have the effect of reducing the growth rate of fine crystal nuclei. Indispensable for miniaturization. However, when the added amount of the T group element is less than 2 atomic%, the effect of reducing the nucleus growth rate is lost. As a result, the crystal grain size becomes coarse and good soft magnetism cannot be obtained. When the added amount of the T group element exceeds 8 atomic%, the tendency of generation of a T group element-B-based or Fe-T group element-based compound increases, and good characteristics cannot be obtained. Therefore, the addition range of the T group element is set to 2 to 8 atomic%.
[0021]
Among the additive elements of the T group, Nb and Mo have a small absolute value of free energy of formation of oxides, are thermally stable, and are difficult to oxidize during production. Therefore, when these elements are added, the production conditions are easy and the production can be performed at low cost, and the production cost is advantageous. When these elements are added to produce the soft magnetic alloy, specifically, in the atmosphere while supplying an inert gas partially to the tip of the crucible nozzle used when quenching the molten metal. Or can be produced in an atmosphere in the air.
[0022]
Si: Effective for improving glass forming ability, and also effective for improving soft magnetic properties. If the blending amount is less than 5 atomic%, it is not preferable because the glass forming ability and soft magnetic properties are not improved. On the other hand, if it exceeds 15 atomic%, the magnetic properties are lowered, and in particular, the magnetization is lowered. A more preferable Si content is 7 atomic% to 13 atomic%.
[0023]
B: Boron is considered to have an effect of enhancing the glass forming ability of the alloy of the present invention and an effect of suppressing the formation of a compound phase that adversely affects the magnetic properties in the heat treatment step, and therefore boron addition is essential. When the amount of boron added is less than 5 atomic%, the amorphous phase at the grain boundary becomes unstable, so that a sufficient addition effect cannot be obtained. Further, when the amount of boron added exceeds 15 atomic%, the tendency to form borides increases in the BT group element system and the Fe-B system. As a result, the heat treatment conditions for obtaining a fine crystal structure are limited. As a result, good soft magnetic properties cannot be obtained. Thus, the average crystal grain size of the fine crystal phase to be precipitated can be adjusted to 20 nm or less by adding an appropriate amount of boron. A more preferable boron content is 9 atomic% to 14 atomic%. Moreover, in Si + B, more preferable content is 15 atomic%-25 atomic%.
[0024]
Originally, Zr and Hf hardly dissolve in α-Fe, but Zr and Hf are supersaturated and solidified by rapidly cooling the entire alloy having the above composition to make it amorphous. By adjusting the solid solution amount of these elements by heat treatment to be partially crystallized and precipitated as a fine crystal phase, the soft magnetic properties of the obtained soft magnetic alloy can be improved, and the magnetostriction of the alloy can be reduced.
[0025]
In order to precipitate the microcrystalline phase and suppress the coarsening of the crystal grains of the microcrystalline phase, it is considered necessary to leave an amorphous phase that can hinder crystal grain growth at the grain boundary. . Furthermore, this grain boundary amorphous phase is a Fe-M group element that degrades soft magnetism by dissolving T group elements such as Zr, Hf, Nb, etc. discharged from α-Fe by increasing the heat treatment temperature. It is thought to suppress the formation of a series compound. Therefore, it is important to add boron to the Fe—Zr (Hf) alloy.
[0026]
Cu: When the boron content optimum for the formation of a bulk glass alloy is reduced and a small amount of Cu is added, the crystallization mode changes from one stage to two stages together with the glass forming ability. A two-step crystallization forms a nanocrystalline bcc phase embedded in the remaining glass phase. Nanocrystalline bcc alloys provide good soft magnetism. In this invention, it is preferable to contain 0.01 atomic%-4 atomic% of Cu. If the addition amount is less than 0.01 atomic%, it is difficult to obtain excellent soft magnetic properties by the heat treatment step, and if it exceeds 4 atomic%, the magnetization decreases, which is not preferable.
