WO2018043963A1 - Fe-based soft magnetic alloy and magnetic part using same - Google Patents

Fe-based soft magnetic alloy and magnetic part using same Download PDF

Info

Publication number
WO2018043963A1
WO2018043963A1 PCT/KR2017/009005 KR2017009005W WO2018043963A1 WO 2018043963 A1 WO2018043963 A1 WO 2018043963A1 KR 2017009005 W KR2017009005 W KR 2017009005W WO 2018043963 A1 WO2018043963 A1 WO 2018043963A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
magnetic
soft magnetic
based soft
present
Prior art date
Application number
PCT/KR2017/009005
Other languages
French (fr)
Korean (ko)
Inventor
김종렬
강민
김우철
오한호
송용설
Original Assignee
한양대학교 에리카산학협력단
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단, 주식회사 아모그린텍 filed Critical 한양대학교 에리카산학협력단
Publication of WO2018043963A1 publication Critical patent/WO2018043963A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals

Definitions

  • the present invention relates to a Fe-based soft magnetic alloy, more specifically, a high saturation magnetic flux density is suitable for implementation in small and light weight parts, low magnetic loss Fe-based soft magnetic properties that can express excellent magnetic performance It relates to an alloy and magnetic parts through it.
  • Soft magnetic materials are materials for magnetic cores such as various transformers, choke coils, various sensors, saturable reactors, magnetic switches, etc., and various electric and electronic devices for supplying power and converting power such as transformers, laser power supplies and accelerators for distribution. It is widely used in.
  • the technical demand for such electric and electronic devices is small, light weight, high performance / high efficiency, and low product cost.
  • the physical properties of the magnetic core material for magnetic cores are high saturation magnetic flux density and low magnetic loss.
  • the magnetic flux density (Bm) and the frequency (f) are dependent on the magnetic material of the magnetic core among the above factors.
  • a material having a high saturation magnetic flux density of the magnetic material and a low magnetic loss is required.
  • the magnetic loss is calculated as the sum of hysteresis loss, eddy current loss, and abnormal loss.
  • the eddy current loss and abnormal loss depend on the magnetic domain size, specific resistance, and magnetic core thickness of the magnetic material of the magnetic core. The higher the thinner magnetic core, the better the magnetic loss. In addition, in order to increase the frequency, the high frequency loss of the magnetic material should be small, but increasing the frequency (f) is limited to the material approach as a circuit approach is required.
  • amorphous alloys containing Fe which are known as materials that have high saturation magnetic flux density and low loss at the same time as commercially available magnetic materials, do not have crystal grains, and thus do not have crystal magnetic anisotropy and have low magnetic hysteresis. As the hysteresis loss is small and shows excellent soft magnetic property, the amorphous alloy containing Fe is attracting attention as an energy saving material.
  • the amorphous alloy containing Fe is an element forming an alloy, and other metals, such as Si, B, and P, which increase amorphous forming ability, or metalloids such as Cu, Nb, and Zr elements serving as nucleation sites and / or diffusion barriers. (metalloid) is being developed and manufactured.
  • metals such as Si, B, and P, which increase amorphous forming ability, or metalloids such as Cu, Nb, and Zr elements serving as nucleation sites and / or diffusion barriers.
  • metalloids such as Cu, Nb, and Zr elements serving as nucleation sites and / or diffusion barriers.
  • Fe-based amorphous alloys containing P which are known to improve amorphous forming ability, are easily volatilized in a subsequent process for changing properties, thereby making them difficult to handle. While it is very difficult to proceed with the post-process, the productivity of the alloy in the post-process is significantly lowered, and may be very disadvantageous for mass production.
  • B is known to have an amorphous forming ability, the gap between the primary crystallization temperature and the secondary crystallization temperature of the prepared alloy becomes very narrow, and in addition to ⁇ -Fe, post-treatment compounds (ex.Fe- There is a problem that B) can be produced to make it difficult to obtain homogeneous crystals of ⁇ -Fe.
  • a rare metal such as Nb is included, it is advantageous to control grain size in a later process, but there is a problem in that the production cost increases significantly as the unit cost of the element is high.
  • the present invention has been made in view of the above, and has a high saturation magnetic flux density, excellent high-frequency characteristics and low coercive force, and is a Fe-based soft magnetic alloy that is very easy to be deployed as a high performance / high efficiency small / light weight component. It aims to provide.
  • the present invention provides a Fe-based soft magnetic alloy capable of expressing a high level of magnetic properties by producing crystals having a uniform but small particle diameter through a post-process despite the absence of high cost components such as rare earth elements.
  • a Fe-based soft magnetic alloy capable of expressing a high level of magnetic properties by producing crystals having a uniform but small particle diameter through a post-process despite the absence of high cost components such as rare earth elements.
  • the present invention provides an Fe-based soft magnetic alloy in which the magnetic properties of the alloy are easily controlled in the manufacturing process, and thus the magnetic properties expressed are equal or higher than those of the conventional ones. There is another purpose.
  • another object of the present invention is to provide a magnetic component of various electric and electronic devices including the Fe-based soft magnetic alloy according to the present invention which can perform energy supply and conversion functions excellently.
  • the present invention is represented by the empirical formula Fe a B b C c Cu d , Fe-containing Fe and a metal compound formed between at least one element of Fe and B, C and Cu Provides a soft magnetic alloy.
  • a, b, c and d are at% (atomic percent) of the corresponding elements, and 78.5 ⁇ a ⁇ 87.0, 12 ⁇ b + c ⁇ 21, and 0.5 ⁇ d ⁇ 1.5.
  • the metal compound may include a Fe-B compound and a Fe-C compound.
  • the Fe-C compound may include any one or more compounds of Fe 3 C, Fe 93 C 7 and C 4 Fe 0 .63.
  • the Fe-based soft magnetic alloy may be 70% or less of the crystallized area value according to Equation 1 below, more preferably 30 to 70%, even more preferably 40 to 70%.
  • the area refers to an integral value for the crystalline region or the amorphous region measured during X-ray diffraction (XRD) analysis at a 10 to 90 ° angle (2 ⁇ ) for the Fe-based soft magnetic alloy.
  • XRD X-ray diffraction
  • the Fe-based soft magnetic alloy may have an average particle diameter of 18 to 30 nm and a maximum particle size of 50 nm or less.
  • b and c in the empirical formula may be 8 ⁇ b ⁇ 20 and 1 ⁇ c ⁇ 14, respectively.
  • the shape of the Fe-based soft magnetic alloy may be powder, ribbon or rod (rod) type.
  • the present invention provides a magnetic shielding member including a Fe-based soft magnetic alloy according to the present invention
  • the magnetic shielding member may be provided with a Fe-based soft magnetic alloy fragmented to reduce the generation of eddy current.
  • the magnetic shielding member may be provided on one surface of the antenna unit to be implemented as an antenna module.
  • the present invention provides a magnetic core comprising a Fe-based soft magnetic alloy according to the present invention
  • the magnetic core may be implemented as a coil component including a coil wound to the outside.
  • initial alloy refers to an alloy that has not undergone a separate treatment, for example, heat treatment, for the purpose of changing the properties of the alloy produced.
  • the present invention has very high saturation magnetic flux density, excellent high frequency characteristics and low coercive force, so that it is very easy to develop into a small / light weight component of high performance / high efficiency.
  • the present invention is very low production cost, the components contained in the alloy is easily controlled in the manufacturing process of the alloy is easy to manufacture the alloy mass production is possible according to the large output laser, high frequency power supply, high-speed pulse generator, SMPS, It can be widely applied as magnetic parts of electric and electronic devices such as high frequency filter, low loss high frequency transformer, high speed switch, wireless charging.
  • FIG 1 is a Fe-based soft magnetic alloy according to an embodiment of the present invention Fe 85 . 3 B 10 C 4 Cu 0 .7 by the property evaluation results of the drawings alloy,
  • Figure 1a is a view showing the XRD pattern of the alloy, and
  • Figure 1b is a TEM image, and
  • FIG 1c is a view of the SAD pattern,
  • Figure 1d is A diagram showing a hysteresis curve according to VSM.
  • Fe-based soft magnetic alloy according to the present invention is an alloy represented by the empirical formula Fe a B b C c Cu d , wherein a, b, c and d is at% (atomic percent) of the element, 78.5 ⁇ It satisfies a ⁇ 87.0, 12 ⁇ b + c ⁇ 21, and 0.5 ⁇ d ⁇ 1.5.
  • the Fe is a main element of the alloy to express the magnetic
  • Fe is included in the alloy at 78.5 at% or more to improve the saturation magnetic flux density. If Fe is less than 78.5at%, it may not be possible to achieve a desired level of saturation magnetic flux density.
  • the ratio of Fe exceeds 87.0 at%, it may be difficult to form amorphous even in the case of liquid quenching for the preparation of amorphous initial alloy, and the crystals formed in the initial alloy may exhibit uniform crystal growth in the heat treatment process for the characteristic change. There is a problem in that magnetic losses increase, such as interference, and as the coercivity increases, as the size of the generated crystal becomes larger than a desired level.
  • B and C are elements having an amorphous forming ability, through which the initial alloy may be formed into an amorphous phase.
  • element C is combined with element B, which makes it easy to control the particle size of the ⁇ -Fe crystals produced to a desired level, compared to the case containing only element B, and improves the thermal stability of the initial alloy to be homogeneous during heat treatment. There is an advantage in obtaining one ⁇ -Fe crystal. If the sum of element B and element C is less than 12 at% in the alloy, it may be difficult to form amorphous even during liquid quenching for the preparation of amorphous initial alloy.
  • the resulting crystals make it difficult to grow the initial alloy crystals to have a uniform particle size, and may include crystals having a coarse particle diameter, which may increase magnetic loss. There is this.
  • the content of the Cu element to be described later for the production of the alloy of the nanocrystals should be increased, so the content of the Fe element may be further lowered. As a result, the desired saturation flux density may not be achieved.
  • Fe easily forms compounds with B and / or C, and as the amount thereof increases, there is a problem that the saturation magnetic flux density may further decrease.
  • the content of the elements B and C contained in the alloy according to an embodiment of the present invention is the relationship 1, Can be satisfied.
  • the initial alloy can be prepared in an amorphous phase, and at the same time, the thermal stability of the alloy can be further improved to obtain a homogeneous crystal of ⁇ -Fe. If the value of c / (b + c) is less than 0.047, the thermal stability of the alloy is lowered, and the formation of Fe-B and / or Fe-C compounds in addition to the crystallization of ⁇ -Fe may significantly increase during heat treatment.
  • Element B contained in the alloy according to an embodiment of the present invention may be included in the alloy 8 ⁇ 20at%. If element B is included in excess of 20 at%, the spacing between crystallization temperatures of the prepared initial alloy is narrowed, thereby reducing passion stability, and thus, it may be difficult to obtain homogeneous ⁇ -Fe crystals. In addition, when the element B is contained in less than 8at% crystals may be formed in the initial alloy, the crystals are difficult to uniformly produce the particle size distribution of the crystals produced in the heat-treated alloy, it can grow into coarse crystals there is a problem.
  • the element C included in the alloy according to an embodiment of the present invention may be included in the alloy 1 ⁇ 14at%. If element C is included in the alloy less than 1 at%, it is difficult to produce the initial alloy in an amorphous phase. For this reason, if the above-mentioned element B is increased, it may cause a secondary problem that the thermal stability of the initial alloy is lowered. In addition, it is difficult to control the particle size of the ⁇ -Fe crystals produced during the heat treatment of the prepared initial alloy, and thus it may not be possible to manufacture a magnetic material having the ⁇ -Fe crystals having a uniform particle size.
  • element C contains more than 14 at% in the alloy
  • ⁇ -Fe crystals having a particle size of 30 nm or more may be formed in the initial alloy.
  • the amount in the alloy of the ⁇ -Fe crystals generated during heat treatment may not be included at a desired level.
  • the coercive force is significantly increased, and as the magnetic loss is large, the desired magnetic properties are not expressed, so it may be difficult to apply the miniaturized magnetic material.
  • the Si element is not included in the composition of the Fe-based soft magnetic alloy according to the present invention.
  • Conventional Fe-based soft magnetic alloys include Si elements, which improve the amorphous formability of the alloy and at the same time help to uniformize the particle diameter of the ⁇ -Fe crystals produced.
  • the Si is included in the alloy, there is a problem that the content of semimetals other than Fe, for example, B, C, Cu or the content of Fe should be reduced, and the content of Fe decreases in the high saturation magnetic flux density. This makes it difficult to implement Fe-based alloys.
  • the Fe-based alloy of the present invention implements a high saturation density by increasing the content of Fe element instead of Si element, but as the Si element is not included, the crystallization of the crystal in the alloy is very difficult and uniform.
  • an alloy having a particle size is not very easy to manufacture.
  • the element C is a Fe element and the relationship 2 as described above, In this way, Fe-C-based compounds can be produced at an appropriate level during the heat treatment of the initial alloy, so that despite the absence of Si elements, it is possible to achieve the desired level of grain size of the ⁇ -Fe crystals. .
  • a / c is less than 5.6 in Equation 2, the saturation magnetic flux density may decrease, it may be difficult to produce an amorphous initial alloy, and it may be difficult to control the particle size of the ⁇ -Fe crystal generated during heat treatment.
  • a / c is greater than 87.0 in Equation 2, it is difficult to form the ⁇ -Fe crystal, and coarse ⁇ -Fe crystals may be generated or ⁇ -Fe crystals having a very large particle size distribution may be generated. have.
  • Cu is an element that serves as a nucleation site capable of generating ⁇ -Fe crystals in the initial alloy, and the amorphous initial alloy may be implemented as a nanocrystalline alloy.
  • the Cu element is preferably included at 0.5 to 1.5 at% in the alloy for remarkable expression of the desired physical properties. If the Cu element is contained less than 0.5 at% in the alloy, the specific resistance of the alloy produced is greatly reduced and the loss due to eddy current can be increased, and nano-crystal grains of ⁇ -Fe are not produced to the desired level in the heat-treated alloy. You may not.
  • the Cu element is contained in the alloy exceeds 1.5 at%, the effect of the element can be reduced as the content of the above-described Fe, B, C element is relatively reduced, the grain size of the crystal produced during the heat treatment Control can be difficult.
  • the initial alloy can be prepared in an amorphous phase, and at the same time, it is easy to manufacture a nanocrystalline alloy. If (b + c) / d in Equation 3 is less than 8, the amorphous forming ability of the initial alloy may be reduced or coarse crystals may be produced in the initial alloy. If it exceeds 42, it may be difficult to produce nanocrystals even through heat treatment.
  • the Fe-based soft magnetic alloy according to the embodiment of the present invention described above may be amorphous or crystalline, or may be a heteroatomic structure including both an amorphous region and a crystalline region.
  • the Fe-based soft magnetic alloy having an amorphous phase may have a structure in an initial alloy state which has not been heat treated, and in this case, the Fe-based soft magnetic alloy may have a powder shape.
  • Fe-based soft magnetic alloy having a crystalline phase may be a structure in the alloy after the initial alloy heat treatment, the crystalline phase may be nanocrystalline, the average particle diameter of the crystalline phase may be 30nm or less.
  • the heteroatomic array structure may be a structure in the alloy after the initial alloy or heat treatment. In this case, when the heteroatom-array structure is initially alloyed, the crystalline compound may have a fine particle diameter of 10 nm or less, preferably 8 nm or less. In addition, when the hetero-atomic array structure is an alloy after heat treatment, the crystalline compound may have an average particle diameter of 30 nm or less, preferably 28 nm or less, thereby achieving desired physical properties.
  • the maximum particle size of the crystal produced in the Fe-based soft magnetic alloy is preferably 50 nm or less.
  • amorphous regions and crystalline regions may be included in the alloy in a volume ratio of 6: 4 to 3: 7. If the amorphous region and the crystalline region exceed the volume ratio of 6: 4 to increase the amount of the amorphous region, it may not be able to express desired magnetic properties such as a desired level of saturation magnetic flux density. In addition, if the amorphous region and the crystalline region have a larger crystalline region at a volume ratio of less than 3: 7, crystal formation of a compound other than ⁇ -Fe crystal among the resulting crystals may be increased, and the desired magnetic properties may be expressed. You may not be able to.
  • the above-described Fe-based soft magnetic alloy may be a powder, a strip, or a ribbon in a state before heat treatment, but is not limited thereto, and may be appropriately modified in consideration of the shape of the final magnetic material, the heat treatment process, and the like.
  • the Fe-based soft magnetic alloy may have a ribbon or rod shape after heat treatment, and the cross section of the rod shape may be polygonal, circular, or elliptical, but is not limited thereto.
  • the Fe-based alloy according to the present invention includes a-Fe, and metal compounds formed between Fe and at least one element of B, C and Cu.
  • the Fe-based alloy includes metal compounds formed between at least one of Fe and B, C, and Cu in addition to ⁇ -Fe.
  • the Fe-based alloy may be a Fe-based alloy whose grain size is controlled to a desired level through the metal compound. have.
  • the compound between Fe and other metalloids produced in a certain amount in the alloy acts as a barrier to prevent coarsening of ⁇ -Fe beyond the desired particle diameter, and Fe-based containing ⁇ -Fe with a more uniform particle size distribution. It can be implemented in an alloy.
  • the ⁇ -Fe and the metal compounds are included in an appropriate ratio, the particle diameter of the ⁇ -Fe produced through this is uniformly controlled to the desired level, it is possible to suppress the generation of coarse ⁇ -Fe. In addition, there is an advantage that the homogeneity of the alloy implemented is improved.
  • the metal compounds formed between at least one of Fe and B, C, and Cu may include any one or more of Fe-B compounds and Fe-C compounds.
  • the Fe-based alloy containing the Fe-B compound may be thermally inferior to the Fe-based alloy containing the Fe-C compound, and may be homogeneous as the content of the ⁇ -Fe in the resulting crystal may be low.
  • the metal compound may include a Fe-C compound, and through this, thermal stability of the alloy may be improved, thereby making it possible to easily prepare an alloy having a more uniform ⁇ -Fe.
  • the Fe-C compound is F 3 C, Fe 93 C 7 and Fe 4 C 0 . And one or more of 63 .
  • the Fe-based soft magnetic alloy may have a crystallized area value of 70% or less according to Equation 1 below, more preferably 30 to 70%, even more preferably 50 to May be 70%.
  • the area refers to an integral value for the crystalline region or the amorphous region measured during X-ray diffraction (XRD) analysis at a 10 to 90 ° angle (2 ⁇ ) for the Fe-based soft magnetic alloy.
  • XRD X-ray diffraction
  • crystallized area value satisfies 70% or less, crystals of ⁇ -Fe and Fe and other intermetallic compounds such as Fe-C-based compounds are produced at an appropriate ratio, which may be more advantageous to satisfy the desired physical properties. Can be. If the crystallized area value exceeds 70%, the formation of compound crystals between other metals, such as Fe-C compounds, may be greatly increased, thereby preventing the desired level of physical properties from being expressed. In addition, the crystallized area value is preferably 30% or more, but less than 30% may also not satisfy the level of the desired magnetic properties.
  • the Fe-based soft magnetic alloy included in the above-described embodiment of the present invention may be manufactured by the manufacturing method described below, but is not limited thereto.
  • Fe-based initial alloy included in an embodiment of the present invention after the melting of the Fe-based alloying composition or Fe-based master alloy mixed with a base material containing each element is weighed to have the composition of the empirical formula of the Fe-based alloy described above It can be prepared by quench solidification.
  • the shape of the Fe-based initial alloy prepared according to the specific method used during the quench solidification may vary.
  • the method used for the quench solidification a conventionally known method can be adopted, and the present invention is not particularly limited thereto.
  • the quench solidification is powdered through the high pressure gas (Ex.
  • the molten Fe-based alloy or Fe-based alloying composition is injected Gas injection method (automizing method), a centrifugal method for producing a powder phase using a disk that rotates the molten metal rapidly, a melt spinning method for producing a ribbon by a roll that rotates at a high speed.
  • the shape of the Fe-based initial alloy formed through these methods may be powder, strip, or ribbon.
  • the atomic arrangement in the Fe-based initial alloy may be in an amorphous phase.
  • the shape of the Fe-based initial alloy may be bulk.
  • the powder of the amorphous Fe-based alloy formed by the above-described methods may be manufactured into a bulk amorphous alloy through a commonly known method, for example, a coalescence method and a solidification method.
  • a coalescence method methods such as shock consolidation, explosive forming, sintering, hot extrusion and hot rolling can be used.
  • the impact coalescing method applies a shock wave to the powder-alloy polymer so that waves are transmitted along the grain boundary and energy absorption occurs at the particle interface, whereby the absorbed energy forms a fine molten layer on the particle surface.
  • the hot extrusion and rolling method is to use the fluidity of the amorphous alloy at a high temperature to heat the amorphous alloy powder to a temperature near Tg, and to roll, and to form a bulk amorphous alloy having sufficient density and strength by quenching after rolling. Can be.
  • the solidification method may include copper mold casting, high pressure die casting, arc melting, unidirectional melting, squeez casting, strip casting, and the like.
  • the copper alloy mold casting method is to inject the molten metal to the copper mold having a high cooling ability by using a pressure difference between the inside and the outside of the mold to inject the molten metal into the inside of the mold or by applying a constant pressure from the outside.
  • a molten metal injected into a copper mold at high speed by pressurization or suction is solidified to produce a Fe-based initial alloy having a constant bulk shape.
  • heat treatment may be performed on the prepared Fe-based initial alloy.
  • the heat treatment is a step of transforming the atomic arrangement of the Fe-based initial alloy from amorphous to crystalline, it is possible to produce nano-crystals containing ⁇ -Fe through the heat treatment.
  • the size of the crystal produced according to the temperature, the temperature increase rate, and / or treatment time, etc., which are heat-treated in the second step may be grown to a desired level or more, adjustment of the heat treatment conditions is very important in controlling the grain size.
  • the composition of the Fe-based initial alloy according to the present invention does not contain elements such as Nb, which serves as a barrier that can prevent the growth of crystal size, and therefore, under normal heat treatment conditions, the desired level, for example, 30 nm Below, preferably 25 nm or less, it may be very difficult to make the nanocrystalline grains, and if a large amount of time and effort is put into the grains, mass production may be difficult.
  • elements such as Nb, which serves as a barrier that can prevent the growth of crystal size, and therefore, under normal heat treatment conditions, the desired level, for example, 30 nm Below, preferably 25 nm or less, it may be very difficult to make the nanocrystalline grains, and if a large amount of time and effort is put into the grains, mass production may be difficult.
  • the heat treatment may be performed at a temperature of 80 to 120%, more preferably 95 to 110% of the heat treatment reference temperature according to Equation 2 below, and through this, a nano having a desired particle size Grain can be produced.
  • nanocrystal grains may not be produced at a desired level.
  • the grain size of the crystals produced in the alloy may be coarsened, and the grain size distribution of the crystals formed may be widened, thereby decreasing the uniformity of the grain size.
  • crystals of Fe and other intermetallic compounds other than ⁇ -Fe may be excessively produced to obtain a uniform nanocrystalline Fe-based alloy of ⁇ -Fe.
  • the temperature increase rate up to the heat treatment temperature also has a large influence on the grain size of the generated nano-crystal grains, for example, the temperature increase rate from room temperature to the heat treatment temperature is 80 °C / min or less, more Preferably it is 60 degrees C / min or less, More preferably, it is 50 degrees C / min or less, More preferably, it may be 40 degrees C / min or less.
  • the temperature increase rate in the heat treatment process for transforming from an amorphous alloy to a crystalline alloy is known to be advantageous to obtain a crystal having a uniform particle size at high temperature, for example, 100 °C / min or more, Fe-based according to the present invention
  • the alloy may be advantageously uniformly formed so that the grain size of the resulting crystals may be made close to the average particle diameter only by slowly raising the temperature at a temperature raising rate of 80 ° C./min or less and then performing heat treatment at a desired heat treatment temperature.
  • the Fe-based soft magnetic alloy according to the present invention acts as a barrier for the growth of elements or crystals that help to produce uniform nano grains such as Si element in the composition Since it does not contain the Nb element that performs the so that it is not very easy to enter the fish, it may not be able to enter the fish at the desired level at the elevated temperature. Accordingly, it may be desirable to lower the temperature of 80 ° C / min or lower than the high temperature, and through this to control the crystal size of ⁇ -Fe and the formation of the compound between the Fe-C to an appropriate content ⁇ of the desired uniform particle diameter It is advantageous to prepare -Fe.
  • the low temperature increase may be more suitable for mass production, and the manufacturing cost is reduced. If the temperature increase rate exceeds 80 °C / min there is a problem that can not control the particle size distribution of the resulting crystal to the desired level. However, it is preferable that the temperature increase rate is 7 ° C./min or more, and if the temperature is raised at a rate of less than 7 ° C./min, the heat treatment time is prolonged, the grain size becomes very uneven due to the prolonged heat treatment time, and coarse grains are precipitated. There is a concern that it can be.
  • the heat treatment time at the heat treatment temperature in the second step may be performed for 30 seconds to 1 hour.
  • the heat treatment time may be changed according to the heat treatment temperature to be performed, but if the heat treatment is less than 30 seconds, the transformation into crystalline may not be achieved at a desired level, and if the heat treatment is performed for more than 1 hour, the crystal is produced. There is a problem of coarse grain size.
  • the second step may be performed by adding a pressure and / or a magnetic field in addition to heat.
  • additional processing can be used to produce crystals with magnetic anisotropy in a particular one direction.
  • the applied pressure or the degree of the magnetic field may vary depending on the degree of the desired physical property, and the present invention is not particularly limited thereto.
  • the Fe-based soft magnetic alloy according to the embodiment of the present invention described above may be implemented by magnetic cores such as winding cores, laminated cores, green powder cores, or magnetic field shielding members.
  • the magnetic core may be implemented as a coil component together with a coil wound outside of the magnetic core to perform a magnetic core function, and the coil component may be applied to components such as a laser, a transformer, an inductor, a motor or a generator. .
  • the magnetic shielding member may be provided on an antenna unit including an antenna, for example, an antenna performing a function such as wireless charging, short-range communication, magnetic security transmission, etc., and may serve to improve the antenna characteristics.
  • the Fe-based soft magnetic alloy provided in the magnetic shielding member may be fragmented to reduce the magnetic loss caused by the eddy current, and to support the fragments between the fragments, and to further reduce the magnetic loss caused by the eddy current.
  • the layer may penetrate and insulate each fragment. At this time, the particle diameter of the fragments may be 0.1 ⁇ m ⁇ 5mm but is not limited thereto.
  • the preparation was carried out in the same manner as in Example 1, but the Fe-based soft magnetic alloy was prepared as shown in Table 1 by changing the heat treatment rate of heating as shown in Table 1 below.
  • the area refers to an integral value for the crystalline region or the amorphous region measured during X-ray diffraction (XRD) analysis at a 10 to 90 ° angle (2 ⁇ ) for the Fe-based soft magnetic alloy.
  • XRD X-ray diffraction
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Comparative Example 1 Initial alloy Experimental formula a 1) 85.3 85.3 85.3 85.3 85.3 85.3 85.3 85.3 b 2) 10 10 10 10 10 14 c 3) 4 4 4 4 4 4 0 d 4) 0.7 0.7 0.7 0.7 0.7 0.7 b + c 14 14 14 14 14 14 14 14 14 14 Crystal phase Amorphous Amorphous Amorphous Amorphous Mixed Heat treatment temperature (°C) / temperature increase rate (°C / m) 346/10 346/35 346/45 346/75 346/85 346/4 346/10 Alloy after heat treatment Crystal phase Mixed Mixed Mixed Mixed Mixed Mixed Mixed Mixed Mixed Decision Average particle diameter (nm) 28 28 27 25 24 30 160 Particle size (nm) 34 33 38 53 106 88 354 % Of crystallized area 52 53 59 68 75 47 89 Saturated magnetic flux density (%) 100 101 103 103 104 98 84 Coercivity (%) 100 102 109 122 150 121
  • Comparative Example 1 As the carbon was not included, crystals were formed in the initial alloy, thereby making it impossible to prepare an amorphous alloy.
  • Example 5 in which the heat treatment rate was exceeded in the preferred range of the present invention, crystal grains having a small average particle diameter were produced, but crystals having a maximum particle diameter of 106 nm were generated, and thus the coercive force was applied to other examples. It can be seen that the increase significantly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

An Fe-based soft magnetic alloy is provided. The Fe-based soft magnetic alloy according to an embodiment of the present invention is represented by empirical formula FeaBbCcCud wherein a, b, c and d indicate the at%(atomic percent) of corresponding elements, 78.5≤≤a≤≤87.0, 12≤b+c≤≤21 and 0.5≤≤d≤≤1.5, and comprises α-Fe and metal compounds formed with Fe and at least one element of B, C and Cu. Accordingly, the alloy has a high saturated magnetic flux density, excellent high-frequency characteristics and low coercivity, and thus can be very easily employed as a compact and light high-performance and high-efficiency part. Also, the present invention incurs a very low production cost and can be mass-produced by facilitating alloy production by allowing easy control of components, contained in the alloy, during the alloy production process. Accordingly, the present invention can be widely applied as a magnetic part of electric and electronic devices such as a high-power laser, a high-frequency power supply, a high-speed pulse generator, an SMPS, a high-pass filter, a low-loss high-frequency transformer, a high-speed switch and wireless charging.

