JP2006040906A - Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density - Google Patents

Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density Download PDF

Info

Publication number
JP2006040906A
JP2006040906A JP2001154197A JP2001154197A JP2006040906A JP 2006040906 A JP2006040906 A JP 2006040906A JP 2001154197 A JP2001154197 A JP 2001154197A JP 2001154197 A JP2001154197 A JP 2001154197A JP 2006040906 A JP2006040906 A JP 2006040906A
Authority
JP
Japan
Prior art keywords
soft magnetic
producing
ribbon
based alloy
alloy composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001154197A
Other languages
Japanese (ja)
Inventor
Teruhiro Makino
彰宏 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001154197A priority Critical patent/JP2006040906A/en
Priority to PCT/JP2002/002788 priority patent/WO2002077300A1/en
Publication of JP2006040906A publication Critical patent/JP2006040906A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soft magnetic molded body comprising Fe base alloy of low cost which has both high saturation magnetic flux density and high permeability and is easily manufactured. <P>SOLUTION: Manufacturing of the soft magnetic molded body includes a process for manufacturing a thin band which can be bent 180° and has a multiphase system in which Fe radical alloy composition in molten state is quench-solidified so that α-Fe crystal phase whose average particle size is 50nm or less is dispersed in an amorphous phase, and a process for heating the thin band up to the temperature higher than the crystallizing temperature of α-Fe crystal phase. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、各種トランス、チョークコイル、モーター等の電気製品の磁性材料として広く用いられる軟磁性合金に関するものであり、特に高透磁率かつ高飽和磁束密度を示すFe基磁性合金組成の軟磁性成形体に関する。
【0002】
【従来の技術】
各種トランス、チョークコイル、モーター等に用いられる軟磁性合金において一般的に要求される諸特性は、低保磁力であることに加え、飽和磁束密度が高いこと、透磁率が高いこと、加工性が良いことなどである。工業材料の観点からは安価でかつ製造が容易であることも必須である。
【0003】
従来、前述の用途に対しては、センダスト、パーマロイ、けい素銅等の結晶質合金が用いられ、最近ではFe基及びCo基の非晶質合金が非晶質合金を熱処理することにより作製されるナノ結晶合金も使用されるようになってきている。
【0004】
【発明が解決しようとする課題】
小型トランス、チョークコイルの場合、電子機器の小型化に伴い、より一層の小型化が必要あるため、より高性能な磁性材料が望まれている。
さらに、昨今の地球温暖化対策の観点から商品周波数で用いられる電力、柱上トランス等では、1.4T以上の飽和磁束密度と低磁心損失が求められている。ところが、前記のセンダストは、軟磁気特性には優れるものの、飽和磁束密度は約1.1Tと低い欠点があり、パーマロイも同様に軟磁気特性に優れる組成においては、飽和磁束密度が約0.8Tと低い欠点があり、けい素銅は飽和磁束密度が高いものの軟磁気特性に劣る欠点がある。
【0005】
一方、非晶質合金において、Co基合金は軟磁気特性に優れるものの飽和磁束密度が1.0T程度と低く不十分である。また、これまでに知られているFe基非晶質合金は、組成によっては飽和磁束密度が高く、1.5Tあるいはそれ以上のものが得られるが、飽和磁束密度の高い組成系のものは磁気特性が不十分である。
【0006】
ところで、これら従来の磁性材料が有する磁気特性と実用的な磁気装置が要求する磁気特性の関係を見ると、トランスにおいては、商用周波数から数10kHzで用いられるものは、扱う電力が大きい場合が多く、それらに用いられるコア材の飽和磁束密度はできるだけ大きいことが望まれる。
【0007】
例えば、近年、柱上トランスなどにおいては、飽和磁束密度が1.4T以上であることが必要とされ、実際には、1.5T以上の飽和磁束密度を有するけい素銅、あるいは1.3T以上の飽和磁束密度を有するFe基非晶質合金などが、満足ではない透磁率を有するにもかかわらず用いられている。
【0008】
このような場合、コア材を構成する磁性材料の透磁率が高いと、トランスとしての効率が良くなり、特に10000以上の透磁率が得られるとそのメリットが著しくなるが、1.4T以上の透磁率を有する実用磁性材料は見あたらないのが実状である。
【0009】
また、通常の軟磁性材料が用いられるのは、周知の如く数Hz〜数100Hzの周波数帯域であるが、この範囲において高い飽和磁束密度と透磁率を同時に実現できる軟磁性材料が得られるならば、トランス等の磁気部品を小型化及び低ロス化できることは周知のことである。即ち、軟磁性材料の飽和磁束密度が高くなれば、その分だけ磁束が多くなり、結果として磁気部品の体積を小型にできるのである。更に、磁気部品のロスの大半は熱として外部に放出されるので、他の機器や部品との間隔をあけたりする工夫が一般に必要とされるが、これが磁気部品を備えた磁気装置全体の小型化への大きな障害をなっていた。従って、磁気部品を小型化すれば上述の問題を解決することができ、結果として磁気装置全体を小型化することが可能になる。
【0010】
ところが、従来の軟磁性材料は、前述した通り、高い飽和磁束密度を有するものは透磁率が低くなる傾向にあり、具体的には、実用的なFe基非晶質合金において飽和磁束密度を1.3〜1.5Tとすると、透磁率10000を割って9000程度になる傾向があり、実用的なCo基非晶質合金において透磁率10000以上とすると、1.0Tを割る傾向にある。
【0011】
近年、Fe基アモルファス相を加熱し結晶化することにより優れた磁気特性をもつナノ結晶合金が見出されているが、このナノ結晶合金の製造に際しては液体急冷法によりアモルファス単相を得ることが必須である。そのため合金組成は、アモルファス形成元素を多量に含む必要が有り、必然的にFe濃度が制限されるため、得られる磁性材料の飽和磁束密度に限界がある。合金組成が、限界以上のFeを含む場合には液体急冷による得られたアモルファス相に結晶相が混じり、材料が脆化し、加工性が著しく悪くなり、同時に軟磁気特性も著しく劣化するという問題がある。
【0012】
一方、アモルファス形成元素としてZr、Nb、Taなどを多量に用いた合金系では、材料製造時に雰囲気中の酸素ガス濃度を低く制御することが必須であるため、真空装置を備えた装置で材料製造されるため、高価となり、工業的応用がむずかしい。
【0013】
従って、前述したような高飽和磁束密度と高透磁率を兼ね備え、かつ、熱安定性を有し、さらには安価で製造が容易な実用的な磁性材料が望まれている。
【0014】
従って、本発明の目的は1.4T以上の高飽和磁束密度と10000以上の高透磁率を兼ね備え、かつ安価で製造が容易なFe系合金からなる軟磁性成形体を提供することにある。
【0015】
【課題を解決するための手段】
本発明は、溶融状態にあるFe基合金組成物を急冷凝固させて、非晶質相中に平均粒径が50nm以下(特に45nm以下)の微細なα−Fe結晶相が分散された混相組織を有し、180゜折曲げが可能な、厚みが5〜100μm、特に5〜50μmの薄帯を製造する工程、そして該薄帯をα−Fe結晶相の結晶化温度より高い温度に加熱して、微細なα−Fe結晶相を成長させる工程を含むことを特徴とする軟磁性成形体の製造方法にある。
【0016】
本発明はまた、溶融状態にあるFe基合金組成物を急冷凝固させて、非晶質相中に平均粒径が50nm以下(特に45nm以下)のα−Fe結晶相が分散された混相組織を有し、180゜折曲げが可能な、軟磁性成形体製造用の薄帯の製造方法にもある。
【0017】
本発明はまた、非晶質相中に平均粒径が50nm以下(特に45nm以下)のα−Fe結晶相が分散された混相組織を有し、180゜折曲げが可能なFe基合金組成物薄帯をα−Fe結晶相の結晶化温度より高い温度に加熱することを特徴とする軟磁性成形体の製造方法にもある。
【0018】
本発明はまた、周波数1kHzにおける透磁率が10000以上(特に、15000以上)、飽和磁束密度が1.4T以上(特に、1.5T以上)、そして周波数50Hzにおける磁心損失が0.15W/kg以下(特に0.14W/kg以下)であるFe基合金組成の軟磁性成形体にもある。
【0019】
【発明の実施の形態】