[0027]
The Fe-based amorphous soft magnetic alloy of the present invention has a glass transition point Tg, and the difference between this glass transition point Tg and the crystallization start temperature Tx, that is, ΔTx = Tx−Tg (where Tx is the start of crystallization). The temperature width ΔTx of the supercooled liquid region represented by the formula of temperature and Tg is a glass transition point is preferably 20K or more and preferably 25K or more. Moreover, conversion vitrification temperature Tg / Tl (Tg is glass transition temperature, Tl is liquidus temperature (all are absolute temperature)) is 0.59 or more, More preferably, it is 0.61 or more. When the composition satisfying these conditions is cooled from the molten state, the composition reaches the glass transition point Tg after passing through the temperature range ΔTx of the supercooled liquid region as the temperature decreases without being crystallized. The so-called metallic glass alloy is formed.
[0028]
In the above alloy composition of the present invention, due to deviation from the composition range, the glass forming ability is inferior, crystal nuclei are generated and grown from the molten metal to the solidification process, and the glass phase has a mixed crystal phase. Moreover, if it leaves | separates greatly from this composition range, a glass phase will not be obtained but will become a crystal phase.
[0029]
In the above alloy composition of the present invention, since the glass forming ability is high, a metal glass round bar having a maximum diameter of 2 mm can be produced by casting with a copper mold, but with a similar cooling rate, a diameter of up to 0.55 mm can be obtained by the rotating underwater spinning method. Metallic glass having a particle diameter of up to 0.6 mm can be produced by a fine wire or an atomizing method.
[0030]
When these heat treatment steps are applied to these bulk metallic glass alloys, soft magnetic bulk nanocrystalline alloys can be obtained. Unless otherwise specified, the following examples show the magnetic properties after holding at a temperature of 550 to 650 ° C. for 10 minutes and then water quenching.
[0031]
The alloy according to the present invention has various compositions described later, and at least 40% or more of the structure in volume fraction is a body-centered cubic structure (bcc structure) having an average crystal grain size of 30 nm or less, more preferably an average crystal. It has a structure mainly composed of a crystal phase composed of fine nanocrystal grains having a body-centered cubic structure with a particle size of 20 nm or less and a grain boundary amorphous phase existing at the grain boundary. The more bcc fine crystals, the higher the saturation magnetization. On the other hand, the remaining amorphous phase, which is a grain boundary phase, has a role of suppressing crystal grain growth and needs to be maintained at a certain amount. Therefore, the upper limit of the ratio of crystal phases composed of fine crystal grains is 85% in volume fraction. The degree is preferred.
[0032]
In order to manufacture an alloy having the above composition and structure, an alloy raw material is mixed and melted to obtain the above composition to obtain a molten alloy, and then a copper mold casting method is performed. By this copper mold casting method, an amorphous bulk sample can be obtained. Once this bulk sample is obtained, the sample is heated at 550 to 670 ° C. and then rapidly cooled, preferably water-quenched. If air-cooled or furnace-cooled, the heat dissipation is delayed, and the crystal grains grow due to residual heat, adversely affecting the soft magnetic properties. Therefore, the present invention takes away the heat of the bulk material at once by the water quenching method.
[0033]
This metallic glass alloy is crystallized by an exothermic reaction in the first and second stages by heat treatment. The first stage is the precipitation of nanoscale bcc- (Fe, Co) phase with a crystal grain size of about 10 nm. The second stage is the remaining amorphous phase (Fe, Co) 2 B, (Fe, Co) 23 B 6 , (Fe, Co) 3 Si and (Fe, Co) 2 Decomposition into Nb phase. When heat treatment is performed at a temperature lower than 550 ° C., the temperature is low, so the content of precipitated bcc crystal grains is small, and the saturation magnetization is lowered.
[0034]
On the other hand, the temperature exceeding 670 ° C. falls within the temperature range of the second exothermic peak. Therefore, when heat treatment is performed within this temperature range, (Fe, Co) due to the second exothermic peak in addition to the bcc crystal grains. 2 B, (Fe, Co) 23 B 6 , (Fe, Co) 3 Si and (Fe, Co) 2 A compound such as Nb precipitates, adversely affects the soft magnetic properties, increases the coercive force, and decreases the magnetic permeability. This heat treatment temperature is more preferably 580 to 630 ° C. By this heat treatment, a fine crystalline phase is precipitated in the amorphous phase to obtain an alloy ribbon having a structure according to the present invention, and the soft magnetic properties of the bulk alloy are improved by this heat treatment.