Description

FE계 연자성 합금 및 이를 통한 자성부품FE-based soft magnetic alloy and magnetic parts through it
본 발명은 Fe계 연자성 합금에 관한 것으로, 더욱 상세하게는 높은 포화자속밀도를 가져 소형 및 경량화된 부품으로 구현이 적합하며, 자기손실이 적어 뛰어난 자기적 성능을 발현할 수 있는 Fe계 연자성 합금 및 이를 통한 자성부품에 관한 것이다.The present invention relates to a Fe-based soft magnetic alloy, more specifically, a high saturation magnetic flux density is suitable for implementation in small and light weight parts, low magnetic loss Fe-based soft magnetic properties that can express excellent magnetic performance It relates to an alloy and magnetic parts through it.
연자성 재료는 각종 트랜스, 초크 코일, 각종 센서, 가포화 리액터, 자기 스위치 등의 자심용 재료로써, 배전용 트랜스, 레이저 전원이나 가속기 등 전력의 공급이나 전력의 변환 등을 위한 다양한 전기, 전자기기에 널리 사용되고 있다. 이와 같은 전기, 전자기기에 대한 기술수요는 소형 경량화, 고성능/고효율화 및 낮은 제품단가에 있다. 이와 같은 기술수요를 만족시키기 위해 자심용 연자성 재료가 구비해야 하는 물성은 높은 포화자속밀도 및 낮은 자기손실이다. 구체적으로 자심의 출력은 식 전압(E)=자속밀도(Bm)×4.44주파수(f)×권선수(N)×자심단면적(S)으로 계산될 수 있고, 상기 전압(E)을 높이기 위해서는 각각의 인자가 높아져야 한다. 상기 인자 중 자심의 자성재료에 의존하는 것은 자속밀도(Bm) 및 주파수(f)인데, 상기 자속밀도를 높이기 위해서는 자성재료의 포화자속밀도가 높고, 동시에 낮은 자기손실을 갖는 재료가 요구된다. 상기 자기손실은 히스테리시스 손실, 와전류 손실 및 이상손실의 총합으로 계산되는데, 상기 와전류 손실 및 이상손실의 경우 자심 자성재료의 자구크기, 비저항, 자심의 두께에 의존하며, 자구의 크기가 낮고, 비저항이 높으며, 얇은 두께의 자심일수록 자기손실에서는 유리할 수 있다. 또한, 상기 주파수를 높이기 위해서는 자성재료의 고주파손실이 적어야 하나, 주파수(f)를 높이는 것은 회로적 접근이 요구됨에 따라서 재료적 접근으로는 한계가 있다.Soft magnetic materials are materials for magnetic cores such as various transformers, choke coils, various sensors, saturable reactors, magnetic switches, etc., and various electric and electronic devices for supplying power and converting power such as transformers, laser power supplies and accelerators for distribution. It is widely used in. The technical demand for such electric and electronic devices is small, light weight, high performance / high efficiency, and low product cost. In order to satisfy such technical demands, the physical properties of the magnetic core material for magnetic cores are high saturation magnetic flux density and low magnetic loss. Specifically, the output of the magnetic core can be calculated as the formula voltage (E) = magnetic flux density (B m ) × 4.44 frequency (f) × winding (N) × magnetic core cross-sectional area (S), in order to increase the voltage (E) Each factor must be high. The magnetic flux density (Bm) and the frequency (f) are dependent on the magnetic material of the magnetic core among the above factors. In order to increase the magnetic flux density, a material having a high saturation magnetic flux density of the magnetic material and a low magnetic loss is required. The magnetic loss is calculated as the sum of hysteresis loss, eddy current loss, and abnormal loss. The eddy current loss and abnormal loss depend on the magnetic domain size, specific resistance, and magnetic core thickness of the magnetic material of the magnetic core. The higher the thinner magnetic core, the better the magnetic loss. In addition, in order to increase the frequency, the high frequency loss of the magnetic material should be small, but increasing the frequency (f) is limited to the material approach as a circuit approach is required.
한편, 현재 상용화된 자성재료로 높은 포화자속밀도를 갖고 동시에 낮은 손실을 갖는 소재로 알려진 Fe를 포함하는 비정질 합금은 결정립이 존재하지 않으므로, 결정 자기이방성이 존재하지 않고, 자기 히스테리시스가 작아 저보자력으로 히스테리시스 손실이 작으며, 우수한 연자성을 나타냄에 따라서 Fe를 포함하는 비정질 합금은 에너지 절약 재료로서 주목받고 있다.On the other hand, amorphous alloys containing Fe, which are known as materials that have high saturation magnetic flux density and low loss at the same time as commercially available magnetic materials, do not have crystal grains, and thus do not have crystal magnetic anisotropy and have low magnetic hysteresis. As the hysteresis loss is small and shows excellent soft magnetic property, the amorphous alloy containing Fe is attracting attention as an energy saving material.
상기 Fe를 포함하는 비정질 합금은 합금을 형성하는 원소로 Fe 이외에 비정질 형성능을 높이는 Si, B, P와 같은 원소나 핵생성 사이트 및/또는 확산방벽 역할을 하는 Cu, Nb, Zr 원소 등의 준금속(metalloid)을 포함시켜 개발 및 제조되고 있다. 다만, 상기와 같은 준금속의 함량이 증가할 경우 합금의 포화자속밀도가 저하되는 문제가 있고, 준금속의 함량이 감소될 경우 비정질로 형성되지 않거나 특성변화를 위한 후처리 공정(Ex. 열처리)에서 결정의 크기가 현저히 커져 보자력, 자기손실이 증가할 수 있다. 또한, 준금속 원소의 포함으로 다른 문제들이 발생하기도 하는데, 구체적으로 비정질 형성능을 향상시키는 것으로 알려진 P를 포함하는 Fe계 비정질 합금은 특성변화를 위한 후공정에서 쉽게 휘발됨에 따라서 취급이 어려워져 이를 억제하면서 후공정을 진행하기가 매우 곤란하고, 후공정에서 합금의 생산성이 현저히 저하되며, 대량생산에도 매우 불리할 수 있다. 또한, 비정질 형성능이 있다고 알려진 B를 포함시킬 경우 제조된 합금의 1차 결정화 온도 및 2차 결정화온도 사이의 간극이 매우 좁아져 후처리시 α-Fe 이외에 Fe와 다른 원소간 화합물(Ex. Fe-B)이 생성되어 α-Fe의 균질한 결정을 얻기 어려울 수 있는 문제가 있다. 또한, Nb 등의 희소금속을 포함시킬 경우 후공정에서의 결정입도 제어에 유리하나 상기 원소의 단가가 고가임에 따라서 생산원가가 현저히 증가하는 문제가 있다.The amorphous alloy containing Fe is an element forming an alloy, and other metals, such as Si, B, and P, which increase amorphous forming ability, or metalloids such as Cu, Nb, and Zr elements serving as nucleation sites and / or diffusion barriers. (metalloid) is being developed and manufactured. However, there is a problem that the saturation magnetic flux density of the alloy is lowered when the content of the metalloid is increased as described above, and when the metal content is reduced, it is not formed amorphous or a post-treatment process for changing properties (Ex. Heat treatment). The crystal size increases significantly, increasing coercive force and magnetic loss. In addition, the inclusion of a metalloid element may cause other problems. Specifically, Fe-based amorphous alloys containing P, which are known to improve amorphous forming ability, are easily volatilized in a subsequent process for changing properties, thereby making them difficult to handle. While it is very difficult to proceed with the post-process, the productivity of the alloy in the post-process is significantly lowered, and may be very disadvantageous for mass production. In addition, when B is known to have an amorphous forming ability, the gap between the primary crystallization temperature and the secondary crystallization temperature of the prepared alloy becomes very narrow, and in addition to α-Fe, post-treatment compounds (ex.Fe- There is a problem that B) can be produced to make it difficult to obtain homogeneous crystals of α-Fe. In addition, when a rare metal such as Nb is included, it is advantageous to control grain size in a later process, but there is a problem in that the production cost increases significantly as the unit cost of the element is high.
따라서, Fe계 합금을 비정질화시키면서도 고포화자속밀도, 저보자력 및 저자기손실을 발현하게 하고, 나아가 자성 특성의 변화를 위한 후공정(Ex. 열처리) 후 생성 결정의 크기를 작고 균일하게 하며, 대량생산이 용이하고 생산원가가 절감된 Fe 이외에 준금속을 포함하는 합금의 개발이 시급한 실정이다.Therefore, while making the Fe-based alloy amorphous, high saturation magnetic flux density, low coercive force, and low magnetic loss are expressed, and further, the size of crystals formed after post-process (Ex. Heat treatment) for the change of magnetic properties is made small and uniform. In addition to Fe, which is easy to mass-produce and reduce production costs, it is urgent to develop alloys containing metalloids.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 높은 포화자속밀도, 우수한 고주파 특성 및 낮은 보자력을 가져서 고성능/고효율의 소형/경량화된 부품으로의 용도전개가 매우 용이한 Fe계 연자성 합금을 제공하는 것을 목적으로 한다.The present invention has been made in view of the above, and has a high saturation magnetic flux density, excellent high-frequency characteristics and low coercive force, and is a Fe-based soft magnetic alloy that is very easy to be deployed as a high performance / high efficiency small / light weight component. It aims to provide.
또한, 본 발명은 희토류 원소 등의 단가가 높은 성분을 불포함에도 불구하고 균일하면서도 입경이 작은 결정을 후공정을 통해 생성시켜 높은 수준의 자기적 특성을 발현할 수 있는 Fe계 연자성 합금을 제공하는 것에 다른 목적이 있다.In addition, the present invention provides a Fe-based soft magnetic alloy capable of expressing a high level of magnetic properties by producing crystals having a uniform but small particle diameter through a post-process despite the absence of high cost components such as rare earth elements. There is another purpose to things.
나아가, 본 발명은 합금의 성분이 제조과정에서 쉽게 컨트롤됨으로써 합금을 보다 쉽고, 대량으로 생산 가능함에도 불구하고 발현되는 자기적 특성은 종래에 비해 동등 또는 그 이상으로 발현되는 Fe계 연자성 합금을 제공하는 것에 또 다른 목적이 있다.Furthermore, the present invention provides an Fe-based soft magnetic alloy in which the magnetic properties of the alloy are easily controlled in the manufacturing process, and thus the magnetic properties expressed are equal or higher than those of the conventional ones. There is another purpose.
더불어, 본 발명은 에너지 공급 및 변환 기능을 우수하게 수행할 수 있는 본 발명에 따른 Fe계 연자성 합금을 포함하는 각종 전기, 전자기기의 자성부품을 제공하는데 또 다른 목적이 있다.In addition, another object of the present invention is to provide a magnetic component of various electric and electronic devices including the Fe-based soft magnetic alloy according to the present invention which can perform energy supply and conversion functions excellently.
상술한 과제를 해결하기 위하여 본 발명은 실험식 FeaBbCcCud 로 표시되고, α-Fe, 및 Fe와 B, C 및 Cu 중 적어도 하나의 원소간 형성되는 금속화합물들을 포함하는 Fe계 연자성 합금을 제공한다. 단, 상기 실험식에서 a, b, c 및 d는 해당 원소의 at%(atomic percent)이며, 78.5≤a≤87.0, 12≤b+c≤21, 0.5≤d≤1.5 이다.In order to solve the above problems, the present invention is represented by the empirical formula Fe a B b C c Cu d , Fe-containing Fe and a metal compound formed between at least one element of Fe and B, C and Cu Provides a soft magnetic alloy. However, in the empirical formula, a, b, c and d are at% (atomic percent) of the corresponding elements, and 78.5≤a≤87.0, 12≤b + c≤21, and 0.5≤d≤1.5.
본 발명의 일 실시예에 따르면, 상기 금속화합물은 Fe-B 화합물 및 Fe-C 화합물을 포함할 수 있다. 또한, 상기 Fe-C 화합물은 Fe3C, Fe93C7 및 Fe4C0 .63중 어느 하나 이상의 화합물을 포함할 수 있다.According to an embodiment of the present invention, the metal compound may include a Fe-B compound and a Fe-C compound. In addition, the Fe-C compound may include any one or more compounds of Fe 3 C, Fe 93 C 7 and C 4 Fe 0 .63.
또한, 상기 Fe계 연자성 합금은 하기 수학식 1에 따른 결정화된 면적값이 70% 이하일 수 있고, 보다 바람직하게는 30 ~ 70%, 보다 더 바람직하게는 40 ~ 70%일 수 있다.In addition, the Fe-based soft magnetic alloy may be 70% or less of the crystallized area value according to Equation 1 below, more preferably 30 to 70%, even more preferably 40 to 70%.
[수학식 1][Equation 1]
Figure PCTKR2017009005-appb-I000001
Figure PCTKR2017009005-appb-I000001
이때, 상기 면적은 Fe계 연자성 합금에 대한 10 ~ 90° 앵글(2θ)로 X선 회절(XRD) 분석 시 측정된 결정질영역 또는 비결정질영역에 대한 적분값을 의미한다.In this case, the area refers to an integral value for the crystalline region or the amorphous region measured during X-ray diffraction (XRD) analysis at a 10 to 90 ° angle (2θ) for the Fe-based soft magnetic alloy.
또한, 상기 Fe계 연자성 합금은 결정립의 평균입경이 18 ~ 30㎚이며, 결정립 중 최대입경이 50㎚ 이하일 수 있다.The Fe-based soft magnetic alloy may have an average particle diameter of 18 to 30 nm and a maximum particle size of 50 nm or less.
또한, 상기 실험식에서 b 및 c는 각각 8≤b≤20 및 1≤c≤14일 수 있다.In addition, b and c in the empirical formula may be 8≤b≤20 and 1≤c≤14, respectively.
또한, 상기 Fe계 연자성 합금의 형상은 분말, 리본 또는 로드(rod)형일 수 있다.In addition, the shape of the Fe-based soft magnetic alloy may be powder, ribbon or rod (rod) type.
또한, 본 발명은 본 발명에 따른 Fe계 연자성 합금을 포함하는 자기장 차폐부재를 제공하며, 상기 자기장 차폐부재는 와전류의 발생을 감소시키기 위해 Fe계 연자성 합금이 파편화되어 구비될 수 있다.In addition, the present invention provides a magnetic shielding member including a Fe-based soft magnetic alloy according to the present invention, the magnetic shielding member may be provided with a Fe-based soft magnetic alloy fragmented to reduce the generation of eddy current.
또한, 상기 자기장 차폐부재는 안테나유닛의 일면에 구비되어 안테나모듈로 구현될 수 있다.In addition, the magnetic shielding member may be provided on one surface of the antenna unit to be implemented as an antenna module.