本発明の軟磁性成形体は、Fe基合金組成物の溶融金属を薄帯状に急冷凝固させて、該薄帯に高じん性を有する平均結晶粒径が50nm以下のα−Fe結晶相と非晶質との混相組織を形成させる工程と、必要に応じてこの工程で得られた薄帯をものを、巻回、打抜き、エッチング、表面研磨及びスリット加工などの加工処理の一もしくは二以上を施した後、該Fe基合金組成物の結晶化温度以上に熱処理する工程とによって得ることができる。
【0020】
溶融金属の急冷凝固により形成される薄帯中のα−Fe結晶相の平均結晶粒径が50nmを超えると薄帯のじん性が低下し、以後の巻回などの加工が困難になる。
【0021】
本発明で用いる材料であるFe基の合金組成物は、非晶質形成元素を含むことが必須である。B(ホウ素)は典型的な非晶質形成元素であり、本発明材料の非晶質相形成能を高める効果、及び前記熱処理工程において磁気特性に悪影響を及ぼす化合物相の生成を抑制する効果があると考えられる。しかしBを大量に含むと、材料のFe濃度が低下するために飽和磁束密度が低下する、あるいは熱処理後にFeの硼化物を形成する傾向が現れて、形成される軟磁性成形体の磁気特性劣化の一因となるため好ましくない。そのため、本発明材料において好ましいBの含有量は0.5〜25原子%、より好ましくは0.5〜15原子%である。また、製造が容易でかつより優れた磁気特性を示す材料を得るためには、Bの含有量は5〜12原子%であるのが好ましい。
【0022】
Cu(銅)は急冷時に生成するα−Fe結晶相の粒径を微細化する効果があると考えられ、急冷状態で高じん性を示す材料を得やすくする作用がある。しかしCuの含有量が多くなると急冷状態で非晶質相中にCu結晶が生成し、材料のじん性が低下する。そのため本発明材料において好ましいCuの含有量は、1.5原子%以下である。また、より優れた磁気特性を示す材料を得るために好ましいCuの含有量は1原子%以下、より好ましくは0.5原子%以下である。
【0023】
PもBと同様に、本発明材料の非晶質形成能を更に高める効果、及び前記熱処理工程において磁気特性に悪影響を及ぼす化合物相の生成を抑制する効果があると考えられる。またBとPを同時に含むことにより非晶質形成能が更に向上し、より高Fe濃度の非晶質相とα−Fe結晶相との混相組織が得やすくなると考えられ、Pを含むことがより好ましいと考えられる。しかしPを大量に含むとFe濃度の低下及び飽和磁束密度の低下を招くので好ましくない。そのため本発明材料において好ましいPの含有量は5原子%以下である。また、より優れた磁気特性を示す材料を得るためには、Pの含有量は1.5原子%以下であるのが好ましい。
【0024】
本発明を種々のトランス、チョークコイル、モーター等などの磁気部品の磁心材料として使用する場合、これら磁気部品の高性能化、小型化、高効率化のためには、高透磁率、高飽和磁束密度及び低磁心損失を有する必要がある。具来的には、周波数1kHzにおける透磁率が10000以上、飽和磁束密度が1.4T以上、及び飽和磁束密度1.4T、周波数50Hzにおける磁心損失が0.15W/kg以下であることが好ましい。
上記の磁気特性を実現するためには、B,P,Cuを必須元素として含むFe基合金で、次式で表される組成を有することが好ましい。
【0025】
【化9】
(Fe1-aa)100-b-c-d-e-f-g-hM’bcdCueM”fM'"gh
【0026】
[但し、Mは、Co,Niのいずれか一方又は両方であり、M’はNb,W,Ta,Zr,Hf,Ti,Moからなる群から選ばれる一種又は二種以上の元素であり、M”はV,Cr,Mn,Al,白金族元素,Sc,Y,希土類元素,Au,Zn,Sn,Re,Agからなる群から選ばれる一種又は二種以上の元素であり、M'"はC,Ge,Sb,In,As,Beからなる群から選ばれる一種又は二種以上の元素であり、XはSi,Alのいずれか一方又は両方であって、
a、b、c、d、e、f、g、hはそれぞれ、0≦a≦0.5、0≦b≦10、0.5≦c≦25、0<d≦5、0<e≦1.5、0≦f≦2、0≦g≦3、0≦h≦6を満たす数値である。]
【0027】
上記の式でMは、Co,Niのいずれか一方または両方であり、これらの元素を含むことにより材料の磁歪を調整したり、あるいは磁場中熱処理などの手法で誘導磁気異方性を付与するなどで用途に合わせた磁化曲線を実現することができる。しかしこれらの元素を多量に含むと、磁歪が極端に増加して磁気特性の劣化を招くため、好ましくは0<a<0.5の範囲、より好ましくは0<a<0.05の範囲である。
【0028】
M’は、Nb,W,Ta,Zr,Hf,Ti,Moからなる群から選ばれる一種又は二種以上の元素であり、これらの元素は高い非晶質形成能を持つため、材料のFe濃度を高めて飽和磁束密度を高めるのに有効な元素である。しかしこれらの元素を大量に含むと、熱処理後に磁気特性に悪影響を及ぼす化合物相が生成しやすくなるため、10原子%以下の範囲で添加するのが好ましい。また、より優れた磁気特性を示す材料を得るためには、好ましくは2〜8原子%の範囲、より好ましくは4〜7原子%の範囲で添加するのが望ましい。
【0029】
M”はV,Cr,Mn,Al,白金族元素,Sc,Y,希土類元素,Au,Zn,Sn,Re,Agからなる群から選ばれた1種又は2種以上の元素であり、これらは材料の耐食性や耐磨耗性を向上させる、磁歪を調整する、α−Fe相の結晶粒径を微細化させる等の効果を有する。しかしこれらの元素の含有量が増加すると飽和磁束密度の低下を招くので、2原子%以下の範囲で添加するのが好ましい。
【0030】
M'"はC,Ge,Sb,In,As,Beからなる群から選ばれる一種または二種以上の元素であり、これらの元素は非晶質化に有効な元素であり、B,P等と共に添加することにより合金の非晶質化を助けると共に、磁歪を調整する等の効果を有する。しかしこれらの元素の含有量が増加すると飽和磁束密度の低下を招くので、3原子%以下の範囲で添加するのが好ましい。
【0031】
XはSi,Alのいずれか一方又は両方であり、これらは一般に良く知られている非晶質形成元素であり、B,P等と共に添加することにより合金の非晶質形成能を高める作用がある。また、これらの元素は熱処理後にα−Fe相に固溶して、結晶相の磁気異方性や磁歪を調節して磁気特性を改善する効果も有する。しかしこれらの元素の含有量が増加すると飽和磁束密度の低下を招くので、6原子%以下の範囲で添加するのが好ましい。
【0032】
従って、本発明の軟磁性成形体の形成に用いるFe基合金組成物は、下記の組成式で表わされる合金材料であることが好ましい。
【0033】
【化10】
(Fe1-aa)100-b-c-d-eM’bcdCue
【0034】
[但し、MはCo,Niのいずれか一方又は両方であり、M’はNb,W,Ta,Zr,Hf,Ti,Moからなる群から選ばれる一種又は二種以上の元素であって、0≦a≦0.05、4≦b≦7、5≦c≦12、0<d≦1.5、0<e≦0.5である。]
【0035】
その他、H,N,O,S等の不可避不純物については、所望の特性が劣化しない程度に含有していても、本発明の材料組成と同一と見なすことができるのは勿論である。
【0036】
本発明の軟磁性成形体は、前述のように、一旦、溶融状態にあるFe基合金組成物の急速冷却により、非晶質体中に微細なFe−結晶相(微細bccFe結晶相)が分散された薄帯を成形したのち、必要に応じて、巻回などの加工処理を施した後、該Fe基合金組成物の結晶化温度よりも高い温度に薄帯を加熱して、結晶相を成長させて製造する。溶融合金の急速冷却は、単ロール法、双ロール法、遠心急冷法等を利用して実施する。
【0037】
薄帯もしくはその加工物中の微細Fe−結晶相の成長のための熱処理は、通常は100〜700℃の温度範囲内で行なう。この熱処理は通常、真空中または水素ガス、窒素ガス、アルゴンガス等の不活性ガス雰囲気中においても行われる。また場合によっては大気中で行っても良い。また磁場中あるいは応力下で熱処理を行い、磁気特性を調整することもできる。
【0038】
以下本発明を実施例に従ってさらに詳細に説明するが、本発明はこれらに限定されるものではない。
【0039】
【実施例】
下記の実施例に示す合金は、単ロール液体急冷法により作製した。すなわち、一つの回転している銅製ロール上におかれたノズル先端のスリットより、溶融金属を、アルゴンガスの圧力により、上記ロール上に噴出させ、急冷して薄帯を得る。ロール及びノズルは真空容器中に収められている。薄帯作製時にはあらかじめ容器内を真空引き後、アルゴンガスを導入して行った。ロールの周速度は30〜40m/秒とした。以上の様に作製した薄帯の厚さは約20mmであった。急冷状態の薄帯の構造はX回折法を用いて調べた。また薄帯のじん性を、薄帯を180゜折り曲げる密着曲げの可否(180゜折り曲げても薄帯が破壊しない場合を、密着曲げ可能と表す)で調べた。
【0040】
[実施例1]
本発明に従ってFe合金組成物を急冷したのちの状態におけるFe−微細結晶相が分散された非晶質相からなる薄帯の内部構造について、Fe85Nb69及びFe84.9Nb69Cu0.1合金を例にとって説明する。
【0041】
第1図は、Fe85Nb69及びFe84.9Nb69Cu0.1合金の急冷状態でのX線回折図形である。X線回折図形は非晶質相に特有のハローな回折図形上に、○で示したα−Fe結晶相に特有の鋭い回折ピークが見られ、薄帯は非晶質相とα−Fe結晶相の混相であることが分かる。α−Fe結晶相の回折ピークの半値幅からシェラーの式を用いてα−Fe結晶相の粒径を見積もると、Fe85Nb69合金においては約40nmであった。Fe84.9Nb69Cu0.1においては、α−Fe結晶相の回折ピークの強度が非常に低いため粒径を求めることができなかったが、ピークの半値幅は非常に広く、粒径は10nm以下程度に微細化していると判断される。すなわち、0.1原子%のCuを添加することにより、急冷状態でのα−Fe結晶相の粒径が微細化すると言える。また、この二つの合金はいずれも急冷状態で密着曲げが可能であり、高いじん性を有していた。
【0042】
[実施例2]
実施例として作製した薄帯の合金組成、薄帯の板厚、急冷状態における構造、及び密着曲げの可否を第1表に示す。No.1〜10の試料では、X線回折図形から急冷状態で非晶質相とα−Fe結晶相の混相であることが分かった。α−Fe結晶相の回折ピークからα−Fe結晶相の粒径を見積もると、約30〜40nmであった。なおNo.3,8及び10の試料では、α−Fe結晶相の回折ピークの強度が非常に低いため正確な粒径を求めることができなかったが、ピークの半値幅は非常に広く、粒径は10nm以下程度に微細化していると判断される。No.1〜10の試料はいずれも密着曲げが可能であり、高いじん性を有していた。
【0043】
【表1】