[0035]
The soft magnetic alloy having the above composition exhibits a high saturation magnetic flux density (Bs) of about 1.0 to 1.8 T (Tesla), a coercive force (Hc) of 10 A / m or less, 0.5 A / m or more, It shows a high magnetic permeability (μe) of 10,000 or more at 1 kHz. Further, depending on the composition, an excellent value of 30,000 to 60,000 can be obtained at 1 kHz as the magnetic permeability.
[0036]
【Example】
Examples 1-11, Comparative Examples 1-8
Hereinafter, the present invention will be specifically described with reference to the drawings based on examples and comparative examples. Materials were prepared so as to have a composition as shown in Table 1, and a copper mold casting method was performed to obtain a bulk alloy. Table 1 shows the alloy compositions of Examples 1 to 11 and Comparative Examples 1 to 8 and the glass transition temperature (Tg) and crystallization start temperature (Tx) measured using a differential scanning calorimeter. Further, the rate of the glass phase contained in the sample (Vf-volume fraction (Vf-amo.)) Was determined by a single-roll liquid quenching method in which the calorific value due to crystallization was completely vitrified using a differential scanning calorimeter. The average crystal grain size after heat treatment and the volume fraction of nanocrystal grains were obtained from the results of transmission electron microscope observation.
[0037]
The obtained bulk metallic glass alloy was heated at 550 to 650 ° C. for 10 minutes and then subjected to water quenching to obtain each soft magnetic alloy sample. The saturation magnetic flux density (Bs) and coercive force (Hc) of these soft magnetic alloy samples. And permeability μe (1 kHz) were measured by a sample vibration magnetometer (VSM), a direct current BH loop tracer, and an impedance analyzer, respectively. Moreover, confirmation of vitrification of the cast ingot of each Example and a comparative example and the structure | tissue observation after heat processing were performed by the X ray diffraction method and the transmission electron microscope observation. The results are summarized in Table 1. Table 1 shows the average crystal grain size and the volume fraction of nanocrystal grains.
[0038]
[Table 1]
Figure 2005068451
[0039]
In Examples 1 to 11 of the present invention, the temperature interval ΔTx of the supercooled liquid expressed by the equation of ΔTx = Tx−Tg (where Tx is the crystallization start temperature and Tg is the glass transition temperature) is 27 to 37K. Moreover, since the conversion vitrification temperature Tg / Tl (Tg is a glass transition temperature and Tl is a liquidus temperature (both absolute temperature)) is 0.61 to 0.63, it is a cast ingot having a diameter of 1 mm to 2 mm. The volume fraction (Vf-amo.) Of the glass phase is 100%.
[0040]
When these heat treatment steps are applied to these bulk metallic glass alloys, crystal grains having an average crystal grain size of 30 nm or less are uniformly precipitated, and a nanocrystalline bulk material can be obtained.
[0041]
On the other hand, in Comparative Examples 1 and 2, since the Co content exceeded 32 at%, glass transition did not appear, and the cast rod having a diameter of 0.5 mm was crystalline. The sample is a general cast material, has a large crystal grain size and poor soft magnetic properties. When a further heat treatment step is added, crystal grains grow further and it is impossible to obtain soft magnetic properties.
[0042]
Since Comparative Example 3 did not contain Co, only a 0.5 mm bulk amorphous material could be produced by copper mold casting, and it was crystalline at a diameter larger than that.
Since Comparative Example 4 does not contain Cu, a bulk metallic glass with a diameter of 1 mm can be produced. However, since there is no Cu cluster, a uniform nanocrystalline structure cannot be obtained after heat treatment, and it is a coarse material and has soft magnetic properties. It is impossible to get.