또한, 본 발명은 본 발명에 따른 Fe계 연자성 합금을 포함하는 자심을 제공하며, 상기 자심은 외부에 권취되는 코일을 포함하여 코일부품으로 구현될 수 있다.In addition, the present invention provides a magnetic core comprising a Fe-based soft magnetic alloy according to the present invention, the magnetic core may be implemented as a coil component including a coil wound to the outside.
이하, 본 발명에서 사용한 용어에 대해 설명한다.Hereinafter, the term used by this invention is demonstrated.
본 발명에서 사용한 용어로써, "초기합금"은 제조된 합금의 특성변화 등을 위하여 별도의 처리, 예를 들어 열처리 등의 공정을 거치지 않은 상태의 합금을 의미한다.As used herein, the term "initial alloy" refers to an alloy that has not undergone a separate treatment, for example, heat treatment, for the purpose of changing the properties of the alloy produced.
본 발명에 의하면, 높은 포화자속밀도, 우수한 고주파 특성 및 낮은 보자력을 가져서 고성능/고효율의 소형/경량화된 부품으로의 용도전개가 매우 용이하다. 또한, 본 발명은 제조단가가 매우 낮고, 합금에 포함되는 성분이 합금의 제조과정에서 쉽게 컨트롤됨으로써 합금의 제조가 용이하여 대량생산이 가능함에 따라서 대출력 레이저, 고주파 전원, 고속펄스발생기, SMPS, 고주파 필터, 저손실 고주파 트랜스포머, 고속 스위치, 무선충전 등의 전기, 전자기기의 자성부품으로 널리 응용될 수 있다.According to the present invention, it has very high saturation magnetic flux density, excellent high frequency characteristics and low coercive force, so that it is very easy to develop into a small / light weight component of high performance / high efficiency. In addition, the present invention is very low production cost, the components contained in the alloy is easily controlled in the manufacturing process of the alloy is easy to manufacture the alloy mass production is possible according to the large output laser, high frequency power supply, high-speed pulse generator, SMPS, It can be widely applied as magnetic parts of electric and electronic devices such as high frequency filter, low loss high frequency transformer, high speed switch, wireless charging.
도 1은 본 발명의 일 실시예에 따른 Fe계 연자성 합금으로 Fe85 . 3B10C4Cu0 .7인 합금에 대한 물성평가 결과도면으로써, 도 1a는 상기 합금의 XRD 패턴을 나타낸 도면이고, 도 1b는 TEM사진, 도 1c는 SAD패턴을 나타낸 도면, 도 1d는 VSM에 따른 히스테리시스 곡선을 나타낸 도면이다.1 is a Fe-based soft magnetic alloy according to an embodiment of the present invention Fe 85 . 3 B 10 C 4 Cu 0 .7 by the property evaluation results of the drawings alloy, Figure 1a is a view showing the XRD pattern of the alloy, and Figure 1b is a TEM image, and FIG 1c is a view of the SAD pattern, Figure 1d is A diagram showing a hysteresis curve according to VSM.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
본 발명에 따른 Fe계 연자성 합금은 실험식 FeaBbCcCud 로 표시되는 합금이며, 상기 실험식에서 a, b, c 및 d는 해당 원소의 at%(atomic percent)이고, 78.5≤≤a≤≤87.0, 12≤≤b+c≤≤21, 0.5≤d≤≤1.5를 만족한다.Fe-based soft magnetic alloy according to the present invention is an alloy represented by the empirical formula Fe a B b C c Cu d , wherein a, b, c and d is at% (atomic percent) of the element, 78.5≤≤ It satisfies a≤≤87.0, 12≤≤b + c≤≤21, and 0.5≤d≤≤1.5.
먼저, 상기 Fe는 자성을 발현시키는 합금의 주원소로써, 포화 자속 밀도의 향상을 위하여 Fe는 78.5at% 이상으로 합금내에 포함된다. 만약, Fe가 78.5at% 미만일 경우 목적하는 수준의 포화 자속 밀도를 구현할 수 없을 수 있다. 또한, Fe의 비율이 87.0at%를 초과할 경우 비정질의 초기 합금 제조를 위한 액체 급랭시에도 비정질 형성이 어려울 수 있고, 초기합금에 생성된 결정은 특성변화를 위한 열처리 공정에서 균일한 결정성장을 방해하고, 생성된 결정의 크기가 목적하는 수준 이상으로 커짐에 따라서 보자력이 증가하는 등 자기손실이 증가하는 문제가 있다.First, the Fe is a main element of the alloy to express the magnetic, Fe is included in the alloy at 78.5 at% or more to improve the saturation magnetic flux density. If Fe is less than 78.5at%, it may not be possible to achieve a desired level of saturation magnetic flux density. In addition, when the ratio of Fe exceeds 87.0 at%, it may be difficult to form amorphous even in the case of liquid quenching for the preparation of amorphous initial alloy, and the crystals formed in the initial alloy may exhibit uniform crystal growth in the heat treatment process for the characteristic change. There is a problem in that magnetic losses increase, such as interference, and as the coercivity increases, as the size of the generated crystal becomes larger than a desired level.
다음으로 상기 실험식에서 B 및 C는 비정질 형성능을 가지는 원소로써, 이들 원소를 통해 초기 합금을 비정질상으로 형성시킬 수 있다. 또한, C원소는 B원소와 조합됨으로써, B원소만 포함하는 경우에 비하여 생성되는 α-Fe 결정의 입도를 목적하는 수준으로 제어하기에 용이하게 하며, 초기합금의 열적안정성을 향상시켜서 열처리시 균질한 α-Fe 결정을 수득하는데 유리한 이점이 있다. 만일 B원소와 C원소의 총합이 합금내 12at% 미만일 경우 비정질의 초기 합금 제조를 위한 액체 급랭시에도 비정질 형성이 어려울 수 있다. 또한, 이로 인해 생성된 결정은 초기합금에 열처리시 생성되는 결정들이 균일한 입경을 가지도록 성장시키기 어렵게 하며, 조대화된 입경을 가진 결정들이 포함될 수 있고, 이로 인해 자기손실이 증가할 수 있는 문제점이 있다. 또한, 합금내 C원소 및 B원소의 총합이 21at%를 초과하여 포함될 경우 나노결정립의 합금으로 제조하기 위한 후술하는 Cu원소의 함량을 증가시켜야 됨에 따라서 Fe원소의 함량이 더욱 저하될 수 있고, 이에 따라 목적하는 수준의 포화자속밀도를 구현하지 못할 수 있다. 또한, α-Fe결정이외에 Fe가 B 및/또는 C와 화합물을 형성하기 용이해지고, 이들의 양이 많아짐에 따라서 포화자속밀도는 더욱 감소할 수 있는 문제가 있다Next, in the empirical formula, B and C are elements having an amorphous forming ability, through which the initial alloy may be formed into an amorphous phase. In addition, element C is combined with element B, which makes it easy to control the particle size of the α-Fe crystals produced to a desired level, compared to the case containing only element B, and improves the thermal stability of the initial alloy to be homogeneous during heat treatment. There is an advantage in obtaining one α-Fe crystal. If the sum of element B and element C is less than 12 at% in the alloy, it may be difficult to form amorphous even during liquid quenching for the preparation of amorphous initial alloy. In addition, the resulting crystals make it difficult to grow the initial alloy crystals to have a uniform particle size, and may include crystals having a coarse particle diameter, which may increase magnetic loss. There is this. In addition, when the total amount of C and B elements in the alloy is included in excess of 21 at%, the content of the Cu element to be described later for the production of the alloy of the nanocrystals should be increased, so the content of the Fe element may be further lowered. As a result, the desired saturation flux density may not be achieved. Further, in addition to α-Fe crystals, Fe easily forms compounds with B and / or C, and as the amount thereof increases, there is a problem that the saturation magnetic flux density may further decrease.
또한, 본 발명의 일 실시예에 따른 합금에 포함되는 B원소 및 C원소의 함량은 관계식 1로써,
Figure PCTKR2017009005-appb-I000002
을 만족할 수 있다. 상기 관계식 1을 만족함을 통하여 초기합금을 비정질상으로 제조할 수 있는 동시에 합금의 열적 안정성을 더욱 향상시켜 균질한 α-Fe의 결정을 수득할 수 있다. 만일 c/(b+c)의 값이 0.047미만일 경우 합금의 열적안정성이 저하되어 열처리시에 α-Fe의 결정이외에 Fe-B계 및/또는 Fe-C계 화합물의 생성이 현저히 증가할 수 있어서 열처리 공정의 제어에 많은 어려움이 있을 수 있고, 초기합금 또는 열처리 합금의 포화자속밀도가 감소하거나 자기손실이 증가할 수 있는 문제가 있으며, α-Fe결정의 입도제어가 곤란해져 균일한 입도를 갖는 α-Fe 결정을 갖는 자성재료를 제조할 수 없을 수 있다. 또한, 만일 c/(b+c)의 값이 0.66을 초과할 경우 초기합금에서 나노결정립이 생성될 수 있어서 열처리 시 생성되는 결정의 입도제어가 매우 어렵고, 조대화된 입경을 갖는 결정이 생성될 수 있다.
In addition, the content of the elements B and C contained in the alloy according to an embodiment of the present invention is the relationship 1,
Figure PCTKR2017009005-appb-I000002
Can be satisfied. By satisfying the relation 1, the initial alloy can be prepared in an amorphous phase, and at the same time, the thermal stability of the alloy can be further improved to obtain a homogeneous crystal of α-Fe. If the value of c / (b + c) is less than 0.047, the thermal stability of the alloy is lowered, and the formation of Fe-B and / or Fe-C compounds in addition to the crystallization of α-Fe may significantly increase during heat treatment. There may be a lot of difficulties in the control of the heat treatment process, there is a problem that the saturation magnetic flux density of the initial alloy or the heat treatment alloy may be reduced or the magnetic loss may be increased, and the particle size control of the α-Fe crystal is difficult to have a uniform particle size It may not be possible to produce a magnetic material having α-Fe crystals. In addition, if the value of c / (b + c) exceeds 0.66, nanocrystal grains may be formed in the initial alloy, so that it is very difficult to control the grain size of the crystals produced during the heat treatment, and to produce crystals having coarse grain sizes. Can be.
본 발명의 일실시예에 따른 합금에 포함되는 B원소는 합금내 8 ~ 20at%로 포함될 수 있다. 만일 B원소가 20at%를 초과하여 포함될 경우 제조된 초기합금의 결정화 온도들 간의 간격이 좁아져 열정안정성이 감소하고, 이에 따라 균질한 α-Fe의 결정을 얻기 어려울 수 있다. 또한, B원소가 8at% 미만으로 포함될 경우 초기합금에 결정이 생성될 수 있고, 상기 결정은 열처리 된 합금에서 생성되는 결정들의 입경분포가 균일하게 제조되기 어렵게 하고, 조대화된 결정으로 성장할 수 있는 문제가 있다.Element B contained in the alloy according to an embodiment of the present invention may be included in the alloy 8 ~ 20at%. If element B is included in excess of 20 at%, the spacing between crystallization temperatures of the prepared initial alloy is narrowed, thereby reducing passion stability, and thus, it may be difficult to obtain homogeneous α-Fe crystals. In addition, when the element B is contained in less than 8at% crystals may be formed in the initial alloy, the crystals are difficult to uniformly produce the particle size distribution of the crystals produced in the heat-treated alloy, it can grow into coarse crystals there is a problem.
또한, 본 발명의 일실시예에 따른 합금에 포함되는 C원소는 합금내 1 ~ 14at%로 포함될 수 있다. 만일 C원소가 합금내 1at%이하로 포함될 경우 초기합금을 비정질상으로 제조하기 어려우며, 이를 위해 상술한 B원소를 증가시킬 경우 초기합금의 열적 안정성이 저하되는 2차문제를 유발할 수 있다. 또한, 제조된 초기합금의 열처리시에 생성되는 α-Fe결정의 입도제어가 곤란해져 균일한 입도를 갖는 α-Fe 결정을 갖는 자성재료를 제조할 수 없을 수 있다. 또한, 만일 C원소가 합금내 14at%를 초과하여 포함될 경우 오히려 초기합금에서 30㎚ 이상의 입경을 갖는 α-Fe결정이 생성될 수 있고, 이와 같은 초기합금의 결정은 열처리공정에서 α-Fe결정의 입도제어를 어렵게 하는 문제가 있다. 또한, 초기합금에서 다른 금속간 화합물이 이미 생성됨에 따라서 열처리시 생성되는 α-Fe결정의 합금내 양이 목적하는 수준으로 포함되지 않을 수 있다. 더불어 보자력이 현저히 증가하여 자기손실이 큼에 따라서 목적하는 수준의 자기적특성이 발현되지 않아서 소형화된 자성재료로 응용이 어려울 수 있다.In addition, the element C included in the alloy according to an embodiment of the present invention may be included in the alloy 1 ~ 14at%. If element C is included in the alloy less than 1 at%, it is difficult to produce the initial alloy in an amorphous phase. For this reason, if the above-mentioned element B is increased, it may cause a secondary problem that the thermal stability of the initial alloy is lowered. In addition, it is difficult to control the particle size of the α-Fe crystals produced during the heat treatment of the prepared initial alloy, and thus it may not be possible to manufacture a magnetic material having the α-Fe crystals having a uniform particle size. In addition, if element C contains more than 14 at% in the alloy, α-Fe crystals having a particle size of 30 nm or more may be formed in the initial alloy. There is a problem that makes particle size control difficult. In addition, as other intermetallic compounds are already produced in the initial alloy, the amount in the alloy of the α-Fe crystals generated during heat treatment may not be included at a desired level. In addition, the coercive force is significantly increased, and as the magnetic loss is large, the desired magnetic properties are not expressed, so it may be difficult to apply the miniaturized magnetic material.
한편, 본 발명에 따른 Fe계 연자성 합금의 조성에는 Si원소가 포함되지 않는다. 통상적인 Fe계 연자성 합금에는 Si 원소가 포함되는데, 상기 Si원소는 합금의 비정질 형성능을 향상시키는 동시에 생성되는 α-Fe결정의 입경의 균일화에 도움을 준다. 다만, 상기 Si를 합금내 포함시킬 경우 Fe이외의 준금속, 예를들어 B, C, Cu의 함량을 감소시키거나 Fe의 함량을 감소시켜야 하는 문제가 있고, Fe의 함량 감소는 고포화자속밀도의 Fe계 합금의 구현을 어렵게 한다. 이에 따라 본 발명의 Fe계 합금은 Si원소를 포함하지 않는 대신에 Fe원소의 함량을 증가시켜 고포화밀도를 구현하고 있으나, Si원소가 불포함됨에 따라서 합금내 결정의 입경제어가 매우 곤란하고 균일한 입경을 갖는 합금의 제조가 매우 용이하지 않는 불리함도 동시에 내재하고 있다. 이와 같은 불리함을 해결하기 위하여, 상기 C원소는 상술한 Fe원소와 관계식 2로써,
Figure PCTKR2017009005-appb-I000003
을 만족할 수 있고, 이를 통해 초기합금의 열처리시 Fe-C계 화합물이 적정한 수준으로 생성될 수 있어서 Si 원소가 불포함됨에도 불구하고, α-Fe 결정의 입경제어를 목적하는 수준으로 달성할 수 있도록 한다. 만일 관계식 2에서 a/c가 5.6 미만일 경우 포화자속밀도가 감소할 수 있으며, 비정질의 초기합금이 제조되기 어려울 수 있고, 열처리시 생성되는 α-Fe 결정의 입도제어가 어려울 수 있다. 또한, 관계식 2에서 a/c가 87.0을 초과하는 경우 α-Fe 결정의 입경제어가 어렵고, 조대화된 α-Fe 결정이 생성되거나 입경분포가 매우 넓은 α-Fe 결정이 생성될 수 있는 문제가 있다.