Figure 2006040906
【0044】
[実施例3]
実施例2において作製した薄帯を用いて内径約5mm、外径約6mmの巻磁心を形成し、真空中で650℃、5分間の熱処理を行った。熱処理後の巻磁心に巻き線を施し、透磁率(m)とB−H曲線、磁心損失を測定した。透磁率の測定は印加磁界5 mOe、周波数1kHzとした。飽和磁束密度(Bs)は最大磁界10 Oe、周波数10Hzにおける交流磁化曲線から算出した。磁心損失の測定は、最大磁束密度1.4T、周波数50Hzで行った。透磁率、飽和磁束密度、磁心損失の測定結果を第2表に示す。
【0045】
【表2】
Figure 2006040906
【0046】
第2表の結果から、本発明合金は熱処理後において、周波数1kHzにおける透磁率が10000以上、飽和磁束密度が1.4T以上、かつ最大磁束密度1.4T、周波数50Hzにおける磁心損失が0.15W/kg以下であることが確認された。
【0047】
[実施例4]
Nb含有量が6原子%、B含有量が8〜15原子%、P含有量が0又は1原子%、Cu含有量が0〜1原子%、残部がFeからなる合金薄帯を作製し、真空中で650℃、5分間の熱処理を行った後の1kHzにおける透磁率を測定した。これらの合金の透磁率の、B含有量及びB+P含有量に対しての変化を第2図及び第3図に示す。Nb含有量が6原子%の場合、急冷状態で非晶質とα−Fe結晶の混相状態は、B+P含有量が10.5 原子%以下で得られた。第2図より、Pを含まない合金においては、10000以上の高い透磁率が8〜15原子%のB含有量で、更に20000以上のより優れた透磁率が9〜12原子%のB含有量で得られることが分かる。
【0048】
また第3図より、Pを1原子%含む合金においては、10000以上の高い透磁率が8原子%以上のB+P含有量、即ち7原子%以上のB含有量で、更に20000以上のより優れた透磁率が9原子%以上のB+P含有量、即ち8原子%以上のB含有量で得られることが分かる。
【0049】
高い非晶質形成能を持つ、Nbの含有量がより多い合金、あるいはNbよりも高い非晶質形成能を持つZr,Hfを含む合金では、より低いB濃度でも非晶質相が安定して生成するため高い透磁率が得られると考えられる。逆にNbの含有量がより少ない合金、あるいはNbよりも低い非晶質形成能を持つW,Ta,Ti,Moを含む合金では、より高いB濃度でも非晶質非晶質とα−Fe結晶の混相状態が得られると考えられる。15原子%を超えるB濃度で磁気特性が劣化するのは、主として熱処理後にFeの硼化物が形成されることよると考えられるため、本発明においてはBの含有量を0.5〜15原子%とすることにより、磁気特性を向上させることができると言える。またNbよりも非晶質形成能の高いZr,Hf等を含む合金では、より低いB含有量でも高い非晶質形成能と優れた磁気特性が得られることを考慮すると、本発明においてBの含有量を5〜12原子%にすることにより、特に優れた磁気特性が得られるものと考えられる。
【0050】
[実施例5]
合金組成Fe84xNb681Cuxにおいて、xの値を変化させた場合の合金薄帯の急冷状態でのX線回折図形を第4図に示す。X線回折図形は非晶質相に特有のハローな回折図形上に、○で示したα−Fe結晶相に特有の鋭い回折ピークが見られ、薄帯は非晶質相とα−Fe結晶相の混相であることが分かる。なお、Fe84.9Nb681Cu0.1においては、α−Fe結晶相の粒径が10nm以下程度に微細化しているため、α−Fe結晶相のピークは非常に小さくはっきりとは確認できない。これらの薄帯の、真空中で650℃、5分間の熱処理を行った後の1kHzにおける透磁率のCu含有量に対する変化を第5図に示す。
【0051】
第5図から、Cu含有量を1原子%以下にすることにより、10000以上の高い透磁率が得られることが分かる。更にCu含有量を0.5原子%以下とすることにより、17000以上のより良好な透磁率が得られることが分かる。即ち本発明においは、Cuの含有量を1原子%以下、より好ましくは0.5原子%以下にすることにより、磁気特性を更に向上させることが可能である。
【0052】
[実施例5]
実施例1において作製したFe84.9Nb68Cu0.1合金薄帯、実施例2において作製したFe84.9Nb681Cu0.1 (No.3)合金薄帯と、新たに作製したFe84.9Nb68.50.5Cu0.1,Fe84.9Nb67.51.5Cu0.1,Fe84.9Nb672Cu0.1合金薄帯金薄帯の急冷状態でのX線回折図形を第6図に示す。X線回折図形は非晶質相に特有のハローな回折図形上に、○で示したα−Fe結晶相に特有の鋭い回折ピークが見られ、薄帯は非晶質相とα−Fe結晶相の混相であることが分かる。Fe84.9Nb681Cu0.1においては前記のとおり、α−Fe結晶相の粒径が微細化しているため、α−Fe結晶相のピークは非常に小さくはっきりとは確認できない。これらの薄帯の、真空中で650℃、5分間の熱処理を行った後の1kHzにおける透磁率のP含有量に対する変化を第7図に示す。
【0053】
第7図から、いずれの合金においても10000以上の高い透磁率が得られることが分かる。更にP含有量を1.5原子%以下とすることにより、19000以上のより良好な透磁率が得られることが分かる。即ち、Pの含有量を1.5原子%以下にすることにより、磁気特性を更に向上させることが可能である。
【0054】
【発明の効果】
本発明によれば、従来の実用合金では兼ね備えることができなかった、1.4T以上の高飽和磁束密度と10000以上の高透磁率、さらには周波数50Hzにおける0.15W/kg以下の低磁心損失を兼備した軟磁性成形体を得ることができる。従って、本発明の軟磁性成形体はより一層の小型化、高性能化、高効率化が望まれているトランスやチョークコイル、モーターなどの磁心用材料として好適である。また、本発明の軟磁性成形体製造用の薄帯は、高いじん性を示すため、良好な加工性をも有しており、工業的応用は容易であり、その効果は著しい。
【図面の簡単な説明】
【図1】本発明材料に従うFe合金組成物の急冷状態でのX線回折図形の例である。
【図2】Pを含まないFe合金組成物の、熱処理後の透磁率のB含有量に対する変化の例である。
【図3】Pを1原子%含むFe合金組成物の、熱処理後の透磁率のB+P含有量に対する変化の例である。
【図4】本発明に従うFe合金組成物のX線回折図形の、Cu含有量に対する変化の例である。
【図5】本発明に従うFe合金組成物の熱処理後の透磁率のCu含有量に対する変化の例である。
【図6】本発明に従うFe合金組成物のX線回折図形の、P含有量に対する変化の例である。
【図7】本発明に従うFe合金組成物の熱処理後の透磁率のP含有量に対する変化の例である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a soft magnetic alloy that is widely used as a magnetic material for electrical products such as various transformers, choke coils, and motors, and in particular, soft magnetic molding of an Fe-based magnetic alloy composition exhibiting high permeability and high saturation magnetic flux density. About the body.
[0002]
[Prior art]
Various properties generally required for soft magnetic alloys used in various transformers, choke coils, motors, etc., in addition to low coercive force, high saturation magnetic flux density, high permeability, and workability It is a good thing. From the viewpoint of industrial materials, it is essential to be inexpensive and easy to manufacture.
[0003]
Conventionally, crystalline alloys such as Sendust, Permalloy, and silicon copper have been used for the aforementioned applications, and recently, Fe-based and Co-based amorphous alloys are produced by heat-treating amorphous alloys. Nanocrystalline alloys are also being used.
[0004]
[Problems to be solved by the invention]
In the case of small transformers and choke coils, further downsizing is required as electronic devices are downsized, and therefore higher performance magnetic materials are desired.
Further, from the viewpoint of the recent countermeasures against global warming, the saturation flux density of 1.4T or more and the low magnetic core loss are required for the power used at the product frequency, the pole transformer, and the like. However, although the above sendust is excellent in soft magnetic properties, it has a drawback that the saturation magnetic flux density is as low as about 1.1 T. Permalloy also has a saturation magnetic flux density of about 0.8 T in a composition excellent in soft magnetic properties. However, although silicon copper has a high saturation magnetic flux density, it has a disadvantage of poor soft magnetic properties.
[0005]
On the other hand, among the amorphous alloys, the Co-based alloy is excellent in soft magnetic properties, but the saturation magnetic flux density is as low as about 1.0 T and is insufficient. In addition, Fe-based amorphous alloys known so far have a high saturation magnetic flux density depending on the composition, and 1.5T or higher can be obtained. Insufficient characteristics.
[0006]
By the way, looking at the relationship between the magnetic properties of these conventional magnetic materials and the magnetic properties required by practical magnetic devices, transformers used at commercial frequencies from several tens of kHz often handle large amounts of power. It is desired that the saturation magnetic flux density of the core material used for them is as large as possible.
[0007]
For example, in recent years, in a pole transformer or the like, the saturation magnetic flux density is required to be 1.4 T or more, and actually, silicon copper having a saturation magnetic flux density of 1.5 T or more, or 1.3 T or more. An Fe-based amorphous alloy having a saturation magnetic flux density of, for example, is used even though it has an unsatisfactory magnetic permeability.
[0008]
In such a case, if the magnetic material constituting the core material has a high magnetic permeability, the efficiency as a transformer is improved. In particular, when a magnetic permeability of 10,000 or more is obtained, the merit becomes remarkable, but a permeability of 1.4 T or more is obtained. Actually, no practical magnetic material having magnetic susceptibility is found.
[0009]
In addition, as is well known, ordinary soft magnetic materials are used in the frequency band of several Hz to several hundred Hz. However, if a soft magnetic material capable of simultaneously realizing high saturation magnetic flux density and magnetic permeability can be obtained in this range. It is well known that magnetic parts such as transformers can be reduced in size and loss. That is, as the saturation magnetic flux density of the soft magnetic material increases, the magnetic flux increases accordingly, and as a result, the volume of the magnetic component can be reduced. Furthermore, since most of the loss of magnetic parts is released to the outside as heat, it is generally necessary to devise a way to keep a gap with other equipment and parts, but this is the small size of the entire magnetic device with magnetic parts It was a big obstacle to the transformation. Therefore, if the magnetic component is reduced in size, the above-described problem can be solved, and as a result, the entire magnetic device can be reduced in size.
[0010]
However, as described above, conventional soft magnetic materials having a high saturation magnetic flux density tend to have low magnetic permeability. Specifically, in practical Fe-based amorphous alloys, the saturation magnetic flux density is 1 When it is .3 to 1.5 T, the magnetic permeability 10000 tends to divide to about 9000, and when a practical Co-based amorphous alloy has a magnetic permeability 10000 or more, it tends to divide 1.0 T.
[0011]
In recent years, nanocrystalline alloys with excellent magnetic properties have been found by heating and crystallizing Fe-based amorphous phases, but when producing these nanocrystalline alloys, it is possible to obtain an amorphous single phase by a liquid quenching method. It is essential. Therefore, the alloy composition needs to contain a large amount of amorphous forming elements, and the Fe concentration is inevitably limited, so that the saturation magnetic flux density of the obtained magnetic material is limited. When the alloy composition contains Fe exceeding the limit, there is a problem that the crystalline phase is mixed with the amorphous phase obtained by liquid quenching, the material becomes brittle, workability is remarkably deteriorated, and at the same time, the soft magnetic properties are remarkably deteriorated. is there.
[0012]
On the other hand, in an alloy system using a large amount of Zr, Nb, Ta, etc. as an amorphous forming element, it is essential to control the oxygen gas concentration in the atmosphere at the time of material production. Therefore, it becomes expensive and industrial application is difficult.
[0013]
Therefore, there is a demand for a practical magnetic material that combines the high saturation magnetic flux density and the high magnetic permeability as described above, has thermal stability, and is inexpensive and easy to manufacture.
[0014]
Accordingly, an object of the present invention is to provide a soft magnetic molded body made of an Fe-based alloy that has both a high saturation magnetic flux density of 1.4 T or more and a high magnetic permeability of 10,000 or more, and is inexpensive and easy to manufacture.
[0015]
[Means for Solving the Problems]
The present invention provides a mixed phase structure in which a fine α-Fe crystal phase having an average particle size of 50 nm or less (especially 45 nm or less) is dispersed in an amorphous phase by rapidly solidifying an Fe-based alloy composition in a molten state. And having a thickness of 5 to 100 μm, particularly 5 to 50 μm, capable of being bent by 180 °, and heating the ribbon to a temperature higher than the crystallization temperature of the α-Fe crystal phase. And a method for producing a soft magnetic molded body comprising a step of growing a fine α-Fe crystal phase.
[0016]
The present invention also provides a mixed phase structure in which an Fe-based alloy composition in a molten state is rapidly solidified to disperse an α-Fe crystal phase having an average particle size of 50 nm or less (particularly 45 nm or less) in an amorphous phase. There is also a method for producing a ribbon for producing a soft magnetic molded body that can be bent 180 °.
[0017]
The present invention also provides an Fe-based alloy composition having a mixed phase structure in which an α-Fe crystal phase having an average particle size of 50 nm or less (especially 45 nm or less) is dispersed in an amorphous phase and capable of bending 180 °. There is also a method for producing a soft magnetic molded body characterized by heating the ribbon to a temperature higher than the crystallization temperature of the α-Fe crystal phase.