[0043]
In the alloy of Comparative Example 5, the content of Nb, which is a T group element, is within the range of the alloy composition of the present invention, but the content of B is as high as 16.5 at% and crystallized with a casting rod having a diameter of 0.5 mm. It was quality. The sample is a general cast material, has a large crystal grain size and poor soft magnetic properties. When a further heat treatment step is added, crystal grains grow further and it is impossible to obtain soft magnetic properties.
[0044]
In the alloy of Comparative Example 6, the content of Nb that is a T group element is within the range of the alloy composition of the present invention, but the Si content is as low as 4 at%, while the B content is 19.5 at%. It was high and was crystalline with a 0.5 mm diameter casting rod. These samples are also general casting materials, have a large crystal grain size and poor soft magnetic properties. When a further heat treatment step is added, crystal grains grow further and it is impossible to obtain soft magnetic properties.
[0045]
In the alloys of Comparative Examples 7 and 8, the content of Fe, Co, Si, B, and Cu elements is within the range of the alloy composition of the present invention, but the content of Nb that is a T group element is too small or too large. Therefore, it was crystalline with a cast rod having a diameter of 0.5 mm. The sample is also a general cast material, has a large crystal grain size and poor soft magnetic properties. When a further heat treatment step is added, crystal grains further grow and it is impossible to obtain soft magnetic properties.
[0046]
In the alloy of Comparative Example 9, the content of the Fe, Co, Si, B, and T group elements is within the range of the alloy composition of the present invention, but the Cu element is as high as 5 at%, and the cast rod has a diameter of 0.5 mm. It was crystalline. The sample is also a general cast material, has a large crystal grain size and poor soft magnetic properties. When a further heat treatment step is added, crystal grains grow further and it is impossible to obtain soft magnetic properties.
[0047]
In FIG. 1, the measurement result of the differential scanning calorimeter (DSC) of Examples 1, 3, 4, 5, 6, 7 and Comparative Examples 1 and 2 is shown. As shown in FIG. 1, after the Curie temperature (Tc) appears, until the Co content reaches 30 at%, the glass transition Tg appears after the aggregation of Cu element (Tp), while the Co content 35 at%, With a composition of 40 at%, no glass transition appeared after aggregation of Cu element.
[0048]
FIG. 2 shows an X-ray diffraction pattern after heat treatment of the bulk glass alloys of Examples 1, 3, 4, 5, 6, and 7. As shown in FIG. 2, in the sample after the heat treatment, only the bcc- (Fe, Co) phase is precipitated.
[0049]
FIG. 3 shows, as an example, X-ray diffraction patterns before and after heat treatment in a bulk alloy having a diameter of 2 mm obtained in Example 3. As shown in FIG. 3, it can be seen that the sample before the heat treatment has an amorphous halo pattern and has an amorphous structure. On the other hand, in the sample after the heat treatment, it can be seen that only the bcc- (Fe, Co) phase was precipitated.
[0050]
In FIG. 4, the transmission electron microscope observation result of the sample after the said heat processing is shown. As shown in FIG. 4, a spherical bcc- (Fe, Co) nanocrystal having a diameter of about 10 nm and a volume fraction of about 75% uniformly precipitated and an amorphous phase having a width of about 2 nm remaining between the crystal grains are observed. It was confirmed that a bulk nanocrystalline alloy can be produced.
[0051]
Example 12
A molten alloy having the same composition as in Example 3 was rapidly solidified by an ordinary melt spin method to produce a ribbon material having a thickness of 0.03 mm and a width of 2 mm, and water quenching was performed as in Example 3. FIG. 5 shows BH hysteresis curves of a bulk nanocrystal alloy having a diameter of 2 mm obtained by Example 3 and a ribbon material of this example, measured using a sample vibration type magnetometer. As shown in FIG. 5, the bulk nanocrystalline alloy shows soft magnetic properties like the ribbon material.
[Brief description of the drawings]
FIG. 1 is a graph showing measurement results of differential scanning calorimeters (DSC) of Examples 1, 3, 4, 5, 6, 7 and Comparative Examples 1 and 2. FIG.
FIG. 2 is a graph showing an X-ray diffraction pattern after heat treatment of bulk glass alloys of Examples 1, 3, 4, 5, 6, and 7.