Meanwhile, the Si element is not included in the composition of the Fe-based soft magnetic alloy according to the present invention. Conventional Fe-based soft magnetic alloys include Si elements, which improve the amorphous formability of the alloy and at the same time help to uniformize the particle diameter of the α-Fe crystals produced. However, when the Si is included in the alloy, there is a problem that the content of semimetals other than Fe, for example, B, C, Cu or the content of Fe should be reduced, and the content of Fe decreases in the high saturation magnetic flux density. This makes it difficult to implement Fe-based alloys. Accordingly, the Fe-based alloy of the present invention implements a high saturation density by increasing the content of Fe element instead of Si element, but as the Si element is not included, the crystallization of the crystal in the alloy is very difficult and uniform. There are also disadvantages in which an alloy having a particle size is not very easy to manufacture. In order to solve this disadvantage, the element C is a Fe element and the relationship 2 as described above,
Figure PCTKR2017009005-appb-I000003
In this way, Fe-C-based compounds can be produced at an appropriate level during the heat treatment of the initial alloy, so that despite the absence of Si elements, it is possible to achieve the desired level of grain size of the α-Fe crystals. . If a / c is less than 5.6 in Equation 2, the saturation magnetic flux density may decrease, it may be difficult to produce an amorphous initial alloy, and it may be difficult to control the particle size of the α-Fe crystal generated during heat treatment. In addition, when a / c is greater than 87.0 in Equation 2, it is difficult to form the α-Fe crystal, and coarse α-Fe crystals may be generated or α-Fe crystals having a very large particle size distribution may be generated. have.
다음으로, 상기 실험식에서 Cu는 초기합금에서 α-Fe 결정을 생성시킬 수 있는 핵생성 사이트로써의 역할을 담당하는 원소로, 비정질상의 초기합금을 나노결정립 합금으로 구현시킬 수 있다. Cu원소는 목적하는 물성의 현저한 발현을 위해 바람직하게는 합금내 0.5~1.5at%로 포함된다. 만일 상기 Cu원소가 합금내 0.5at%미만으로 포함되는 경우 제조되는 합금의 비저항이 크게 감소하여 와전류로 인한 손실이 커질 수 있고, 열처리된 합금에 목적하는 수준으로 α-Fe의 나노결정립이 생성되지 않을 수 있다. 또한, 만일 Cu원소가 합금내 1.5at%를 초과하여 포함될 경우 상술한 Fe, B, C원소의 함량이 상대적으로 감소함에 따라서 해당원소로 인한 효과가 감소될 수 있고, 열처리시 생성되는 결정의 입도제어가 어려울 수 있다.Next, in the empirical formula, Cu is an element that serves as a nucleation site capable of generating α-Fe crystals in the initial alloy, and the amorphous initial alloy may be implemented as a nanocrystalline alloy. The Cu element is preferably included at 0.5 to 1.5 at% in the alloy for remarkable expression of the desired physical properties. If the Cu element is contained less than 0.5 at% in the alloy, the specific resistance of the alloy produced is greatly reduced and the loss due to eddy current can be increased, and nano-crystal grains of α-Fe are not produced to the desired level in the heat-treated alloy. You may not. In addition, if the Cu element is contained in the alloy exceeds 1.5 at%, the effect of the element can be reduced as the content of the above-described Fe, B, C element is relatively reduced, the grain size of the crystal produced during the heat treatment Control can be difficult.
또한, 상기 실험식에서 b, c 및 d는 관계식 3으로써,
Figure PCTKR2017009005-appb-I000004
을 만족할 수 있다. 상기 관계식 3을 만족함을 통하여 초기합금을 비정질상으로 제조할 수 있는 동시에 나노결정립 합금으로 제조가 용이하다. 만일 상기 관계식 3에서 (b+c)/d가 8 미만일 경우 초기합금의 비정질 형성능이 감소하거나 초기합금에서 조대화된 결정이 생성될 수 있고, 만일 상기 관계식 3에서 (b+c)/d가 42를 초과할 경우 열처리를 통해서도 나노결정립이 생성되기 어려울 수 있다.
In addition, in the empirical formula b, c and d is the relation 3,
Figure PCTKR2017009005-appb-I000004
Can be satisfied. By satisfying the above Equation 3, the initial alloy can be prepared in an amorphous phase, and at the same time, it is easy to manufacture a nanocrystalline alloy. If (b + c) / d in Equation 3 is less than 8, the amorphous forming ability of the initial alloy may be reduced or coarse crystals may be produced in the initial alloy. If it exceeds 42, it may be difficult to produce nanocrystals even through heat treatment.
상술한 본 발명의 일 실시예에 의한 Fe계 연자성 합금은 비정질이거나 결정질일 수 있고, 또는 비정질 영역과 결정질 영역을 모두 포함하는 이형 원자배열구조일 수 있다. 바람직하게는 상기 비정질상을 갖는 Fe계 연자성 합금은 열처리되지 않은 초기합금상태에서의 구조일 수 있고, 이때, 상기 Fe계 연자성 합금은 형상이 분말일 수 있다.The Fe-based soft magnetic alloy according to the embodiment of the present invention described above may be amorphous or crystalline, or may be a heteroatomic structure including both an amorphous region and a crystalline region. Preferably, the Fe-based soft magnetic alloy having an amorphous phase may have a structure in an initial alloy state which has not been heat treated, and in this case, the Fe-based soft magnetic alloy may have a powder shape.
결정질상을 갖는 Fe계 연자성 합금은 초기합금을 열처리한 후 합금에서의 구조일 수 있고, 상기 결정질상은 나노결정립일 수 있으며, 상기 결정질 상의 평균입경은 30㎚이하일 수 있다. 또한, 상기 이형 원자배열구조는 초기합금 또는 열처리한 후 합금에서의 구조일 수 있다. 이때, 이형 원자배열구조가 초기합금상태에서는 결정질의 화합물은 평균입경이 10㎚ 이하, 바람직하게는 8㎚ 이하의 미세한 입경을 가질 수 있다. 또한, 상기 이형 원자배열구조가 열처리한 후 합금상태일 경우 결정질의 화합물은 평균입경이 30㎚ 이하, 바람직하게는 28㎚이하일 수 있으며, 이를 통해 목적하는 물성을 달성하기 유리할 수 있다.Fe-based soft magnetic alloy having a crystalline phase may be a structure in the alloy after the initial alloy heat treatment, the crystalline phase may be nanocrystalline, the average particle diameter of the crystalline phase may be 30nm or less. In addition, the heteroatomic array structure may be a structure in the alloy after the initial alloy or heat treatment. In this case, when the heteroatom-array structure is initially alloyed, the crystalline compound may have a fine particle diameter of 10 nm or less, preferably 8 nm or less. In addition, when the hetero-atomic array structure is an alloy after heat treatment, the crystalline compound may have an average particle diameter of 30 nm or less, preferably 28 nm or less, thereby achieving desired physical properties.
한편, 결정립의 평균입경이 바람직한 범위를 만족해도 일부의 경우 보자력에서 변동이 있을 수 있다. 즉, 결정 중에서 최대입경의 크기가 50㎚를 초과할 경우 그렇지 않은 경우에 대비하여 보자력의 증가가 있을 수 있다. 이에 Fe계 연자성 합금에서 생성된 결정의 최대입경 크기는 50㎚ 이하가 바람직하다.On the other hand, even if the average grain size of the crystal grains satisfies the preferred range, in some cases there may be a variation in the coercive force. That is, in the case where the maximum particle size of the crystal exceeds 50 nm, there may be an increase in coercive force in case it does not. Accordingly, the maximum particle size of the crystal produced in the Fe-based soft magnetic alloy is preferably 50 nm or less.
본 발명의 일 실시예에 따른 Fe계 연자성 합금이 이형 원자배열구조일 경우 비정질 영역 및 결정질 영역이 6:4 ~ 3:7의 부피비로 합금내 포함될 수 있다. 만일 비정질 영역 및 결정질 영역이 6:4의 부피비를 초과하여 비정질 영역이 더 많아질 경우 목적하는 수준의 포화자속밀도 등 목적하는 자기적 특성을 발현시키지 못할 수 있다. 또한, 만일 비정질 영역 및 결정질 영역이 3:7의 부피비 미만으로 결정질 영역이 더 많아질 경우 생성된 결정 중 α-Fe 결정 이외 다른 화합물의 결정 생성이 증가할 수 있고, 목적하는 자기적 특성을 발현할 수 없을 수 있다.When the Fe-based soft magnetic alloy according to an embodiment of the present invention has a heteroatomic structure, amorphous regions and crystalline regions may be included in the alloy in a volume ratio of 6: 4 to 3: 7. If the amorphous region and the crystalline region exceed the volume ratio of 6: 4 to increase the amount of the amorphous region, it may not be able to express desired magnetic properties such as a desired level of saturation magnetic flux density. In addition, if the amorphous region and the crystalline region have a larger crystalline region at a volume ratio of less than 3: 7, crystal formation of a compound other than α-Fe crystal among the resulting crystals may be increased, and the desired magnetic properties may be expressed. You may not be able to.
상술한 Fe계 연자성 합금은 열처리 전 상태에서의 형상이 분말, 스트립, 리본일 수 있으나 이에 제한되는 것은 아니며, 최종 자성재료의 형상, 열처리 공정 등을 고려하여 적절히 변형될 수 있다. 또한, 상기 Fe계 연자성 합금은 열처리 후의 형상이 리본 또는 로드형일 수 있고, 상기 로드형의 단면은 다각형, 원형, 타원형일 수 있으나 이에 제한되는 것은 아니다.The above-described Fe-based soft magnetic alloy may be a powder, a strip, or a ribbon in a state before heat treatment, but is not limited thereto, and may be appropriately modified in consideration of the shape of the final magnetic material, the heat treatment process, and the like. In addition, the Fe-based soft magnetic alloy may have a ribbon or rod shape after heat treatment, and the cross section of the rod shape may be polygonal, circular, or elliptical, but is not limited thereto.
또한, 상술한 본 발명에 따른 Fe계 합금은 α-Fe, 및 Fe와 B, C 및 Cu 중 적어도 하나의 원소간 형성되는 금속화합물들을 포함한다.In addition, the Fe-based alloy according to the present invention includes a-Fe, and metal compounds formed between Fe and at least one element of B, C and Cu.
상기 Fe계 합금은 α-Fe 이외에 Fe와 B, C 및 Cu 중 적어도 하나의 원소간 형성되는 금속화합물들을 포함하는데 이와 같은 금속화합물을 통해 결정의 입경이 목적하는 수준으로 제어된 Fe계 합금일 수 있다. 즉, 합금내 일정 함량 생성된 Fe와 다른 준금속간의 화합물은 α-Fe이 목적하는 입경을 초과하여 조대화 되는 것을 막는 방벽역할을 하며, 보다 균일한 입경 분포의 α-Fe를 포함하는 Fe계 합금으로 구현될 수 있다.The Fe-based alloy includes metal compounds formed between at least one of Fe and B, C, and Cu in addition to α-Fe. The Fe-based alloy may be a Fe-based alloy whose grain size is controlled to a desired level through the metal compound. have. In other words, the compound between Fe and other metalloids produced in a certain amount in the alloy acts as a barrier to prevent coarsening of α-Fe beyond the desired particle diameter, and Fe-based containing α-Fe with a more uniform particle size distribution. It can be implemented in an alloy.
상기 α-Fe 및 상기 금속화합물들은 적정의 비율로 포함되며, 이를 통해 생성된 α-Fe의 입경이 목적하는 수준으로 균일하게 제어되고, 조대화된 α-Fe의 생성을 억제할 수 있다. 또한, 구현된 합금의 균질성이 향상되는 이점이 있다.The α-Fe and the metal compounds are included in an appropriate ratio, the particle diameter of the α-Fe produced through this is uniformly controlled to the desired level, it is possible to suppress the generation of coarse α-Fe. In addition, there is an advantage that the homogeneity of the alloy implemented is improved.
상기 Fe와 B, C 및 Cu 중 적어도 하나의 원소간 형성되는 금속화합물들은 Fe-B 화합물 및 Fe-C 화합물 중 어느 하나 이상을 포함할 수 있다. 다만, Fe-B화합물을 포함하는 Fe계 합금은 Fe-C화합물을 포함하는 Fe계 합금에 비해 열적으로 열악할 수 있으며, 생성된 결정내 α-Fe 의 함량이 적은 금속일 수 있음에 따라서 균질한 합금을 제조할 수 없고, 목적하는 물성을 모두 발현할 수 없는 문제가 있다. 이에 따라 보다 바람직하게는 금속화합물로 Fe-C 화합물을 포함할 수 있고, 이를 통해 합금의 열적안정성이 향상되어 보다 균일한 α-Fe를 갖는 합금이 제조되기 용이할 수 있다. 상기 Fe-C 화합물은 F3C, Fe93C7 및 Fe4C0 . 63 중 어느 하나 이상을 포함할 수 있다.The metal compounds formed between at least one of Fe and B, C, and Cu may include any one or more of Fe-B compounds and Fe-C compounds. However, the Fe-based alloy containing the Fe-B compound may be thermally inferior to the Fe-based alloy containing the Fe-C compound, and may be homogeneous as the content of the α-Fe in the resulting crystal may be low. There is a problem that one alloy cannot be manufactured and all the desired physical properties cannot be expressed. Accordingly, more preferably, the metal compound may include a Fe-C compound, and through this, thermal stability of the alloy may be improved, thereby making it possible to easily prepare an alloy having a more uniform α-Fe. The Fe-C compound is F 3 C, Fe 93 C 7 and Fe 4 C 0 . And one or more of 63 .
또한, 본 발명의 일 실시예에 따르면, Fe계 연자성 합금은 하기 수학식 1에 따른 결정화된 면적값이 70% 이하일 수 있고, 보다 바람직하게는 30 ~ 70%, 보다 더 바람직하게는 50 ~ 70%일 수 있다.In addition, according to an embodiment of the present invention, the Fe-based soft magnetic alloy may have a crystallized area value of 70% or less according to Equation 1 below, more preferably 30 to 70%, even more preferably 50 to May be 70%.
[수학식 1][Equation 1]
Figure PCTKR2017009005-appb-I000005
Figure PCTKR2017009005-appb-I000005
이때, 상기 면적은 Fe계 연자성 합금에 대한 10 ~ 90° 앵글(2θ)로 X선 회절(XRD) 분석 시 측정된 결정질영역 또는 비정질영역에 대한 적분값을 의미한다.In this case, the area refers to an integral value for the crystalline region or the amorphous region measured during X-ray diffraction (XRD) analysis at a 10 to 90 ° angle (2θ) for the Fe-based soft magnetic alloy.