[0018]
The present invention also has a magnetic permeability at a frequency of 1 kHz of 10,000 or more (especially 15000 or more), a saturation magnetic flux density of 1.4 T or more (especially 1.5 T or more), and a magnetic core loss at a frequency of 50 Hz of 0.15 W / kg or less. There is also a soft magnetic compact having an Fe-based alloy composition (particularly 0.14 W / kg or less).
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The soft magnetic compact of the present invention is obtained by rapidly solidifying a molten metal of an Fe-based alloy composition into a thin ribbon shape, and an α-Fe crystal phase having a high toughness in the thin strip and having an average crystal grain size of 50 nm or less. A step of forming a mixed phase structure with the crystalline material and, if necessary, one or more of the processing obtained by the winding, punching, etching, surface polishing and slit processing of the ribbon obtained in this step After the application, it can be obtained by a heat treatment at a temperature equal to or higher than the crystallization temperature of the Fe-based alloy composition.
[0020]
When the average crystal grain size of the α-Fe crystal phase in the ribbon formed by rapid solidification of the molten metal exceeds 50 nm, the toughness of the ribbon decreases, and subsequent processing such as winding becomes difficult.
[0021]
It is essential that the Fe-based alloy composition, which is a material used in the present invention, contains an amorphous forming element. B (boron) is a typical amorphous forming element, and has the effect of increasing the amorphous phase forming ability of the material of the present invention and the effect of suppressing the formation of a compound phase that adversely affects the magnetic properties in the heat treatment step. It is believed that there is. However, when B is contained in a large amount, the magnetic flux density of the formed soft magnetic compact deteriorates due to a decrease in saturation magnetic flux density due to a decrease in the Fe concentration of the material or a tendency to form Fe boride after heat treatment. It is not preferable because it contributes to the above. Therefore, the preferable B content in the material of the present invention is 0.5 to 25 atomic%, more preferably 0.5 to 15 atomic%. Further, in order to obtain a material that is easy to manufacture and exhibits superior magnetic properties, the B content is preferably 5 to 12 atomic%.
[0022]
Cu (copper) is considered to have an effect of refining the particle size of the α-Fe crystal phase generated during rapid cooling, and has an effect of easily obtaining a material exhibiting high toughness in the rapid cooling state. However, when the Cu content is increased, Cu crystals are formed in the amorphous phase in a rapidly cooled state, and the toughness of the material is lowered. Therefore, the preferable Cu content in the material of the present invention is 1.5 atomic% or less. In order to obtain a material exhibiting more excellent magnetic properties, the Cu content is preferably 1 atomic% or less, more preferably 0.5 atomic% or less.
[0023]
P, like B, is considered to have the effect of further enhancing the amorphous forming ability of the material of the present invention and the effect of suppressing the formation of a compound phase that adversely affects the magnetic properties in the heat treatment step. Further, it is considered that the amorphous forming ability is further improved by containing B and P at the same time, and it becomes easier to obtain a mixed phase structure of an amorphous phase having a higher Fe concentration and an α-Fe crystal phase. It is considered more preferable. However, a large amount of P is not preferable because it causes a decrease in Fe concentration and a decrease in saturation magnetic flux density. Therefore, the preferable P content in the material of the present invention is 5 atomic% or less. Further, in order to obtain a material exhibiting more excellent magnetic properties, the P content is preferably 1.5 atomic% or less.
[0024]
When the present invention is used as a magnetic core material for magnetic parts such as various transformers, choke coils, motors, etc., in order to improve the performance, size, and efficiency of these magnetic parts, high permeability and high saturation magnetic flux are required. It must have density and low core loss. Specifically, the permeability at a frequency of 1 kHz is preferably 10,000 or more, the saturation magnetic flux density is 1.4 T or more, and the magnetic core loss at a saturation magnetic flux density of 1.4 T and a frequency of 50 Hz is preferably 0.15 W / kg or less.
In order to realize the above magnetic characteristics, it is preferable that the Fe-based alloy contains B, P, and Cu as essential elements and has a composition represented by the following formula.
[0025]
[Chemical 9]
(Fe 1-a M a ) 100-bcdefgh M ′ b B c P d Cu e M ″ f M ′ ″ g X h
[0026]
[However, M is one or both of Co and Ni, and M ′ is one or more elements selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, and Mo, M ″ is one or more elements selected from the group consisting of V, Cr, Mn, Al, platinum group elements, Sc, Y, rare earth elements, Au, Zn, Sn, Re, and Ag, and M ′ ″. Is one or more elements selected from the group consisting of C, Ge, Sb, In, As, and Be, and X is one or both of Si and Al,
a, b, c, d, e, f, g, and h are 0 ≦ a ≦ 0.5, 0 ≦ b ≦ 10, 0.5 ≦ c ≦ 25, 0 <d ≦ 5, and 0 <e ≦, respectively. 1.5, 0 ≦ f ≦ 2, 0 ≦ g ≦ 3, and 0 ≦ h ≦ 6. ]
[0027]
In the above formula, M is either one or both of Co and Ni. By including these elements, the magnetostriction of the material is adjusted, or induced magnetic anisotropy is imparted by a technique such as heat treatment in a magnetic field. Thus, it is possible to realize a magnetization curve suitable for the application. However, if these elements are contained in a large amount, the magnetostriction is extremely increased and the magnetic properties are deteriorated. Therefore, preferably in the range of 0 <a <0.5, more preferably in the range of 0 <a <0.05. is there.
[0028]
M ′ is one or more elements selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, and Mo. Since these elements have a high amorphous forming ability, It is an effective element for increasing the saturation magnetic flux density by increasing the concentration. However, if these elements are contained in a large amount, a compound phase that adversely affects the magnetic properties is likely to be formed after the heat treatment, so that it is preferably added in a range of 10 atomic% or less. Further, in order to obtain a material exhibiting more excellent magnetic properties, it is desirable to add in a range of preferably 2 to 8 atomic%, more preferably 4 to 7 atomic%.
[0029]
M ″ is one or more elements selected from the group consisting of V, Cr, Mn, Al, platinum group elements, Sc, Y, rare earth elements, Au, Zn, Sn, Re, and Ag. Has the effect of improving the corrosion resistance and wear resistance of the material, adjusting magnetostriction, and reducing the crystal grain size of the α-Fe phase, etc. However, if the content of these elements increases, the saturation magnetic flux density Since it causes a drop, it is preferable to add in the range of 2 atomic% or less.
[0030]
M ′ ″ is one or more elements selected from the group consisting of C, Ge, Sb, In, As, and Be, and these elements are effective elements for amorphization, such as B, P, and the like. When added together with this, it helps to make the alloy amorphous and adjust the magnetostriction, etc. However, increasing the content of these elements leads to a decrease in saturation magnetic flux density, so it is in the range of 3 atomic% or less. Is preferably added.
[0031]
X is either one or both of Si and Al, and these are generally well-known amorphous forming elements, and when added together with B, P, etc., has the effect of enhancing the amorphous forming ability of the alloy. is there. These elements also have the effect of improving the magnetic properties by being dissolved in the α-Fe phase after heat treatment and adjusting the magnetic anisotropy and magnetostriction of the crystal phase. However, since the saturation magnetic flux density is lowered when the content of these elements is increased, it is preferably added in the range of 6 atomic% or less.
[0032]
Therefore, the Fe-based alloy composition used for forming the soft magnetic compact of the present invention is preferably an alloy material represented by the following composition formula.
[0033]
[Chemical Formula 10]
(Fe 1-a M a ) 100-bcde M ′ b B c P d Cu e
[0034]
[Wherein M is one or both of Co and Ni, and M ′ is one or more elements selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, and Mo, 0 ≦ a ≦ 0.05, 4 ≦ b ≦ 7, 5 ≦ c ≦ 12, 0 <d ≦ 1.5, and 0 <e ≦ 0.5. ]
[0035]
In addition, of course, inevitable impurities such as H, N, O, and S can be regarded as the same as the material composition of the present invention even if they are contained to such an extent that the desired characteristics are not deteriorated.
[0036]
As described above, in the soft magnetic compact of the present invention, the fine Fe-crystal phase (fine bccFe crystal phase) is dispersed in the amorphous body by rapid cooling of the Fe-based alloy composition once in a molten state. After forming the thin ribbon, if necessary, after processing such as winding, the ribbon is heated to a temperature higher than the crystallization temperature of the Fe-based alloy composition to change the crystalline phase. Grown and manufactured. The rapid cooling of the molten alloy is performed using a single roll method, a twin roll method, a centrifugal quenching method, or the like.
[0037]
The heat treatment for the growth of the fine Fe-crystal phase in the ribbon or its work is usually performed within a temperature range of 100 to 700 ° C. This heat treatment is usually performed in vacuum or in an inert gas atmosphere such as hydrogen gas, nitrogen gas, or argon gas. Moreover, you may carry out in air | atmosphere depending on the case. Further, the magnetic properties can be adjusted by performing a heat treatment in a magnetic field or under stress.
[0038]
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[0039]
【Example】
The alloys shown in the following examples were produced by a single roll liquid quenching method. That is, molten metal is ejected from the slit at the tip of the nozzle placed on one rotating copper roll onto the roll under the pressure of argon gas, and rapidly cooled to obtain a ribbon. Rolls and nozzles are contained in a vacuum vessel. When producing the ribbon, the inside of the container was evacuated in advance and then introduced with argon gas. The roll peripheral speed was 30 to 40 m / sec. The thickness of the ribbon produced as described above was about 20 mm. The structure of the rapidly cooled ribbon was examined using the X diffraction method. Further, the toughness of the ribbon was examined by whether or not the ribbon can be bent by 180 ° (when the ribbon does not break even if it is folded by 180 °, it is expressed as adhesive bending).