3 is a graph showing X-ray diffraction patterns before and after heat treatment in a bulk alloy having a diameter of 2 mm obtained in Example 3. FIG.
4 is a drawing-substituting photograph showing a result of observation by a transmission electron microscope of a sample after heat treatment in a bulk alloy having a diameter of 2 mm obtained in Example 3. FIG.
5 is a graph showing BH hysteresis curves of a bulk nanocrystal alloy with a diameter of 2 mm obtained in Example 3 and a ribbon material obtained in Example 12. FIG.

Claims (3)

(Fe1−a100−x−y−z−wSiCu(ただし、MはCo,Niのいずれか、又は、両方であり、かつ0.05≦a≦0.36、TはNb,Zr, Ta, W, Mo, Hf及びTiの中から選ばれる少なくとも1種の元素であり、かつ2≦w≦8(原子%)、5≦x≦15(原子%)、5≦y≦15(原子%)、0.01≦z≦4(原子%)である)で示され、ΔTx=Tx−Tg(ただし、Txは結晶化開始温度、Tgはガラス遷移温度)の式で表される過冷却液体の温度間隔ΔTxが20K以上で、換算ガラス化温度Tg/Tl(Tgはガラス遷移温度、Tlは液相線温度(いずれも絶対温度))が0.59以上であるバルク金属ガラス合金を結晶化させて、Fe、Co及び/又はNiの固溶体である微細なbcc結晶粒からなるナノ結晶相と、bcc結晶粒の粒界に存在する粒界非晶質相の2相を形成させ、平均結晶粒径が30nm以下、体積分率で40〜85%がナノ結晶であることを特徴とするFe基軟磁性バルク非晶質・ナノ結晶二相合金。 (Fe 1-a M a) 100-x-y-z-w Si x B y Cu z T w ( however, M is Co, either Ni, or is both, and 0.05 ≦ a ≦ 0.36, T is at least one element selected from Nb, Zr, Ta, W, Mo, Hf and Ti, and 2 ≦ w ≦ 8 (atomic%), 5 ≦ x ≦ 15 (atomic %), 5 ≦ y ≦ 15 (atomic%), 0.01 ≦ z ≦ 4 (atomic%)), and ΔTx = Tx−Tg (where Tx is the crystallization start temperature and Tg is the glass transition) The temperature interval ΔTx of the supercooled liquid represented by the equation of (temperature) is 20K or more, and the converted vitrification temperature Tg / Tl (Tg is the glass transition temperature and Tl is the liquidus temperature (both are absolute temperatures)) is 0. A bulk metallic glass alloy that is 59 or more is crystallized to form a solid solution of Fe, Co and / or Ni. The nanocrystal phase composed of fine bcc crystal grains and the grain boundary amorphous phase existing at the grain boundary of the bcc crystal grains are formed, the average crystal grain size is 30 nm or less, and the volume fraction is 40 to 85 in volume fraction. % Fe-based soft magnetic bulk amorphous / nanocrystalline two-phase alloy, characterized in that% is nanocrystal. 飽和磁束密度(Bs)が1T以上、1.8T以下、保磁力(Hc)が10A/m以下、0.5A/m以上、1KHzでの透磁率(μe)が、10000以上、60,000以下、であることを特徴とする請求項1記載のFe基軟磁性バルク非晶質・ナノ結晶二相合金。The saturation magnetic flux density (Bs) is 1 T or more and 1.8 T or less, the coercive force (Hc) is 10 A / m or less, 0.5 A / m or more, and the magnetic permeability (μe) at 1 KHz is 10,000 or more and 60,000 or less. The Fe-based soft magnetic bulk amorphous / nanocrystalline two-phase alloy according to claim 1, wherein 銅鋳型鋳造法によって径又は厚みが0.75mm以上で、ガラス相の体積分率が100%の鋳造塊を製造し、これを550〜670℃の温度範囲で加熱した後、急冷することを特徴とする請求項1又は2記載のFe基軟磁性バルク非晶質・ナノ結晶二相合金の製造方法。A cast ingot having a diameter or thickness of 0.75 mm or more and a glass phase volume fraction of 100% is manufactured by a copper mold casting method, and this is heated in a temperature range of 550 to 670 ° C. and then rapidly cooled. The method for producing an Fe-based soft magnetic bulk amorphous / nanocrystalline two-phase alloy according to claim 1 or 2.