상기 결정화된 면적값이 70% 이하를 만족함을 통해 α-Fe 및 Fe와 다른 금속간 화합물, 예를들어 Fe-C계 화합물의 결정이 적절한 비율로 생성됨에 따라서 목적하는 물성을 만족시키기에 보다 유리할 수 있다. 만일 결정화된 면적값이 70%를 초과할 경우 Fe-C계 화합물 등 다른 금속간의 화합물 결정의 생성이 크게 증가하여 목적하는 수준의 물성을 발현하지 못할 수 있다. 또한, 상기 결정화된 면적값은 30% 이상인 것이 바람직한데, 30% 미만일 경우 역시 목적하는 자기적 특성의 수준을 만족하지 못할 수 있다.As the crystallized area value satisfies 70% or less, crystals of α-Fe and Fe and other intermetallic compounds such as Fe-C-based compounds are produced at an appropriate ratio, which may be more advantageous to satisfy the desired physical properties. Can be. If the crystallized area value exceeds 70%, the formation of compound crystals between other metals, such as Fe-C compounds, may be greatly increased, thereby preventing the desired level of physical properties from being expressed. In addition, the crystallized area value is preferably 30% or more, but less than 30% may also not satisfy the level of the desired magnetic properties.
상술한 본 발명의 일실시예에 포함되는 Fe계 연자성 합금은 후술하는 제조방법으로 제조될 수 있으나 이에 제한되는 것은 아니다.The Fe-based soft magnetic alloy included in the above-described embodiment of the present invention may be manufactured by the manufacturing method described below, but is not limited thereto.
본 발명의 일실시예에 포함되는 Fe계 초기합금은 상술한 Fe계 합금의 실험식의 조성을 가지도록 각각의 원소를 포함하는 모재들이 칭량되어 혼합된 Fe계 합금형성 조성물 또는 Fe계 모합금을 용융 후 급냉응고시켜 제조할 수 있다. 상기 급냉응고시 사용되는 구체적인 방법에 따라 제조되는 Fe계 초기합금의 형상이 달라질 수 있다. 상기 급냉응고에 사용되는 방법은 통상적인 공지된 방법을 채용할 수 있어서 본 발명은 이에 대해 특별히 한정하지 않는다. 다만, 이에 대한 비제한 적인 예로써, 상기 급냉응고는 용융된 Fe계 모합금 또는 Fe계 합금형성 조성물이 분사되는 고압가스(Ex. Ar, N2, He 등) 및/또는 고압수를 통해 분말상으로 제조되는 가스분사법(automizing법), 용융금속을 빠르게 회전하는 원판을 이용하여 분말상을 제조하는 원심분리법, 빠른속도로 회전하는 롤에 의해 리본이 제조되는 멜트스피닝법 등이 있다. 이러한 방법들을 통해 형성되는 Fe계 초기 합금의 형상의 형상은 분말, 스트립, 리본 일 수 있다. 또한, 상기 Fe계 초기합금 내 원자배열은 비정질상일 수 있다.Fe-based initial alloy included in an embodiment of the present invention after the melting of the Fe-based alloying composition or Fe-based master alloy mixed with a base material containing each element is weighed to have the composition of the empirical formula of the Fe-based alloy described above It can be prepared by quench solidification. The shape of the Fe-based initial alloy prepared according to the specific method used during the quench solidification may vary. As the method used for the quench solidification, a conventionally known method can be adopted, and the present invention is not particularly limited thereto. However, as a non-limiting example, the quench solidification is powdered through the high pressure gas (Ex. Ar, N 2 , He, etc.) and / or high pressure water to which the molten Fe-based alloy or Fe-based alloying composition is injected Gas injection method (automizing method), a centrifugal method for producing a powder phase using a disk that rotates the molten metal rapidly, a melt spinning method for producing a ribbon by a roll that rotates at a high speed. The shape of the Fe-based initial alloy formed through these methods may be powder, strip, or ribbon. In addition, the atomic arrangement in the Fe-based initial alloy may be in an amorphous phase.
한편, 상기 Fe계 초기합금의 형상은 벌크일 수도 있다. Fe계 초기합금의 형상이 벌크일 경우 상술한 방법들에 의해 형성된 비정질 Fe계 합금의 분말이 통상적으로 알려진 방법, 예를들어 합체법 및 응고법 등을 통해 벌크비정질 합금으로 제조될 수 있다. 상기 합체법에 대한 비제한적에 예로써, 충격합체(shock consolidation), 폭발성형(explosive forming), 분말소결(sintering), 열간압출 및 압연(hot extrusion and hot rolling) 등의 방법이 사용될 수 있다. 이들 중 충격합체법에 대해 설명하면, 충격합체법은 분말합금 중합체에 충격파를 가함으로써 파동이 입자 경계를 따라 전달되고 입자 계면에서 에너지 흡수가 일어나며, 이때 흡수된 에너지가 입자 표면에 미세한 용융층을 형성함으로써 벌크 비정질합금을 생산할 수 있다. 이때 생성된 용융층은 입자내부로의 열전달을 통해 비정질상태를 유지할 수 있도록 충분히 빠르게 냉각되어야 한다. 이 방법을 통해 비정질합금 본래 밀도의 99%까지의 충진밀도를 갖는 벌크 비정질합금을 제조할 수 있으며 충분한 기계적 특성을 얻을 수 있는 이점이 있다. 또한, 상기 열간 압출 및 압연법은 고온에서 비정질합금의 유동성을 이용한 것으로써 비정질합금 분말을 Tg 근처의 온도까지 가열하고 압연하고, 압연성형 후 급냉시킴으로써 충분한 밀도와 강도를 갖는 벌크 비정질합금을 제조할 수 있다. 한편, 상기 응고법에는 구리합금 몰드주조법(copper mold casting), 고압 다이캐스팅(high pressure die casting), 아크용해(arc melting), 일방향 용해(unidirectional melting), 스퀴즈 캐스팅(squeez casting), 스트립 캐스팅 등이 있을 수 있으며, 각각의 방법들은 공지된 방법 및 조건을 채용할 수 있음에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다. 일예로 상기 구리합금 몰드주조법은 용탕을 높은 냉각능을 갖는 구리 금형에 상기 금형 내부와 외부와의 압력차를 이용하여 상기 금형의 내부에 용탕을 주입하는 흡입법 또는 일정한 압력을 외부에서 가해 용탕을 주입하는 가압법을 이용하는 방법으로써, 가압 또는 흡입에 의해 고속으로 구리금형에 주입되는 용탕이 금속응고됨으로써 일정한 벌크 형상의 비정질인 Fe계 초기합금이 제조될 수 있다.On the other hand, the shape of the Fe-based initial alloy may be bulk. When the shape of the Fe-based initial alloy is bulk, the powder of the amorphous Fe-based alloy formed by the above-described methods may be manufactured into a bulk amorphous alloy through a commonly known method, for example, a coalescence method and a solidification method. As a non-limiting example for the coalescence method, methods such as shock consolidation, explosive forming, sintering, hot extrusion and hot rolling can be used. In the impact coalescing method, the impact coalescing method applies a shock wave to the powder-alloy polymer so that waves are transmitted along the grain boundary and energy absorption occurs at the particle interface, whereby the absorbed energy forms a fine molten layer on the particle surface. By forming the bulk amorphous alloy can be produced. At this time, the resulting molten layer should be cooled fast enough to maintain an amorphous state through heat transfer into the particles. Through this method, bulk amorphous alloys having a packing density of up to 99% of the intrinsic density of amorphous alloys can be prepared and have an advantage of obtaining sufficient mechanical properties. In addition, the hot extrusion and rolling method is to use the fluidity of the amorphous alloy at a high temperature to heat the amorphous alloy powder to a temperature near Tg, and to roll, and to form a bulk amorphous alloy having sufficient density and strength by quenching after rolling. Can be. On the other hand, the solidification method may include copper mold casting, high pressure die casting, arc melting, unidirectional melting, squeez casting, strip casting, and the like. As each method can employ well-known methods and conditions, the present invention is not particularly limited thereto. For example, the copper alloy mold casting method is to inject the molten metal to the copper mold having a high cooling ability by using a pressure difference between the inside and the outside of the mold to inject the molten metal into the inside of the mold or by applying a constant pressure from the outside. As a method using a pressing method, a molten metal injected into a copper mold at high speed by pressurization or suction is solidified to produce a Fe-based initial alloy having a constant bulk shape.
다음으로 제조된 Fe계 초기합금에 대해 열처리를 수행할 수 있다.Next, heat treatment may be performed on the prepared Fe-based initial alloy.
상기 열처리는 Fe계 초기합금의 원자배열을 비정질에서 결정질로 변태시키는 단계로써, 상기 열처리를 통해 α-Fe를 포함하는 나노결정립을 생성시킬 수 있다. 다만, 제2단계에서 열처리되는 온도, 승온속도 및/또는 처리시간 등에 따라서 생성되는 결정의 크기가 목적하는 수준 이상으로 성장될 수 있음에 따라서 열처리 조건의 조절이 결정입경 제어에 있어서 매우 중요하다. 특히 본 발명에 따른 Fe계 초기합금의 조성은 결정의 크기 성장을 막을 수 있는 방벽의 기능을 담당하는 Nb 등의 원소를 불포함하고 있음에 따라서 통상의 열처리 조건으로는 목적하는 수준, 일예로 30㎚ 이하, 바람직하게는 25㎚ 이하로 나노결정립의 입경제어를 하기 매우 어려울 수 있고, 입경제어에 많은 시간과 노력이 들어갈 경우 대량생산이 어려울 수 있다.The heat treatment is a step of transforming the atomic arrangement of the Fe-based initial alloy from amorphous to crystalline, it is possible to produce nano-crystals containing α-Fe through the heat treatment. However, as the size of the crystal produced according to the temperature, the temperature increase rate, and / or treatment time, etc., which are heat-treated in the second step may be grown to a desired level or more, adjustment of the heat treatment conditions is very important in controlling the grain size. In particular, the composition of the Fe-based initial alloy according to the present invention does not contain elements such as Nb, which serves as a barrier that can prevent the growth of crystal size, and therefore, under normal heat treatment conditions, the desired level, for example, 30 nm Below, preferably 25 nm or less, it may be very difficult to make the nanocrystalline grains, and if a large amount of time and effort is put into the grains, mass production may be difficult.
이러한 문제점의 해결을 위해서 상기 열처리는 하기 수학식 2에 따른 열처리 기준온도의 80 ~ 120%, 보다 바람직하게는 95 ~ 110%의 온도로 수행될 수 있으며, 이를 통해 목적한 수준의 입경을 갖는 나노결정립을 생성시킬 수 있다.In order to solve this problem, the heat treatment may be performed at a temperature of 80 to 120%, more preferably 95 to 110% of the heat treatment reference temperature according to Equation 2 below, and through this, a nano having a desired particle size Grain can be produced.
[수학식 2][Equation 2]
Figure PCTKR2017009005-appb-I000006
Figure PCTKR2017009005-appb-I000006
만일 상기 수학식 2에 따라 산출되는 열처리 기준온도의 80% 온도 미만으로 열처리될 경우 목적하는 수준으로 나노결정립이 생성되지 않을 수 있다. 또한, 만일 상기 열처리 기준온도의 120%의 온도를 초과하는 온도로 열처리될 경우 합금내 생성되는 결정의 입경이 조대화될 수 있으며, 생성되는 결정의 입경분포가 매우 넓어져 입경의 균일성이 저하되고, α-Fe이외에 Fe와 다른 금속간 화합물의 결정이 과도하게 생성되어 α-Fe의 균일한 나노결정질의 Fe계 합금을 수득할 수 없을 수 있다.If heat treatment is performed at less than 80% of the heat treatment reference temperature calculated according to Equation 2, nanocrystal grains may not be produced at a desired level. In addition, if heat treatment is performed at a temperature exceeding 120% of the heat treatment reference temperature, the grain size of the crystals produced in the alloy may be coarsened, and the grain size distribution of the crystals formed may be widened, thereby decreasing the uniformity of the grain size. In addition, crystals of Fe and other intermetallic compounds other than α-Fe may be excessively produced to obtain a uniform nanocrystalline Fe-based alloy of α-Fe.
또한, 본 발명의 일실시예에 따르면, 상기 열처리온도까지의 승온속도도 생성되는 나노결정립의 입경제어에 큰 영향을 미치며, 일예로 상온에서 열처리온도까지의 승온속도는 80℃/min 이하, 보다 바람직하게는 60℃/min이하, 보다 더 바람직하게는 50℃/min이하, 보다 더욱 바람직하게는 40℃/min 이하일 수 있다. 통상적으로 비정질 합금에서 결정질 합금으로 변태시키기 위한 열처리 공정에서의 승온속도는 고속승온, 일예로 100℃/min 이상일 경우에 균일한 입경의 결정을 수득하기에 유리하다고 알려져 있으나, 본 발명에 따른 Fe계 합금의 경우 통상적인 경향과는 다르게 80℃/min 이하의 승온속도로 천천히 승온시킨 후 목적하는 열처리 온도에서 열처리를 수행해야만 생성되는 결정의 입경이 평균입경에 가깝도록 균일하게 생성되기 유리할 수 있다.In addition, according to an embodiment of the present invention, the temperature increase rate up to the heat treatment temperature also has a large influence on the grain size of the generated nano-crystal grains, for example, the temperature increase rate from room temperature to the heat treatment temperature is 80 ℃ / min or less, more Preferably it is 60 degrees C / min or less, More preferably, it is 50 degrees C / min or less, More preferably, it may be 40 degrees C / min or less. Typically, the temperature increase rate in the heat treatment process for transforming from an amorphous alloy to a crystalline alloy is known to be advantageous to obtain a crystal having a uniform particle size at high temperature, for example, 100 ℃ / min or more, Fe-based according to the present invention Unlike the general tendency, the alloy may be advantageously uniformly formed so that the grain size of the resulting crystals may be made close to the average particle diameter only by slowly raising the temperature at a temperature raising rate of 80 ° C./min or less and then performing heat treatment at a desired heat treatment temperature.