[0040]
[Example 1]
Regarding the internal structure of the ribbon comprising the amorphous phase in which the Fe-fine crystal phase is dispersed in the state after the Fe alloy composition is rapidly cooled according to the present invention, Fe 85 Nb 6 B 9 and Fe 84.9 Nb 6 B 9 Cu A 0.1 alloy will be described as an example.
[0041]
FIG. 1 is an X-ray diffraction pattern of Fe 85 Nb 6 B 9 and Fe 84.9 Nb 6 B 9 Cu 0.1 alloy in a quenched state. The X-ray diffraction pattern shows a sharp diffraction peak peculiar to the α-Fe crystal phase indicated by ○ on the halo diffraction pattern peculiar to the amorphous phase, and the ribbon is composed of the amorphous phase and the α-Fe crystal. It can be seen that the phases are mixed. When the particle diameter of the α-Fe crystal phase was estimated from the half-value width of the diffraction peak of the α-Fe crystal phase using the Scherrer equation, it was about 40 nm in the Fe 85 Nb 6 B 9 alloy. In Fe 84.9 Nb 6 B 9 Cu 0.1 , the intensity of the diffraction peak of the α-Fe crystal phase was so low that the particle size could not be obtained, but the half-width of the peak was very wide and the particle size was 10 nm. It is judged that it is miniaturized to the following extent. That is, it can be said that the addition of 0.1 atomic% of Cu refines the particle size of the α-Fe crystal phase in the rapidly cooled state. In addition, both of these two alloys can be bent tightly in a quenched state, and have high toughness.
[0042]
[Example 2]
Table 1 shows the alloy composition of the ribbon produced as an example, the thickness of the ribbon, the structure in a rapidly cooled state, and whether or not adhesion bending is possible. No. Samples 1 to 10 were found to be a mixed phase of an amorphous phase and an α-Fe crystal phase in the quenched state from the X-ray diffraction pattern. When the particle diameter of the α-Fe crystal phase was estimated from the diffraction peak of the α-Fe crystal phase, it was about 30 to 40 nm. No. In the samples 3, 8 and 10, the intensity of the diffraction peak of the α-Fe crystal phase was very low, so an accurate particle size could not be obtained, but the half width of the peak was very wide and the particle size was 10 nm. It is judged that it is miniaturized to the following extent. No. All samples 1 to 10 were capable of tight bending and had high toughness.
[0043]
[Table 1]
Figure 2006040906
[0044]
[Example 3]
A wound core having an inner diameter of about 5 mm and an outer diameter of about 6 mm was formed using the ribbon produced in Example 2, and heat treatment was performed in vacuum at 650 ° C. for 5 minutes. Winding was applied to the wound core after the heat treatment, and the magnetic permeability (m), the BH curve, and the core loss were measured. The permeability was measured with an applied magnetic field of 5 mOe and a frequency of 1 kHz. The saturation magnetic flux density (Bs) was calculated from an AC magnetization curve at a maximum magnetic field of 10 Oe and a frequency of 10 Hz. The measurement of the core loss was performed at a maximum magnetic flux density of 1.4 T and a frequency of 50 Hz. Table 2 shows the measurement results of the magnetic permeability, saturation magnetic flux density, and magnetic core loss.
[0045]
[Table 2]
Figure 2006040906
[0046]
From the results of Table 2, the alloy of the present invention has a magnetic permeability at a frequency of 1 kHz of 10,000 or more, a saturation magnetic flux density of 1.4 T or more, a maximum magnetic flux density of 1.4 T, and a magnetic core loss of 0.15 W at a frequency of 50 Hz after heat treatment. / Kg or less was confirmed.
[0047]
[Example 4]
An Nb content is 6 atomic%, a B content is 8 to 15 atomic%, a P content is 0 or 1 atomic%, a Cu content is 0 to 1 atomic%, and the balance is made of an alloy ribbon made of Fe. The magnetic permeability at 1 kHz after heat treatment at 650 ° C. for 5 minutes in vacuum was measured. Changes in the magnetic permeability of these alloys with respect to the B content and the B + P content are shown in FIGS. When the Nb content was 6 atomic%, a mixed phase state of amorphous and α-Fe crystals in the quenched state was obtained when the B + P content was 10.5 atomic% or less. FIG. 2 shows that in an alloy containing no P, a high magnetic permeability of 10,000 or more has a B content of 8 to 15 atomic%, and a further excellent magnetic permeability of 20,000 or more has a B content of 9 to 12 atomic%. It can be seen that
[0048]
Further, as shown in FIG. 3, in an alloy containing 1 atomic% of P, a high magnetic permeability of 10000 or more has a B + P content of 8 atomic% or more, that is, a B content of 7 atomic% or more, and more excellent than 20000. It can be seen that the permeability is obtained with a B + P content of 9 atomic% or more, that is, a B content of 8 atomic% or more.
[0049]
In an alloy having a high amorphous forming ability and a high Nb content, or an alloy containing Zr and Hf having an amorphous forming ability higher than that of Nb, the amorphous phase is stable even at a lower B concentration. Therefore, it is considered that high permeability can be obtained. On the other hand, in an alloy having a lower Nb content or an alloy containing W, Ta, Ti, and Mo having an amorphous forming ability lower than that of Nb, amorphous amorphous and α-Fe are formed even at a higher B concentration. It is considered that a mixed phase state of crystals can be obtained. The reason why the magnetic properties deteriorate at a B concentration exceeding 15 atomic% is thought to be mainly due to the formation of Fe boride after the heat treatment. Therefore, in the present invention, the B content is set to 0.5 to 15 atomic%. Thus, it can be said that the magnetic characteristics can be improved. Further, in view of the fact that an alloy containing Zr, Hf, etc. having a higher amorphous forming ability than Nb can obtain a high amorphous forming ability and excellent magnetic properties even at a lower B content, It is considered that particularly excellent magnetic properties can be obtained by setting the content to 5 to 12 atomic%.
[0050]
[Example 5]
The alloy composition Fe 84 - In x Nb 6 B 8 P 1 Cu x, shows a X-ray diffraction pattern in the rapid cooling of the alloy ribbon in the case of changing the value of x in Figure 4. The X-ray diffraction pattern shows a sharp diffraction peak peculiar to the α-Fe crystal phase indicated by ○ on the halo diffraction pattern peculiar to the amorphous phase, and the ribbon is composed of the amorphous phase and the α-Fe crystal. It can be seen that the phases are mixed. In Fe 84.9 Nb 6 B 8 P 1 Cu 0.1 , the particle size of the α-Fe crystal phase is refined to about 10 nm or less, so the peak of the α-Fe crystal phase is very small and cannot be clearly confirmed. . FIG. 5 shows the change of the magnetic permeability at 1 kHz with respect to the Cu content after heat treatment at 650 ° C. for 5 minutes in vacuum.
[0051]
From FIG. 5, it can be seen that a high magnetic permeability of 10,000 or more can be obtained by setting the Cu content to 1 atomic% or less. Furthermore, it turns out that the more favorable magnetic permeability of 17000 or more is obtained by making Cu content 0.5 atomic% or less. That is, in the present invention, it is possible to further improve the magnetic properties by setting the Cu content to 1 atomic% or less, more preferably 0.5 atomic% or less.
[0052]
[Example 5]
The Fe 84.9 Nb 6 B 8 Cu 0.1 alloy ribbon produced in Example 1, the Fe 84.9 Nb 6 B 8 P 1 Cu 0.1 (No. 3) alloy ribbon produced in Example 2, and the newly produced Fe 84.9 Nb 6 B 8.5 P 0.5 Cu 0.1 , Fe 84.9 Nb 6 B 7.5 P 1.5 Cu 0.1, the X-ray diffraction pattern in the rapid cooling of Fe 84.9 Nb 6 B 7 P 2 Cu 0.1 alloy thin strap ribbon in Figure 6 Show. The X-ray diffraction pattern shows a sharp diffraction peak peculiar to the α-Fe crystal phase indicated by ○ on the halo diffraction pattern peculiar to the amorphous phase, and the ribbon is composed of the amorphous phase and the α-Fe crystal. It can be seen that the phases are mixed. In Fe 84.9 Nb 6 B 8 P 1 Cu 0.1 , as described above, since the particle diameter of the α-Fe crystal phase is reduced, the peak of the α-Fe crystal phase is very small and cannot be clearly confirmed. FIG. 7 shows the change of the magnetic permeability at 1 kHz with respect to the P content after heat treatment at 650 ° C. for 5 minutes in vacuum.
[0053]
From FIG. 7, it can be seen that high magnetic permeability of 10,000 or more can be obtained in any alloy. Furthermore, it turns out that the more favorable magnetic permeability of 19000 or more is obtained by making P content into 1.5 atomic% or less. That is, the magnetic properties can be further improved by setting the P content to 1.5 atomic% or less.
[0054]
【The invention's effect】
According to the present invention, a high saturation magnetic flux density of 1.4 T or more and a high magnetic permeability of 10,000 or more, and a low magnetic core loss of 0.15 W / kg or less at a frequency of 50 Hz, which cannot be combined with conventional practical alloys. Can be obtained. Therefore, the soft magnetic molded body of the present invention is suitable as a magnetic core material for transformers, choke coils, motors and the like for which further downsizing, high performance, and high efficiency are desired. In addition, since the ribbon for producing a soft magnetic molded body of the present invention exhibits high toughness, it also has good workability, is easy for industrial application, and its effect is remarkable.
[Brief description of the drawings]
FIG. 1 is an example of an X-ray diffraction pattern in a rapidly cooled state of an Fe alloy composition according to the material of the present invention.
FIG. 2 is an example of a change in the magnetic permeability after heat treatment with respect to the B content of an Fe alloy composition containing no P;
FIG. 3 is an example of a change in the magnetic permeability after heat treatment with respect to the B + P content of an Fe alloy composition containing 1 atomic% of P.
FIG. 4 is an example of the change of the X-ray diffraction pattern of the Fe alloy composition according to the present invention with respect to the Cu content.
FIG. 5 is an example of the change in the magnetic permeability after heat treatment of the Fe alloy composition according to the present invention with respect to the Cu content.
FIG. 6 is an example of the change of the X-ray diffraction pattern of the Fe alloy composition according to the present invention with respect to the P content.
FIG. 7 is an example of the change in the magnetic permeability after heat treatment of the Fe alloy composition according to the present invention with respect to the P content.