JP2003209153A 2003-08-27 2003-08-27 Method for producing Fe-based soft magnetic bulk amorphous / nanocrystalline two-phase alloy Expired - Fee Related JP3983207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003209153A JP3983207B2 (en) 2003-08-27 2003-08-27 Method for producing Fe-based soft magnetic bulk amorphous / nanocrystalline two-phase alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003209153A JP3983207B2 (en) 2003-08-27 2003-08-27 Method for producing Fe-based soft magnetic bulk amorphous / nanocrystalline two-phase alloy

Publications (2)

Publication Number Publication Date
JP2005068451A true JP2005068451A (en) 2005-03-17
JP3983207B2 JP3983207B2 (en) 2007-09-26

Family

ID=34402180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003209153A Expired - Fee Related JP3983207B2 (en) 2003-08-27 2003-08-27 Method for producing Fe-based soft magnetic bulk amorphous / nanocrystalline two-phase alloy

Country Status (1)

Country Link
JP (1) JP3983207B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085030A (en) * 2005-09-20 2007-04-05 Ishimic:Kk Energy saving system for building
EP2128291A1 (en) * 2007-03-16 2009-12-02 Hitachi Metals, Ltd. Magnetic alloy, amorphous alloy ribbon, and magnetic part
WO2010084900A1 (en) 2009-01-23 2010-07-29 アルプス電気株式会社 Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy
JP2011171612A (en) * 2010-02-22 2011-09-01 Alps Electric Co Ltd Fe-BASED SOFT MAGNETIC ALLOY POWDER AND METHOD OF PRODUCING THE SAME, AND MAGNETIC SHEET FOR VHF BAND AND MOLDED ARTICLE USING THE Fe-BASED SOFT MAGNETIC ALLOY POWDER, AND MAGNETIC CORE FOR VHF BAND
CN102721589A (en) * 2012-06-29 2012-10-10 山西太钢不锈钢股份有限公司 Preparation method of austenitic stainless steel bulk sample electrolyzed sample
WO2017022594A1 (en) * 2015-07-31 2017-02-09 株式会社村田製作所 Soft magnetic material and method for producing same
CN107393674A (en) * 2017-08-16 2017-11-24 贵州鑫湄纳米科技有限公司 A kind of iron-based amorphous magnetic core and its application
CN108330412A (en) * 2018-01-29 2018-07-27 江苏知行科技有限公司 A kind of non-crystaline amorphous metal and its production technology
CN108950434A (en) * 2018-07-20 2018-12-07 山东海瑞得新材料科技有限公司 A kind of small Fe-based amorphous band and preparation method thereof of exciting power
CN109722517A (en) * 2018-11-20 2019-05-07 广东工业大学 A kind of high-performance Fe-based amorphous nanocrystalline alloy heat treatment method
CN109930085A (en) * 2019-03-11 2019-06-25 华南理工大学 A kind of high entropy amorphous soft-magnetic alloy of corrosion-and high-temp-resistant and preparation method thereof
CN110556224A (en) * 2018-05-30 2019-12-10 丰田自动车株式会社 Soft magnetic material and method for producing the same
JPWO2018155608A1 (en) * 2017-02-24 2020-01-16 国立研究開発法人産業技術総合研究所 Magnetic material and its manufacturing method
CN112582125A (en) * 2019-09-27 2021-03-30 Tdk株式会社 Soft magnetic alloy and electronic component
JP2021055182A (en) * 2019-09-27 2021-04-08 Tdk株式会社 Soft magnetic metal alloy and electronic component
CN113903588A (en) * 2021-09-27 2022-01-07 朗峰新材料(菏泽)有限公司 Preparation method of nanocrystalline soft magnetic material
CN114360883A (en) * 2021-12-31 2022-04-15 华南理工大学 High-magnetic-induction magnetic powder core based on amorphous crystallization dual-functional elements and preparation method and application thereof
CN115608996A (en) * 2021-07-28 2023-01-17 中国科学院宁波材料技术与工程研究所 Iron-based nanocrystalline magnetically soft alloy powder and preparation method thereof