이는 승온속도가 높을 경우 균일한 입경의 결정생성에 도움이 될 수 있으나, 본 발명에 따른 Fe계 연자성 합금은 조성에 Si원소 등 균일한 나노결정립 생성에 도움을 주는 원소나 결정성장의 방벽역할을 수행하는 Nb원소 등을 포함하고 있지 않아서 입경제어가 매우 용이하지 않음에 따라서 고온승온시에 목적하는 수준으로 입경제어를 하지 못할 수 있다. 이에 따라서 고온승온에 비해 80℃/min이하의 저온승온이 바람직할 수 있고, 이를 통해 적정한 함량으로 Fe-C간 화합물이 생성 및 α-Fe의 결정크기를 제어함에 따라서 목적하는 균일한 입경의 α-Fe을 제조하는데 유리하다. 또한, 저온승온을 함에 따라서 대량생산에 보다 적합할 수 있고, 제조원가절감에 이득이 있다. 만일 승온속도가 80℃/min를 초과할 경우 생성되는 결정의 입도분포를 목적하는 수준으로 제어하지 못할 수 있는 문제점이 있다. 다만, 승온속도는 7℃/min 이상인 것이 바람직하고, 만일 7℃/min 미만의 속도로 승온 시에 열처리 시간이 장기화 되며, 장기화된 열처리 시간으로 인해 결정립 입경이 매우 불균일해지고, 조대한 결정립이 석출될 수 있는 우려가 있다.This may help to produce a uniform grain size when the temperature rise rate is high, but the Fe-based soft magnetic alloy according to the present invention acts as a barrier for the growth of elements or crystals that help to produce uniform nano grains such as Si element in the composition Since it does not contain the Nb element that performs the so that it is not very easy to enter the fish, it may not be able to enter the fish at the desired level at the elevated temperature. Accordingly, it may be desirable to lower the temperature of 80 ° C / min or lower than the high temperature, and through this to control the crystal size of α-Fe and the formation of the compound between the Fe-C to an appropriate content α of the desired uniform particle diameter It is advantageous to prepare -Fe. In addition, the low temperature increase may be more suitable for mass production, and the manufacturing cost is reduced. If the temperature increase rate exceeds 80 ℃ / min there is a problem that can not control the particle size distribution of the resulting crystal to the desired level. However, it is preferable that the temperature increase rate is 7 ° C./min or more, and if the temperature is raised at a rate of less than 7 ° C./min, the heat treatment time is prolonged, the grain size becomes very uneven due to the prolonged heat treatment time, and coarse grains are precipitated. There is a concern that it can be.
또한, 상기 제2단계에서 열처리온도로 열처리되는 시간은 30초 ~ 1시간 동안 수행될 수 있다. 상기 열처리 시간은 수행되는 열처리 온도에 따라 변경될 수 있으나, 만일 30초 미만으로 열처리될 경우 목적하는 수준으로 결정질로의 변태가 이루어지지 않을 수 있고, 만일 1시간을 초과하여 열처리될 경우 생성되는 결정의 입경이 조대화되는 문제가 있다.In addition, the heat treatment time at the heat treatment temperature in the second step may be performed for 30 seconds to 1 hour. The heat treatment time may be changed according to the heat treatment temperature to be performed, but if the heat treatment is less than 30 seconds, the transformation into crystalline may not be achieved at a desired level, and if the heat treatment is performed for more than 1 hour, the crystal is produced. There is a problem of coarse grain size.
한편, 상기 제2단계는 열 이외에 압력 및/또는 자장을 더 부가하여 수행될 수도 있다. 이와 같은 부가적인 처리를 통해 특정 일방향으로의 자기적 이방성을 갖는 결정을 생성하도록 할 수 있다. 이때 가해지는 압력 또는 자장의 정도는 목적하는 물성의 정도에 따라 달라질 수 있어서 본 발명에서는 이를 특별히 한정하지 않으며, 공지된 조건을 채용하여 수행해도 무방하다.Meanwhile, the second step may be performed by adding a pressure and / or a magnetic field in addition to heat. Such additional processing can be used to produce crystals with magnetic anisotropy in a particular one direction. In this case, the applied pressure or the degree of the magnetic field may vary depending on the degree of the desired physical property, and the present invention is not particularly limited thereto.
상술한 본 발명의 일실시예에 따른 Fe계 연자성 합금은 권자심, 적층자심, 압분자심 등의 자심으로 구현되거나 자기장 차폐부재로 구현될 수 있다.The Fe-based soft magnetic alloy according to the embodiment of the present invention described above may be implemented by magnetic cores such as winding cores, laminated cores, green powder cores, or magnetic field shielding members.
또한, 상기 자심은 자기코어 기능의 수행을 위해 자심의 외부에 권취되는 코일과 함께 코일부품으로 구현될 수 있고, 상기 코일부품은 레이져, 트랜스, 인덕터, 모터나 발전기 등의 부품으로 응용될 수 있다.In addition, the magnetic core may be implemented as a coil component together with a coil wound outside of the magnetic core to perform a magnetic core function, and the coil component may be applied to components such as a laser, a transformer, an inductor, a motor or a generator. .
또한, 상기 자기장차폐부재는 안테나, 예를들어 무선충전, 근거리통신, 마그네틱보안전송 등의 기능을 수행하는 안테나를 포함하는 안테나 유닛상에 구비되어 상기 안테나 특성을 향상시키는 역할을 수행할 수 있다. 이때, 와전류에 의한 자기손실의 감소를 위해 상기 자기장 차폐부재에 구비되는 Fe계 연자성 합금은 파편화되어 구비될 수 있으며, 파편들의 사이에는 파편들을 지지하고, 와전류에 의한 자기손실을 더욱 줄이기 위해 접착제층이 침투하여 각 파편들을 절연시킬 수도 있다. 이때, 상기 파편의 입경은 0.1㎛ ~ 5㎜일 수 있으나 이에 제한되는 것은 아니다.In addition, the magnetic shielding member may be provided on an antenna unit including an antenna, for example, an antenna performing a function such as wireless charging, short-range communication, magnetic security transmission, etc., and may serve to improve the antenna characteristics. In this case, the Fe-based soft magnetic alloy provided in the magnetic shielding member may be fragmented to reduce the magnetic loss caused by the eddy current, and to support the fragments between the fragments, and to further reduce the magnetic loss caused by the eddy current. The layer may penetrate and insulate each fragment. At this time, the particle diameter of the fragments may be 0.1㎛ ~ 5㎜ but is not limited thereto.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.Although the present invention will be described in more detail with reference to the following examples, the following examples are not intended to limit the scope of the present invention, which will be construed as to aid the understanding of the present invention.
<실시예 1><Example 1>
실험식 Fe85 . 3B10C4Cu0 .7의 초기합금이 제조를 위해 원료를 아크용해법을 통해 용융시킨 뒤 멜트스피닝을 통해 급속냉각시켜 두께 약 20㎛, 폭이 약 2㎜인 리본을 Ar분위기에서 60m/s의 속도로 Fe계 연자성 초기합금을 제조하였다. 제조된 초기합금을 상온에서 10℃/min의 승온속도로 열처리하여 346℃에서 10분간 열처리 하여 하기 표 1과 같은 Fe계 연자성 합금을 제조하였다. Experimental Fe 85 . 3 B 10 C 4 Cu 0 .7, the initial alloy is rapidly cooled the raw material for the production through the melt spinning after having been melted by the arc melting method was about 20㎛, the thickness range of about 2㎜ the ribbon in the Ar atmosphere 60m / Fe-based soft magnetic initial alloy was prepared at a speed of s. The prepared initial alloy was heat treated at a temperature rising rate of 10 ° C./min at room temperature, and then heat treated at 346 ° C. for 10 minutes to produce a Fe-based soft magnetic alloy as shown in Table 1 below.
<실시예 2 ~ 6><Examples 2 to 6>
실시예 1과 동일하게 실시하여 제조하되, 열처리 승온속도를 하기 표 1과 같이 변경하여 하기 표 1과 같은 Fe계 연자성 합금을 제조하였다. The preparation was carried out in the same manner as in Example 1, but the Fe-based soft magnetic alloy was prepared as shown in Table 1 by changing the heat treatment rate of heating as shown in Table 1 below.
<비교예 1 > Comparative Example 1
실시예 1과 동일하게 실시하여 제조하되, 합금의 조성을 하기 표 1과 같이 변경하여 하기 표 1과 같은 Fe계 연자성 합금을 제조하였다. It was prepared in the same manner as in Example 1, but the composition of the alloy was changed as shown in Table 1 to produce a Fe-based soft magnetic alloy as shown in Table 1.
<실험예 1>Experimental Example 1
실시예 및 비교예에서 제조된 Fe계 연자성 합금에 대해 하기의 물성을 평가하여 표 1 에 나타내었다.The following physical properties of the Fe-based soft magnetic alloys prepared in Examples and Comparative Examples were evaluated and shown in Table 1.
1. 결정구조, 결정 최대입경, 평균입경 및 결정화된 면적값 분석1. Analysis of crystal structure, maximum grain size, average grain size and crystallized area value
합금의 결정구조, 결정 최대입경 및 결정화된 면적값을 평가하기 위하여 X선 회절법을 통한 XRD 패턴, 제한시야 전자회절법을 통한 SAD 패턴 및 TEM을 분석하였다.In order to evaluate the crystal structure, crystal maximum grain size and crystallized area of the alloy, XRD patterns through X-ray diffraction, SAD patterns and TEM through limited field electron diffraction were analyzed.
또한, 결정화된 면적값은 하기 수학식 1을 통해 계산하였다. In addition, the crystallized area value was calculated through the following equation (1).
[수학식 1][Equation 1]
Figure PCTKR2017009005-appb-I000007
Figure PCTKR2017009005-appb-I000007
이때, 상기 면적은 Fe계 연자성 합금에 대한 10 ~ 90° 앵글(2θ)로 X선 회절(XRD) 분석 시 측정된 결정질영역 또는 비결정질영역에 대한 적분값을 의미한다.In this case, the area refers to an integral value for the crystalline region or the amorphous region measured during X-ray diffraction (XRD) analysis at a 10 to 90 ° angle (2θ) for the Fe-based soft magnetic alloy.
2. 자성물성 평가2. Magnetic property evaluation
보자력 및 포화자화값을 산출하기 위해 진동시료형 자력계(VSM)를 통해 400k A/m의 자장에서 평가하였다. 이때, 실시예 1에서의 보자력 및 포화자화값을 100%로 기준하여 나머지 실시예 및 비교예의 보자력 및 포화자화값을 상대적으로 나타내었다.In order to calculate the coercive force and the saturation magnetization value, it was evaluated in the magnetic field of 400k A / m by the vibration sample magnetometer (VSM). At this time, the coercive force and saturation magnetization values of the remaining examples and the comparative examples were relatively represented based on the coercive force and the saturation magnetization value of Example 1 as 100%.
실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 실시예6Example 6 비교예1Comparative Example 1
초기합금Initial alloy 실험식Experimental formula a1) a 1) 85.385.3 85.385.3 85.385.3 85.385.3 85.385.3 85.385.3 85.385.3
b2) b 2) 1010 1010 1010 1010 1010 1010 1414
c3) c 3) 44 44 44 44 44 44 00
d4) d 4) 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7 0.70.7
b+cb + c 1414 1414 1414 1414 1414 1414 1414
결정상Crystal phase 비정질Amorphous 비정질Amorphous 비정질Amorphous 비정질Amorphous 비정질Amorphous 비정질Amorphous 혼재Mixed
열처리온도(℃)/승온속도(℃/m)Heat treatment temperature (℃) / temperature increase rate (℃ / m) 346/10346/10 346/35346/35 346/45346/45 346/75346/75 346/85346/85 346/4346/4 346/10346/10
열처리 후 합금Alloy after heat treatment 결정상Crystal phase 혼재Mixed 혼재Mixed 혼재Mixed 혼재Mixed 혼재Mixed 혼재Mixed 혼재Mixed
결정decision 평균입경(㎚)Average particle diameter (nm) 2828 2828 2727 2525 2424 3030 160160
최대입경(㎚)Particle size (nm) 3434 3333 3838 5353 106106 8888 354354
결정화된면적값(%)% Of crystallized area 5252 5353 5959 6868 7575 4747 8989
포화자속밀도(%)Saturated magnetic flux density (%) 100100 101101 103103 103103 104104 9898 8484
보자력(%)Coercivity (%) 100100 102102 109109 122122 150150 121121 197197
1) a: 합금내 Fe의 at% 2) b: 합금내 B의 at%3) c: 합금내 C의 at% 4) d: 합금내 Cu의 at%5)
Figure PCTKR2017009005-appb-I000008
1) a: at% of Fe in the alloy 2) b: at% of B in the alloy 3) c: at% of C in the alloy 4) d: at% of Cu in the alloy 5)
Figure PCTKR2017009005-appb-I000008
상기 표 1을 통해 확인할 수 있듯이,As can be seen from Table 1 above,
비교예 1의 경우 탄소를 불포함함에 따라서 초기합금에서 결정이 생성되어 비정질의 합금을 제조할 수 없었다.In Comparative Example 1, as the carbon was not included, crystals were formed in the initial alloy, thereby making it impossible to prepare an amorphous alloy.
또한, 실시예 중에서도 열처리 속도를 본 발명의 바람직한 범위를 초과하여 수행한 실시예 5의 경우 평균입경이 작은 결정립들이 생성되었으나 최대입경이 106㎚에 달하는 결정이 생성되었고, 이에 보자력도 다른 실시예에 비해 현저히 증가한 것을 확인할 수 있다. In addition, in Example 5 in which the heat treatment rate was exceeded in the preferred range of the present invention, crystal grains having a small average particle diameter were produced, but crystals having a maximum particle diameter of 106 nm were generated, and thus the coercive force was applied to other examples. It can be seen that the increase significantly.
한편, 실시예 5의 결과를 통해 본 발명에 따른 4원소계 조성에서는 통상적인 빠른 승온속도로 평균입경이 작은 나노결정립을 수득할 수는 있어도 균일한 입경의 결정립을 생성하기 어려우며 열처리 중 입경제어가 되지 않는 것들이 존재함을 확인할 수 있다.On the other hand, in the four-element composition according to the present invention through the results of Example 5, even though it is possible to obtain nanocrystals having a small average particle diameter at a typical high temperature increase rate, it is difficult to produce crystal grains of uniform particle size, You can see that there are things that are not.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments set forth herein, and those skilled in the art who understand the spirit of the present invention, within the scope of the same idea, the addition of components Other embodiments may be easily proposed by changing, deleting, adding, and the like, but this will also fall within the spirit of the present invention.