Claims (34)

溶融状態にあるFe基合金組成物を急冷凝固させて、非晶質相中に平均粒径が50nm以下のα−Fe結晶相が分散された混相組織を有し、180゜折曲げが可能な薄帯を製造する工程、そして該薄帯をα−Fe結晶相の結晶化温度より高い温度に加熱する工程を含むことを特徴とする軟磁性成形体の製造方法。  A Fe-based alloy composition in a molten state is rapidly cooled and solidified to have a mixed phase structure in which an α-Fe crystal phase having an average particle size of 50 nm or less is dispersed in an amorphous phase, and can be bent 180 °. A method for producing a soft magnetic molded article, comprising the steps of producing a ribbon and heating the ribbon to a temperature higher than the crystallization temperature of the α-Fe crystal phase. 薄帯が、非晶質中に平均粒径が45nm以下のα−Fe結晶相が分散された混相組織からなる請求項1に記載の軟磁性成形体の製造方法。  The method for producing a soft magnetic molded body according to claim 1, wherein the ribbon comprises a mixed phase structure in which an α-Fe crystal phase having an average particle diameter of 45 nm or less is dispersed in an amorphous material. 薄帯を厚さ5〜100μmを持つように製造する請求項1もしくは2に記載の軟磁性成形体の製造方法。  The method for producing a soft magnetic molded article according to claim 1 or 2, wherein the ribbon is produced so as to have a thickness of 5 to 100 µm. 薄帯を加熱する前に、巻回、打抜き、エッチング、表面研磨及びスリット加工のうちの一もしくは二以上の加工を行なう請求項1乃至3のうちのいずれかの項に記載の軟磁性成形体の製造方法。  The soft magnetic molded body according to any one of claims 1 to 3, wherein one or more of winding, punching, etching, surface polishing, and slit processing is performed before heating the ribbon. Manufacturing method. Fe基合金組成物が、0.5〜25原子%のB及び1.5原子%以下の量のCuを含む請求項1乃至4のうちのいずれかの項に記載の軟磁性成形体の製造方法。  The production of a soft magnetic compact according to any one of claims 1 to 4, wherein the Fe-based alloy composition contains 0.5 to 25 atomic% B and 1.5 atomic% or less of Cu. Method. Fe基合金組成物が、さらに5原子%以下の量のPを含む請求項5に記載の軟磁性成形体の製造方法。  The method for producing a soft magnetic compact according to claim 5, wherein the Fe-based alloy composition further contains P in an amount of 5 atomic% or less. Fe基合金組成物が、次式で表される組成を有することを特徴とする請求項6に記載の軟磁性成形体の製造方法。
Figure 2006040906
[但し、Mは、Co,Niのいずれか一方又は両方であり、M’はNb,W,Ta,Zr,Hf,Ti,Moからなる群から選ばれる一種又は二種以上の元素であり、M”はV,Cr,Mn,Al,白金族元素,Sc,Y,希土類元素,Au,Zn,Sn,Re,Agからなる群から選ばれる一種又は二種以上の元素であり、M'"はC,Ge,Sb,In,As,Beからなる群から選ばれる一種又は二種以上の元素であり、XはSi,Alのいずれか一方又は両方であって、
a、b、c、d、e、f、g、hはそれぞれ、0≦a≦0.5、0≦b≦10、0.5≦c≦25、0<d≦5、0<e≦1.5、0≦f≦2、0≦g≦3、0≦h≦6を満たす数値である。]
The method for producing a soft magnetic compact according to claim 6, wherein the Fe-based alloy composition has a composition represented by the following formula.
Figure 2006040906
[However, M is one or both of Co and Ni, and M ′ is one or more elements selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, and Mo, M ″ is one or more elements selected from the group consisting of V, Cr, Mn, Al, platinum group elements, Sc, Y, rare earth elements, Au, Zn, Sn, Re, and Ag, and M ′ ″. Is one or two or more elements selected from the group consisting of C, Ge, Sb, In, As, and Be, and X is one or both of Si and Al,
a, b, c, d, e, f, g, and h are 0 ≦ a ≦ 0.5, 0 ≦ b ≦ 10, 0.5 ≦ c ≦ 25, 0 <d ≦ 5, and 0 <e ≦, respectively. 1.5, 0 ≦ f ≦ 2, 0 ≦ g ≦ 3, and 0 ≦ h ≦ 6. ]
Fe基合金組成物のb、c、eがそれぞれ、2≦b≦8、0.5≦c≦15、0<e≦1を満たす数値である請求項7に記載の軟磁性成形体の製造方法。  The production of a soft magnetic compact according to claim 7, wherein b, c and e of the Fe-based alloy composition are values satisfying 2 ≦ b ≦ 8, 0.5 ≦ c ≦ 15 and 0 <e ≦ 1, respectively. Method. Fe基合金組成物が、次式で表される組成を有することを特徴とする請求項6に記載の軟磁性成形体の製造方法。
Figure 2006040906
[但し、MはCo,Niのいずれか一方又は両方であり、M’はNb,W,Ta,Zr,Hf,Ti,Moからなる群から選ばれる一種又は二種以上の元素であって、0≦a≦0.05、4≦b≦7、5≦c≦12、0<d≦1.5、0<e≦0.5である。]
The method for producing a soft magnetic compact according to claim 6, wherein the Fe-based alloy composition has a composition represented by the following formula.
Figure 2006040906
[Wherein M is one or both of Co and Ni, and M ′ is one or more elements selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, and Mo, 0 ≦ a ≦ 0.05, 4 ≦ b ≦ 7, 5 ≦ c ≦ 12, 0 <d ≦ 1.5, and 0 <e ≦ 0.5. ]
薄帯の加熱温度が100〜700℃の温度範囲にある請求項1乃至9のいずれかの項に記載の軟磁性成形体の製造方法。  The method for producing a soft magnetic molded body according to any one of claims 1 to 9, wherein the heating temperature of the ribbon is in a temperature range of 100 to 700 ° C. 溶融状態にあるFe基合金組成物を急冷凝固させて、非晶質相中に平均粒径が50nm以下のα−Fe結晶相が分散された混相組織を有し、180゜折曲げが可能な、軟磁性成形体製造用の薄帯の製造方法。  A Fe-based alloy composition in a molten state is rapidly cooled and solidified to have a mixed phase structure in which an α-Fe crystal phase having an average particle size of 50 nm or less is dispersed in an amorphous phase and can be bent 180 °. A method for producing a ribbon for producing a soft magnetic molded body. 非晶質中に平均粒径が45nm以下のα−Fe結晶相が分散された混相組織を有する請求項11に記載の薄帯の製造方法。  The method for producing a ribbon according to claim 11, which has a mixed phase structure in which an α-Fe crystal phase having an average particle diameter of 45 nm or less is dispersed in an amorphous material. 厚さ5〜100μmの薄帯を製造する請求項11もしくは12に記載の薄帯の製造方法。  The method for producing a ribbon according to claim 11 or 12, wherein a ribbon having a thickness of 5 to 100 µm is produced. Fe基合金組成物が、0.5〜25原子%のB及び1.5原子%以下の量のCuを含む請求項11乃至13のうちのいずれかの項に記載の薄帯の製造方法。  The method for producing a ribbon according to any one of claims 11 to 13, wherein the Fe-based alloy composition contains 0.5 to 25 atomic% B and 1.5 atomic% or less of Cu. Fe基合金組成物が、さらに5原子%以下の量のPを含む請求項14に記載の薄帯の製造方法。  The method for producing a ribbon according to claim 14, wherein the Fe-based alloy composition further contains P in an amount of 5 atomic% or less. Fe基合金組成物が、次式で表される組成を有することを特徴とする請求項15に記載の薄帯の製造方法。
Figure 2006040906
[但し、Mは、Co,Niのいずれか一方又は両方であり、M’はNb,W,Ta,Zr,Hf,Ti,Moからなる群から選ばれる一種又は二種以上の元素であり、M”はV,Cr,Mn,Al,白金族元素,Sc,Y,希土類元素,Au,Zn,Sn,Re,Agからなる群から選ばれる一種又は二種以上の元素であり、M'"はC,Ge,Sb,In,As,Beからなる群から選ばれる一種又は二種以上の元素であり、XはSi,Alのいずれか一方又は両方であって、
a、b、c、d、e、f、g、hはそれぞれ、0≦a≦0.5、0≦b≦10、0.5≦c≦25、0<d≦5、0<e≦1.5、0≦f≦2、0≦g≦3、0≦h≦6を満たす数値である。]
The method for producing a ribbon according to claim 15, wherein the Fe-based alloy composition has a composition represented by the following formula.
Figure 2006040906
[However, M is one or both of Co and Ni, and M ′ is one or more elements selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, and Mo, M ″ is one or more elements selected from the group consisting of V, Cr, Mn, Al, platinum group elements, Sc, Y, rare earth elements, Au, Zn, Sn, Re, and Ag, and M ′ ″. Is one or two or more elements selected from the group consisting of C, Ge, Sb, In, As, and Be, and X is one or both of Si and Al,
a, b, c, d, e, f, g, and h are 0 ≦ a ≦ 0.5, 0 ≦ b ≦ 10, 0.5 ≦ c ≦ 25, 0 <d ≦ 5, and 0 <e ≦, respectively. 1.5, 0 ≦ f ≦ 2, 0 ≦ g ≦ 3, and 0 ≦ h ≦ 6. ]
Fe基合金組成物のb、c、eがそれぞれ、2≦b≦8、0.5≦c≦15、0<e≦1を満たす数値である請求項16に記載の薄帯の製造方法。  17. The method for producing a ribbon according to claim 16, wherein b, c, and e of the Fe-based alloy composition are values satisfying 2 ≦ b ≦ 8, 0.5 ≦ c ≦ 15, and 0 <e ≦ 1, respectively. Fe基合金組成物が、次式で表される組成を有することを特徴とする請求項15に記載の薄帯の製造方法。
Figure 2006040906
[但し、MはCo,Niのいずれか一方又は両方であり、M’はNb,W,Ta,Zr,Hf,Ti,Moからなる群から選ばれる一種又は二種以上の元素であって、0≦a≦0.05、4≦b≦7、5≦c≦12、0<d≦1.5、0<e≦0.5である。]
The method for producing a ribbon according to claim 15, wherein the Fe-based alloy composition has a composition represented by the following formula.
Figure 2006040906
[Wherein M is one or both of Co and Ni, and M ′ is one or more elements selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, and Mo, 0 ≦ a ≦ 0.05, 4 ≦ b ≦ 7, 5 ≦ c ≦ 12, 0 <d ≦ 1.5, and 0 <e ≦ 0.5. ]