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085030A (en) * 2005-09-20 2007-04-05 Ishimic:Kk Energy saving system for building
EP2128291A1 (en) * 2007-03-16 2009-12-02 Hitachi Metals, Ltd. Magnetic alloy, amorphous alloy ribbon, and magnetic part
EP2128291A4 (en) * 2007-03-16 2010-09-08 Hitachi Metals Ltd Magnetic alloy, amorphous alloy ribbon, and magnetic part
US8298355B2 (en) 2007-03-16 2012-10-30 Hitachi Metals, Ltd. Magnetic alloy, amorphous alloy ribbon, and magnetic part
WO2010084900A1 (en) 2009-01-23 2010-07-29 アルプス電気株式会社 Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy
EP2390377A4 (en) * 2009-01-23 2016-06-01 Alps Green Devices Co Ltd Iron-based soft magnetic alloy and dust core comprising the iron-based soft magnetic alloy
JP2011171612A (en) * 2010-02-22 2011-09-01 Alps Electric Co Ltd Fe-BASED SOFT MAGNETIC ALLOY POWDER AND METHOD OF PRODUCING THE SAME, AND MAGNETIC SHEET FOR VHF BAND AND MOLDED ARTICLE USING THE Fe-BASED SOFT MAGNETIC ALLOY POWDER, AND MAGNETIC CORE FOR VHF BAND
CN102721589A (en) * 2012-06-29 2012-10-10 山西太钢不锈钢股份有限公司 Preparation method of austenitic stainless steel bulk sample electrolyzed sample
WO2017022594A1 (en) * 2015-07-31 2017-02-09 株式会社村田製作所 Soft magnetic material and method for producing same
US11851738B2 (en) 2015-07-31 2023-12-26 Murata Manufacturing Co., Ltd. Soft magnetic material and method for manufacturing the same
CN107949889A (en) * 2015-07-31 2018-04-20 株式会社村田制作所 Soft magnetic material and its manufacture method
CN107949889B (en) * 2015-07-31 2020-04-24 株式会社村田制作所 Soft magnetic material and method for producing same
JPWO2018155608A1 (en) * 2017-02-24 2020-01-16 国立研究開発法人産業技術総合研究所 Magnetic material and its manufacturing method
JP7055417B2 (en) 2017-02-24 2022-04-18 国立研究開発法人産業技術総合研究所 Magnetic materials and their manufacturing methods
CN107393674A (en) * 2017-08-16 2017-11-24 贵州鑫湄纳米科技有限公司 A kind of iron-based amorphous magnetic core and its application
CN108330412A (en) * 2018-01-29 2018-07-27 江苏知行科技有限公司 A kind of non-crystaline amorphous metal and its production technology
CN110556224A (en) * 2018-05-30 2019-12-10 丰田自动车株式会社 Soft magnetic material and method for producing the same
CN110556224B (en) * 2018-05-30 2022-06-14 丰田自动车株式会社 Soft magnetic material and method for producing same
CN108950434A (en) * 2018-07-20 2018-12-07 山东海瑞得新材料科技有限公司 A kind of small Fe-based amorphous band and preparation method thereof of exciting power
CN109722517A (en) * 2018-11-20 2019-05-07 广东工业大学 A kind of high-performance Fe-based amorphous nanocrystalline alloy heat treatment method
CN109930085A (en) * 2019-03-11 2019-06-25 华南理工大学 A kind of high entropy amorphous soft-magnetic alloy of corrosion-and high-temp-resistant and preparation method thereof
JP7503956B2 (en) 2019-09-27 2024-06-21 Tdk株式会社 Soft magnetic alloys and electronic components
JP2021055182A (en) * 2019-09-27 2021-04-08 Tdk株式会社 Soft magnetic metal alloy and electronic component
CN112582125A (en) * 2019-09-27 2021-03-30 Tdk株式会社 Soft magnetic alloy and electronic component
US12080457B2 (en) 2019-09-27 2024-09-03 Tdk Corporation Soft magnetic metal alloy and electronic component
CN112582125B (en) * 2019-09-27 2024-03-19 Tdk株式会社 Soft magnetic alloy and electronic component
CN115608996A (en) * 2021-07-28 2023-01-17 中国科学院宁波材料技术与工程研究所 Iron-based nanocrystalline magnetically soft alloy powder and preparation method thereof