Claims (3)

  1. 실험식 FeaBbCcCud 로 표시되고, α-Fe, 및 Fe와 B, C 및 Cu 중 적어도 하나의 원소간 형성되는 금속화합물들을 포함하는 Fe계 연자성 합금:A Fe-based soft magnetic alloy represented by the empirical formula Fe a B b C c Cu d and comprising metal compounds formed between α-Fe and at least one of Fe and B, C and Cu:
    단, 상기 실험식에서 a, b, c 및 d는 해당 원소의 at%(atomic percent)이며, 78.5≤≤a≤≤87.0, 12≤≤b+c≤≤21, 0.5≤d≤≤1.5임.However, in the empirical formula, a, b, c and d are at% (atomic percent) of the corresponding element, 78.5≤≤a≤≤87.0, 12≤≤b + c≤≤21, 0.5≤d≤≤1.5.
  2. 제1항에 있어서,The method of claim 1,
    상기 Fe계 연자성 합금은 하기 수학식 1에 따른 결정화된 면적값이 70% 이하인 Fe계 연자성 합금:The Fe-based soft magnetic alloy is a Fe-based soft magnetic alloy having a crystallized area value of 70% or less according to Equation 1 below:
    [수학식 1][Equation 1]
    Figure PCTKR2017009005-appb-I000009
    Figure PCTKR2017009005-appb-I000009
    이때, 상기 면적은 Fe계 연자성 합금에 대한 10 ~ 90° 앵글(2θ)로 X선 회절(XRD) 분석 시 측정된 결정질영역 또는 비결정질영역에 대한 적분값을 의미한다.In this case, the area refers to an integral value for the crystalline region or the amorphous region measured during X-ray diffraction (XRD) analysis at a 10 to 90 ° angle (2θ) for the Fe-based soft magnetic alloy.
  3. 제2항에 있어서,The method of claim 2,
    상기 Fe계 연자성 합금은 결정립의 평균입경이 18 ~ 30㎚이며, 결정립 중 최대입경이 50㎚ 이하인 Fe계 연자성 합금.The Fe-based soft magnetic alloy is a Fe-based soft magnetic alloy having an average particle diameter of 18 ~ 30nm, the maximum grain size of 50nm or less in the crystal grains.
PCT/KR2017/009005 2016-08-31 2017-08-18 Fe-based soft magnetic alloy and magnetic part using same WO2018043963A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160111370A KR20180024682A (en) 2016-08-31 2016-08-31 Fe based soft magnetic alloy and magnetic materials comprising the same
KR10-2016-0111370 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043963A1 true WO2018043963A1 (en) 2018-03-08

Family

ID=61301395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009005 WO2018043963A1 (en) 2016-08-31 2017-08-18 Fe-based soft magnetic alloy and magnetic part using same

Country Status (2)

Country Link
KR (1) KR20180024682A (en)
WO (1) WO2018043963A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116356221A (en) * 2023-04-06 2023-06-30 沈阳工业大学 In-situ synthesized iron-based amorphous nanocrystalline alloy ribbon

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930011234B1 (en) * 1988-05-17 1993-11-29 가부시끼가이샤 도시바 Magnetic materials
JP2003060263A (en) * 2001-08-15 2003-02-28 Toshiba Corp Magnetoresistive effect element, magnetic head, and magnetic reproducer
JP2006040906A (en) * 2001-03-21 2006-02-09 Teruhiro Makino Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density
JP2011149045A (en) * 2010-01-20 2011-08-04 Hitachi Metals Ltd Thin strip of soft magnetic alloy, method for manufacturing the same, and magnetic component having thin strip of soft magnetic alloy
KR20120003496A (en) * 2009-08-24 2012-01-10 엔이씨 도낀 가부시끼가이샤 Alloy composition, nanocrystalline fe alloy, and preparation method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930011234B1 (en) * 1988-05-17 1993-11-29 가부시끼가이샤 도시바 Magnetic materials
JP2006040906A (en) * 2001-03-21 2006-02-09 Teruhiro Makino Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density
JP2003060263A (en) * 2001-08-15 2003-02-28 Toshiba Corp Magnetoresistive effect element, magnetic head, and magnetic reproducer
KR20120003496A (en) * 2009-08-24 2012-01-10 엔이씨 도낀 가부시끼가이샤 Alloy composition, nanocrystalline fe alloy, and preparation method therefor
JP2011149045A (en) * 2010-01-20 2011-08-04 Hitachi Metals Ltd Thin strip of soft magnetic alloy, method for manufacturing the same, and magnetic component having thin strip of soft magnetic alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116356221A (en) * 2023-04-06 2023-06-30 沈阳工业大学 In-situ synthesized iron-based amorphous nanocrystalline alloy ribbon

Also Published As

Publication number Publication date
KR20180024682A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
WO2021010714A1 (en) Method for manufacturing fe-based soft magnetic alloy and fe-based soft magnetic alloy manufactured thereby
TWI626666B (en) Soft magnetic alloy and magnetic parts
TW201817897A (en) Soft magnetic alloy and magnetic device
KR102281002B1 (en) Soft magnetic alloy and magnetic device
TW201817896A (en) Soft magnetic alloy and magnetic device
TW201827619A (en) Soft magnetic alloy and magnetic device
KR102214392B1 (en) Soft magnetic alloy and magnetic device
KR20180089317A (en) Soft magnetic alloy and magnetic device
JP2020111830A (en) Powder for magnetic core, and magnetic core and coil component using the same
CN108431277B (en) Iron-based soft magnetic alloy, method for producing same, and magnetic component using same
JPH07278764A (en) Nano-crystal alloy and its production and magnetic core using the same
US20190055635A1 (en) Fe-based nanocrystalline alloy and electronic component using the same
KR101905411B1 (en) Method for manufacturing Fe based soft magnetic alloy
KR101949171B1 (en) Fe based soft magnetic alloy and magnetic materials comprising the same
WO2018043963A1 (en) Fe-based soft magnetic alloy and magnetic part using same
JP6436206B1 (en) Soft magnetic alloys and magnetic parts
TW201915181A (en) Soft magnetic alloy and magnetic device
KR102290167B1 (en) Fe based soft magnetic alloy, method for manufacturing thereof and magnetic comprising the same
CN115732160A (en) All-metal iron-based nanocrystalline soft magnetic alloy, preparation method thereof and magnetic core
KR101906914B1 (en) Fe based soft magnetic alloy and magnetic materials comprising the same
JP2009293132A (en) Soft magnetic thin band, magnetic core, magnetic component and method for producing soft magnetic thin band
KR101905412B1 (en) Soft magnetic alloy, method for manufacturing thereof and magnetic materials comprising the same
KR102613785B1 (en) Nanocrystral soft magnetic ribon and method of preparing the same
JP2019052367A (en) Soft magnetic alloy and magnetic member
WO2023043288A1 (en) Fe-based soft magnetic alloy and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846888

Country of ref document: EP

Kind code of ref document: A1