非晶質相中に平均粒径が50nm以下のα−Fe結晶相が分散された混相組織を有し、180゜折曲げが可能なFe基合金組成物薄帯をα−Fe結晶相の結晶化温度より高い温度に加熱することを特徴とする軟磁性成形体の製造方法。  An Fe-based alloy composition ribbon having a mixed phase structure in which an α-Fe crystal phase having an average particle diameter of 50 nm or less is dispersed in an amorphous phase and capable of being bent by 180 ° is formed into a crystal of an α-Fe crystal phase. A method for producing a soft magnetic molded body, characterized by heating to a temperature higher than the crystallization temperature. 薄帯として、非晶質中に平均粒径が45nm以下のα−Fe結晶相が分散された混相組織からなる薄帯を用いる請求項19に記載の軟磁性成形体の製造方法。  The method for producing a soft magnetic molded body according to claim 19, wherein the ribbon is a ribbon composed of a mixed phase structure in which an α-Fe crystal phase having an average particle diameter of 45 nm or less is dispersed in an amorphous material. 薄帯を厚さ5〜100μmを持つ請求項19もしくは20に記載の軟磁性成形体の製造方法。  The method for producing a soft magnetic molded body according to claim 19 or 20, wherein the ribbon has a thickness of 5 to 100 µm. 加熱される前の薄帯が、巻回、打抜き、エッチング、表面研磨及びスリット加工のうちの一もしくは二以上の加工がなされている請求項19乃至21のうちのいずれかの項に記載の軟磁性成形体の製造方法。  The soft ribbon according to any one of claims 19 to 21, wherein the ribbon before being heated is subjected to one or more of winding, punching, etching, surface polishing, and slit processing. A method for producing a magnetic compact. Fe基合金組成物が、0.5〜25原子%のB及び1.5原子%以下の量のCuを含む請求項19乃至22のうちのいずれかの項に記載の軟磁性成形体の製造方法。  The production of a soft magnetic molded body according to any one of claims 19 to 22, wherein the Fe-based alloy composition contains 0.5 to 25 atomic% of B and Cu in an amount of 1.5 atomic% or less. Method. Fe基合金組成物が、さらに5原子%以下の量のPを含む請求項23に記載の軟磁性成形体の製造方法。  The method for producing a soft magnetic molded body according to claim 23, wherein the Fe-based alloy composition further contains P in an amount of 5 atomic% or less. Fe基合金組成物が、次式で表される組成を有することを特徴とする請求項24に記載の軟磁性成形体の製造方法。
Figure 2006040906
[但し、Mは、Co,Niのいずれか一方又は両方であり、M’はNb,W,Ta,Zr,Hf,Ti,Moからなる群から選ばれる一種又は二種以上の元素であり、M”はV,Cr,Mn,Al,白金族元素,Sc,Y,希土類元素,Au,Zn,Sn,Re,Agからなる群から選ばれる一種又は二種以上の元素であり、M'"はC,Ge,Sb,In,As,Beからなる群から選ばれる一種又は二種以上の元素であり、XはSi,Alのいずれか一方又は両方であって、
a、b、c、d、e、f、g、hはそれぞれ、0≦a≦0.5、0≦b≦10、0.5≦c≦25、0<d≦5、0<e≦1.5、0≦f≦2、0≦g≦3、0≦h≦6を満たす数値である。]
The method for producing a soft magnetic compact according to claim 24, wherein the Fe-based alloy composition has a composition represented by the following formula.
Figure 2006040906
[However, M is one or both of Co and Ni, and M ′ is one or more elements selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, and Mo, M ″ is one or more elements selected from the group consisting of V, Cr, Mn, Al, platinum group elements, Sc, Y, rare earth elements, Au, Zn, Sn, Re, and Ag, and M ′ ″. Is one or more elements selected from the group consisting of C, Ge, Sb, In, As, and Be, and X is one or both of Si and Al,
a, b, c, d, e, f, g, and h are 0 ≦ a ≦ 0.5, 0 ≦ b ≦ 10, 0.5 ≦ c ≦ 25, 0 <d ≦ 5, and 0 <e ≦, respectively. 1.5, 0 ≦ f ≦ 2, 0 ≦ g ≦ 3, and 0 ≦ h ≦ 6. ]
Fe基合金組成物のb、c、eがそれぞれ、2≦b≦8、0.5≦c≦15、0<e≦1を満たす数値である請求項25に記載の軟磁性成形体の製造方法。  26. Production of a soft magnetic compact according to claim 25, wherein b, c and e of the Fe-based alloy composition are values satisfying 2 ≦ b ≦ 8, 0.5 ≦ c ≦ 15 and 0 <e ≦ 1, respectively. Method. Fe基合金組成物が、次式で表される組成を有することを特徴とする請求項24に記載の軟磁性成形体の製造方法。
Figure 2006040906
[但し、MはCo,Niのいずれか一方又は両方であり、M’はNb,W,Ta,Zr,Hf,Ti,Moからなる群から選ばれる一種又は二種以上の元素であって、0≦a≦0.05、4≦b≦7、5≦c≦12、0<d≦1.5、0<e≦0.5である。]
The method for producing a soft magnetic compact according to claim 24, wherein the Fe-based alloy composition has a composition represented by the following formula.
Figure 2006040906
[Wherein M is one or both of Co and Ni, and M ′ is one or more elements selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, and Mo, 0 ≦ a ≦ 0.05, 4 ≦ b ≦ 7, 5 ≦ c ≦ 12, 0 <d ≦ 1.5, and 0 <e ≦ 0.5. ]
薄帯の加熱温度が100〜700℃の温度範囲にある請求項19乃至27のいずれかの項に記載の軟磁性成形体の製造方法。  The method for producing a soft magnetic molded body according to any one of claims 19 to 27, wherein the heating temperature of the ribbon is in a temperature range of 100 to 700 ° C. 周波数1kHzにおける透磁率が10000以上、飽和磁束密度が1.4T以上、そして周波数50Hzにおける磁心損失が0.15W/kg以下であるFe基合金組成の軟磁性成形体。  A soft magnetic compact having an Fe-based alloy composition having a magnetic permeability of 10,000 or more at a frequency of 1 kHz, a saturation magnetic flux density of 1.4 T or more, and a magnetic core loss of 0.15 W / kg or less at a frequency of 50 Hz. Fe基合金組成が、主要量のFeに加えて、0.5〜25原子%のB及び1.5原子%以下の量のCuを含む請求項29に記載の軟磁性成形体。  30. The soft magnetic compact according to claim 29, wherein the Fe-based alloy composition contains 0.5 to 25 atomic% B and 1.5 atomic% or less of Cu in addition to the main amount of Fe. Fe基合金組成が、さらに5原子%以下の量のPを含む請求項30に記載の軟磁性成形体。  The soft magnetic molded body according to claim 30, wherein the Fe-based alloy composition further contains P in an amount of 5 atomic% or less. Fe基合金組成が次式で表される組成を有する請求項31に記載の軟磁性成形体。
Figure 2006040906
[但し、Mは、Co,Niのいずれか一方又は両方であり、M’はNb,W,Ta,Zr,Hf,Ti,Moからなる群から選ばれる一種又は二種以上の元素であり、M”はV,Cr,Mn,Al,白金族元素,Sc,Y,希土類元素,Au,Zn,Sn,Re,Agからなる群から選ばれる一種又は二種以上の元素であり、M'"はC,Ge,Sb,In,As,Beからなる群から選ばれる一種又は二種以上の元素であり、XはSi,Alのいずれか一方又は両方であって、
a、b、c、d、e、f、g、hはそれぞれ、0≦a≦0.5、0≦b≦10、0.5≦c≦25、0<d≦5、0<e≦1.5、0≦f≦2、0≦g≦3、0≦h≦6を満たす数値である。]
32. The soft magnetic compact according to claim 31, wherein the Fe-based alloy composition has a composition represented by the following formula.
Figure 2006040906
[However, M is one or both of Co and Ni, and M ′ is one or more elements selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, and Mo, M ″ is one or more elements selected from the group consisting of V, Cr, Mn, Al, platinum group elements, Sc, Y, rare earth elements, Au, Zn, Sn, Re, and Ag, and M ′ ″. Is one or two or more elements selected from the group consisting of C, Ge, Sb, In, As, and Be, and X is one or both of Si and Al,
a, b, c, d, e, f, g, and h are 0 ≦ a ≦ 0.5, 0 ≦ b ≦ 10, 0.5 ≦ c ≦ 25, 0 <d ≦ 5, and 0 <e ≦, respectively. 1.5, 0 ≦ f ≦ 2, 0 ≦ g ≦ 3, and 0 ≦ h ≦ 6. ]
b、c、eがそれぞれ、2≦b≦8、0.5≦c≦15、0<e≦1を満たす数値である請求項32に記載の軟磁性成形体。  The soft magnetic molded body according to claim 32, wherein b, c, and e are numerical values satisfying 2 ≦ b ≦ 8, 0.5 ≦ c ≦ 15, and 0 <e ≦ 1, respectively. Fe基合金組成が次式で表される組成を有する請求項31に記載の軟磁性成形体の製造方法。
Figure 2006040906
[但し、MはCo,Niのいずれか一方又は両方であり、M’はNb,W,Ta,Zr,Hf,Ti,Moからなる群から選ばれる一種又は二種以上の元素であって、0≦a≦0.05、4≦b≦7、5≦c≦12、0<d≦1.5、0<e≦0.5である。]
The method for producing a soft magnetic molded body according to claim 31, wherein the Fe-based alloy composition has a composition represented by the following formula.
Figure 2006040906
[Wherein M is one or both of Co and Ni, and M ′ is one or more elements selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, and Mo, 0 ≦ a ≦ 0.05, 4 ≦ b ≦ 7, 5 ≦ c ≦ 12, 0 <d ≦ 1.5, and 0 <e ≦ 0.5. ]
JP2001154197A 2001-03-21 2001-05-23 Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density Withdrawn JP2006040906A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001154197A JP2006040906A (en) 2001-03-21 2001-05-23 Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density
PCT/JP2002/002788 WO2002077300A1 (en) 2001-03-21 2002-03-22 Production of soft magnetic formed body of high permeability and high saturation magnetic flux density

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001080878 2001-03-21
JP2001154197A JP2006040906A (en) 2001-03-21 2001-05-23 Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density

Publications (1)

Publication Number Publication Date
JP2006040906A true JP2006040906A (en) 2006-02-09

Family

ID=26611682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001154197A Withdrawn JP2006040906A (en) 2001-03-21 2001-05-23 Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density

Country Status (2)

Country Link
JP (1) JP2006040906A (en)
WO (1) WO2002077300A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032531A1 (en) 2005-09-16 2007-03-22 Hitachi Metals, Ltd. Nanocrystalline magnetic alloy, method for producing same, alloy thin band, and magnetic component
WO2008114605A1 (en) 2007-03-22 2008-09-25 Hitachi Metals, Ltd. Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
WO2008114665A1 (en) * 2007-03-16 2008-09-25 Hitachi Metals, Ltd. Iron-based soft magnetic alloy, thin ribbon of amorphous alloy, and magnetic part
WO2008114611A1 (en) 2007-03-16 2008-09-25 Hitachi Metals, Ltd. Magnetic alloy, amorphous alloy ribbon, and magnetic part
WO2008129803A1 (en) * 2007-03-20 2008-10-30 Nec Tokin Corporation Soft magnetic alloy, magnetic component using the same, and their production methods
WO2008133302A1 (en) 2007-04-25 2008-11-06 Hitachi Metals, Ltd. Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip
US8277579B2 (en) 2006-12-04 2012-10-02 Tohoku Techno Arch Co., Ltd. Amorphous alloy composition
DE112010000836T5 (en) 2009-01-20 2012-12-06 Hitachi Metals, Ltd. A soft magnetic alloy ribbon and manufacturing method therefor, and a soft magnetic alloy ribbon magnetic device
US8491731B2 (en) 2008-08-22 2013-07-23 Akihiro Makino Alloy composition, Fe-based nano-crystalline alloy and forming method of the same and magnetic component
JP6245390B1 (en) * 2017-01-30 2017-12-13 Tdk株式会社 Soft magnetic alloys and magnetic parts
JP6245391B1 (en) * 2017-01-30 2017-12-13 Tdk株式会社 Soft magnetic alloys and magnetic parts
WO2018043963A1 (en) * 2016-08-31 2018-03-08 한양대학교 에리카산학협력단 Fe-based soft magnetic alloy and magnetic part using same
JP6338004B1 (en) * 2017-10-06 2018-06-06 Tdk株式会社 Soft magnetic alloys and magnetic parts
US20180247744A1 (en) * 2017-02-27 2018-08-30 Tdk Corporation Soft magnetic alloy and magnetic device
JP2019123930A (en) * 2018-01-12 2019-07-25 Tdk株式会社 Soft magnetic alloy and magnetic component
WO2021010713A1 (en) * 2019-07-12 2021-01-21 주식회사 아모그린텍 Fe-based soft magnetic alloy, method for manufacturing same, and magnetic component comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849545B2 (en) * 2006-02-02 2012-01-11 Necトーキン株式会社 Amorphous soft magnetic alloy, amorphous soft magnetic alloy member, amorphous soft magnetic alloy ribbon, amorphous soft magnetic alloy powder, and magnetic core and inductance component using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232775B1 (en) * 1997-12-26 2001-05-15 Alps Electric Co., Ltd Magneto-impedance element, and azimuth sensor, autocanceler and magnetic head using the same
EP1001437A1 (en) * 1998-11-10 2000-05-17 Alps Electric Co., Ltd. Fe-based soft magnetic alloy , magnetic core using the same, and method for making the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182620B2 (en) 2005-09-16 2012-05-22 Hitachi Metals, Ltd. Nano-crystalline, magnetic alloy, its production method, alloy ribbon and magnetic part
US8177923B2 (en) 2005-09-16 2012-05-15 Hitachi Metals, Ltd. Nano-crystalline, magnetic alloy, its production method, alloy ribbon and magnetic part
WO2007032531A1 (en) 2005-09-16 2007-03-22 Hitachi Metals, Ltd. Nanocrystalline magnetic alloy, method for producing same, alloy thin band, and magnetic component
US8287666B2 (en) 2005-09-16 2012-10-16 Hitachi Metals, Ltd. Nano-crystalline, magnetic alloy, its production method, alloy ribbon and magnetic part
EP2339043A1 (en) 2005-09-16 2011-06-29 Hitachi Metals, Ltd. Nano-crystalline, magnetic alloy, its production method, alloy ribbon and magnetic part
US8277579B2 (en) 2006-12-04 2012-10-02 Tohoku Techno Arch Co., Ltd. Amorphous alloy composition
WO2008114665A1 (en) * 2007-03-16 2008-09-25 Hitachi Metals, Ltd. Iron-based soft magnetic alloy, thin ribbon of amorphous alloy, and magnetic part
WO2008114611A1 (en) 2007-03-16 2008-09-25 Hitachi Metals, Ltd. Magnetic alloy, amorphous alloy ribbon, and magnetic part
JP2008231463A (en) * 2007-03-16 2008-10-02 Hitachi Metals Ltd Fe-BASED SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY STRIP, AND MAGNETIC COMPONENT
JP2008231462A (en) * 2007-03-16 2008-10-02 Hitachi Metals Ltd Magnetic alloy, amorphous alloy strip and magnetic component
US8298355B2 (en) 2007-03-16 2012-10-30 Hitachi Metals, Ltd. Magnetic alloy, amorphous alloy ribbon, and magnetic part
WO2008129803A1 (en) * 2007-03-20 2008-10-30 Nec Tokin Corporation Soft magnetic alloy, magnetic component using the same, and their production methods
CN103540872A (en) * 2007-03-20 2014-01-29 Nec东金株式会社 Soft magnetic alloy, magnetic component using the same, and their production methods
TWI451452B (en) * 2007-03-20 2014-09-01 Nec Tokin Corp Soft magnetic alloy and magnetic component including the same as well as method for fabricating the same
JP5632608B2 (en) * 2007-03-20 2014-11-26 Necトーキン株式会社 Soft magnetic alloy, magnetic component using the same, and manufacturing method thereof
US8287665B2 (en) 2007-03-20 2012-10-16 Nec Tokin Corporation Soft magnetic alloy, magnetic part using soft magnetic alloy, and method of manufacturing same
US7935196B2 (en) 2007-03-22 2011-05-03 Hitachi Metals, Ltd. Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
WO2008114605A1 (en) 2007-03-22 2008-09-25 Hitachi Metals, Ltd. Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
US8007600B2 (en) 2007-04-25 2011-08-30 Hitachi Metals, Ltd. Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip
WO2008133302A1 (en) 2007-04-25 2008-11-06 Hitachi Metals, Ltd. Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip
US8491731B2 (en) 2008-08-22 2013-07-23 Akihiro Makino Alloy composition, Fe-based nano-crystalline alloy and forming method of the same and magnetic component
DE112010000836T5 (en) 2009-01-20 2012-12-06 Hitachi Metals, Ltd. A soft magnetic alloy ribbon and manufacturing method therefor, and a soft magnetic alloy ribbon magnetic device
WO2018043963A1 (en) * 2016-08-31 2018-03-08 한양대학교 에리카산학협력단 Fe-based soft magnetic alloy and magnetic part using same
JP6245390B1 (en) * 2017-01-30 2017-12-13 Tdk株式会社 Soft magnetic alloys and magnetic parts
JP6245391B1 (en) * 2017-01-30 2017-12-13 Tdk株式会社 Soft magnetic alloys and magnetic parts
JP2018123360A (en) * 2017-01-30 2018-08-09 Tdk株式会社 Soft magnetic alloy and magnetic component
JP2018123363A (en) * 2017-01-30 2018-08-09 Tdk株式会社 Soft magnetic alloy and magnetic component
US11189408B2 (en) * 2017-02-27 2021-11-30 Tdk Corporation Soft magnetic alloy and magnetic device
US20180247744A1 (en) * 2017-02-27 2018-08-30 Tdk Corporation Soft magnetic alloy and magnetic device
JP6338004B1 (en) * 2017-10-06 2018-06-06 Tdk株式会社 Soft magnetic alloys and magnetic parts
JP2019070175A (en) * 2017-10-06 2019-05-09 Tdk株式会社 Soft magnetic alloy and magnetic component
JP2019123930A (en) * 2018-01-12 2019-07-25 Tdk株式会社 Soft magnetic alloy and magnetic component
WO2021010713A1 (en) * 2019-07-12 2021-01-21 주식회사 아모그린텍 Fe-based soft magnetic alloy, method for manufacturing same, and magnetic component comprising same

Also Published As

Publication number Publication date
WO2002077300A1 (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP6181346B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP5288226B2 (en) Magnetic alloys, amorphous alloy ribbons, and magnetic parts
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
WO2011024580A1 (en) ALLOY COMPOSITION, NANOCRYSTALLINE Fe ALLOY, AND PREPARATION METHOD THEREFOR
JPWO2008068899A1 (en) Amorphous alloy composition
JP2006040906A (en) Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density
JP5916983B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JPH06322472A (en) Production of fe base soft magnetic alloy
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JP3983207B2 (en) Method for producing Fe-based soft magnetic bulk amorphous / nanocrystalline two-phase alloy
JP3231149B2 (en) Noise filter
JPH07268566A (en) Production of fe-base soft-magnetic alloy and laminated magnetic core using the same
WO2017154561A1 (en) Fe-based alloy composition, soft magnetic material, magnetic member, and electrical/electronic part and instrument
JP2007092096A (en) Amorphous magnetic alloy
CN109880985A (en) The manufacturing method of soft magnetic materials
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP2022001667A (en) ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND ITS MANUFACTURING METHOD, AS WELL AS MAGNETIC COMPONENT
JP3294938B2 (en) Fe-based soft magnetic alloy
JP2000144349A (en) Iron base soft magnetic alloy
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805