CN115608996B (en) * 2021-07-28 2024-05-03 中国科学院宁波材料技术与工程研究所 Iron-based nanocrystalline magnetically soft alloy powder and preparation method thereof
CN113903588A (en) * 2021-09-27 2022-01-07 朗峰新材料(菏泽)有限公司 Preparation method of nanocrystalline soft magnetic material
CN113903588B (en) * 2021-09-27 2022-05-31 朗峰新材料(菏泽)有限公司 Preparation method of nanocrystalline soft magnetic material
CN114360883A (en) * 2021-12-31 2022-04-15 华南理工大学 High-magnetic-induction magnetic powder core based on amorphous crystallization dual-functional elements and preparation method and application thereof
CN114360883B (en) * 2021-12-31 2022-11-01 华南理工大学 High-magnetic-induction magnetic powder core based on amorphous crystallization dual-functional elements and preparation method and application thereof

Also Published As

Publication number Publication date
JP3983207B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
JP6482718B1 (en) Soft magnetic material and manufacturing method thereof
JP3983207B2 (en) Method for producing Fe-based soft magnetic bulk amorphous / nanocrystalline two-phase alloy
KR100241796B1 (en) Fe-ni based soft magnetic alloys having nanocrystalline structure and manufacturing method of magnetic alloys
JP7387008B2 (en) Iron-based amorphous alloy containing sub-nanoscale ordered clusters, method for preparing the same, and nanocrystalline alloy derivatives using the same
JP5163630B2 (en) Rare earth magnet and manufacturing method thereof
CN110387500B (en) High-magnetic-induction high-frequency iron-based nanocrystalline magnetically soft alloy and preparation method thereof
WO2018025931A1 (en) Method for producing soft magnetic material
JP5912239B2 (en) Fe-based alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
CN109930080B (en) Copper-free nanocrystalline magnetically soft alloy and preparation method thereof
JP2011256453A (en) Method for producing fe-group nano-crystal alloy, fe-group nano-crystal alloy, magnetic component, and device for producing fe-group nano-crystal alloy
JP2011195936A (en) ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND METHOD FOR PRODUCING THE SAME, AND MAGNETIC PART
JP2008231534A (en) Soft magnetic thin band, magnetic core, and magnetic component
JP2000073148A (en) Iron base soft magnetic alloy
JP2003213331A (en) METHOD FOR MANUFACTURING SOFT MAGNETIC Fe ALLOY, AND SOFT MAGNETIC Fe ALLOY
JP2006040906A (en) Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density
JP4830972B2 (en) Method for producing isotropic iron-based rare earth alloy magnet
KR102241959B1 (en) Iron based soft magnet and manufacturing method for the same
JPH0448005A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
JP2021011602A (en) NANOCRYSTALLINE SOFT-MAGNETIC MATERIAL, METHOD OF MANUFACTURING THE SAME, AND Fe-BASED ALLOY USED THEREIN
Chen et al. Microstructure and magnetic properties of melt-spun Sm2Fe15− xCoxCr2C2 (x= 0–4) nanocomposite magnets
JP2002322546A (en) Fe BASED SOFT MAGNETIC ALLOY AND MAGNETIC CORE USING THE ALLOY
JP2020020023A (en) ALLOY COMPOSITION, Fe-BASED NANOCRYSTAL ALLOY AND MANUFACTURING METHOD THEREFOR, AND MAGNETIC MEMBER
JP3299887B2 (en) Hard magnetic material
JP2000144349A (en) Iron base soft magnetic alloy
JP3723016B2 (en) Fe-based soft magnetic alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3983207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees