JPH07110965B2 - Method for producing alloy powder for resin-bonded permanent magnet - Google Patents

Method for producing alloy powder for resin-bonded permanent magnet

Info

Publication number
JPH07110965B2
JPH07110965B2 JP60164668A JP16466885A JPH07110965B2 JP H07110965 B2 JPH07110965 B2 JP H07110965B2 JP 60164668 A JP60164668 A JP 60164668A JP 16466885 A JP16466885 A JP 16466885A JP H07110965 B2 JPH07110965 B2 JP H07110965B2
Authority
JP
Japan
Prior art keywords
resin
particles
alloy powder
hydrogen
bonded permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60164668A
Other languages
Japanese (ja)
Other versions
JPS6223903A (en
Inventor
宣幸 井上
伸夫 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP60164668A priority Critical patent/JPH07110965B2/en
Publication of JPS6223903A publication Critical patent/JPS6223903A/en
Publication of JPH07110965B2 publication Critical patent/JPH07110965B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、R(T,B)(ただしRは少くともNdを含む希
土類金属元素の一種もしくは二種以上、TはFeもしくは
FeおよびCoを示し、0.05≦y≦0.10,4.5≦z≦6.5の範
囲で規定される。)を主成分とする樹脂結合永久磁石用
の合金粉体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to R (T, B) (where R is at least one rare earth metal element containing at least Nd, T is Fe or
Fe and Co are shown and are defined in the range of 0.05 ≦ y ≦ 0.10 and 4.5 ≦ z ≦ 6.5. The present invention relates to a method for producing an alloy powder containing a resin as a main component for a resin-bonded permanent magnet.

「従来の技術とその課題」 希土類遷移金属合金において、希土類金属と遷移金属の
比が2:17である金属間化合物が理論的に極めて高い磁気
特性[(BH)max〜50MGOe]を有することが発見されて
以来、同系化合物を主体とする永久磁石実用合金を得る
試みが種々試みられている。一例としてSm−Co−Cu−Fe
系金属間化合物で(BH)max〜30MGOeが達成され、さら
にNd−Fe系金属間化合物で(BH)max〜40MGOeの高磁気
特性が得られている。この組成の合金は粉砕,磁場中配
向圧縮成形あるいは非磁場中圧縮成形,焼結,溶体化,
時効する焼結型永久磁石が一般的であった。
“Prior art and its problems” In rare earth transition metal alloys, the intermetallic compound having a ratio of rare earth metal to transition metal of 2:17 may theoretically have extremely high magnetic properties [(BH) max 〜 50MGOe]. Since its discovery, various attempts have been made to obtain a permanent magnet practical alloy mainly composed of a similar compound. As an example, Sm-Co-Cu-Fe
High magnetic properties of (BH) max to 30MGOe have been achieved with the intermetallic compounds and high magnetic properties of (BH) max to 40MGOe have been obtained with the Nd-Fe intermetallic compounds. Alloys of this composition are crushed, oriented compression molded in a magnetic field or compression molded in a non-magnetic field, sintered, solutionized,
Sintered permanent magnets that are aged were common.

しかし焼結型永久磁石は、工程が複雑で、かつ最終的焼
結体が他の磁石材料に比較して脆く、欠けやすい欠点が
あり、それに対して樹脂結合型永久磁石は、磁気特性が
その20〜40%と低下する半面、寸法精度,機械的加工
性,強度,磁気的安定性に優れ、複雑形状に成形できる
特長をもっている。
However, the sintered permanent magnet has a drawback that the process is complicated, and the final sintered body is brittle compared to other magnet materials and is easily chipped. On the other hand, it is as low as 20-40%, but it has excellent dimensional accuracy, mechanical workability, strength, and magnetic stability, and has the feature that it can be molded into complex shapes.

[発明が解決しようとする問題点] ところが、R(T1-yBy(ただしRは少くともNdを含
む希土類金属元素の一種もしくは二種以上、TはFeもし
くはFeおよびCoを示し、0.05≦y≦0.10,4.5≦z≦6.5
の範囲で規定される。)の一般式で示される組成の合金
においては、特にその中でTがFeである希土類鉄系合金
を樹脂結合型永久磁石にする場合、組成合金を5〜100
μmの粒径に微粉砕した後、磁場中配向あるいは非磁場
中で圧縮成形(Cmpression−mold)または射出成形(In
jecton−mold)により形成することが一般的であるが、
得られた樹脂結合型永久磁石の磁気特性は、残留磁化,
保磁力共に大幅に低下し、その4πI−H減磁極線の角
型性が大きく劣化するという欠点があった。
[Problems to be Solved by the Invention] However, R (T 1-y B y ) z (where R represents at least one rare earth metal element containing at least Nd, and T represents Fe or Fe and Co) , 0.05 ≦ y ≦ 0.10, 4.5 ≦ z ≦ 6.5
Stipulated in the range of. In the alloy having the composition represented by the general formula (1), particularly when a rare earth iron-based alloy in which T is Fe is made into a resin-bonded permanent magnet, the composition alloy is 5-100
After finely pulverizing to a particle size of μm, it can be compression molded (Cmpression-mold) or injection molded (In
It is generally formed by jecton-mold),
The magnetic properties of the obtained resin-bonded permanent magnet are
Both the coercive force is significantly reduced, and the squareness of the 4πI-H demagnetization pole wire is greatly deteriorated.

また溶融金属を急速冷却し非晶質合金を得たものや、噴
霧方法により粉体を得る樹脂結合永久磁石用原料粉体の
製造方法があるが粒径が大きく、またz≧6の組成では
Fe成分が多くなるために微粉砕が困難になったり、粉砕
設備が大規模になるという欠点があった。
Further, there are a method for producing a raw material powder for a resin-bonded permanent magnet in which a molten metal is rapidly cooled to obtain an amorphous alloy or a powder is obtained by a spraying method, but the particle size is large, and in the composition of z ≧ 6,
There are drawbacks that fine pulverization becomes difficult because the Fe content increases and the pulverization equipment becomes large-scale.

本発明は以上の通りの従来技術の欠点を考慮して、樹脂
結合型永久磁石の保磁力を大きく向上させることのでき
る新しい技術手段を提供することを目的としている。
The present invention has been made in view of the above drawbacks of the prior art, and an object thereof is to provide a new technical means capable of greatly improving the coercive force of a resin-bonded permanent magnet.

[問題点を解決するための手段] 本発明は、上記の課題を解決するものとして、R(T1-y
By(ただしRは少くともNdを含む希土類金属元素の
一種もしくは二種以上を示し、TはFeもしくはFeおよび
Coを示し、0.05≦y≦0.10,4.5≦z≦6.5の範囲で規定
される。)の一般式で示される組成からなる樹脂結合永
久磁石用の合金粉末の製造において、溶製合金を粗粉砕
し、ついで振動ミルによって微粉砕し、得られた粒子を
圧縮成形して圧粉体を作成し、この圧粉体を加熱して固
着した焼結体を水素雰囲気中に封入して水素化合物を形
成させて崩壊させた後に、再び機械的に粉砕し、10〜50
0μmの粒径の粒子を得、これを600〜1,000℃に加熱す
ることによって脱水素処理することを特徴とする樹脂結
合永久磁石用の合金粉末の製造方法を提供する。
[Means for Solving Problems] The present invention aims to solve the above-mentioned problems by using R (T 1-y
B y ) z (where R represents one or more rare earth metal elements containing at least Nd, and T represents Fe or Fe and
It represents Co and is defined in the range of 0.05 ≦ y ≦ 0.10 and 4.5 ≦ z ≦ 6.5. In the production of alloy powder for resin-bonded permanent magnets having the composition represented by the general formula (1), the molten alloy is roughly pulverized, then finely pulverized by a vibration mill, and the obtained particles are compression-molded to obtain a green compact. After heating the green compact, the sintered compact is sealed in a hydrogen atmosphere to form a hydrogen compound and disintegrate, and then mechanically ground again to 10 to 50
Provided is a method for producing an alloy powder for a resin-bonded permanent magnet, characterized in that particles having a particle diameter of 0 μm are obtained, and the particles are heated to 600 to 1,000 ° C. for dehydrogenation.

すなわち、本発明は、上記の通りの特有の組定の合金粉
末を、特有の方法によって製造することにより、この粉
末を樹脂結合型永久磁石に用いる場合には従来の技術常
識とは全く異って、磁石の保磁力を大きく向上させるこ
とができるとの新しい知見に基づいて完成されたもので
ある。
That is, the present invention is completely different from the conventional common general knowledge in the case where this powder is used for a resin-bonded permanent magnet by producing an alloy powder of a specific set as described above by a specific method. It was completed based on the new knowledge that the coercive force of a magnet can be greatly improved.

この合金組成においては、前記一般式においてyが0.05
未満あるいはzが6.5を越えると保磁力が得られず、y
が0.10を越えるかあるいはzが4.5未満では飽和磁化の
低下を誘起する。この特有の合金組成の粉末を製造する
本発明の方法での処理工程について説明すると、その概
要は次の通りである。
In this alloy composition, y is 0.05 in the above general formula.
Below or z exceeds 6.5, coercive force cannot be obtained and y
Exceeds 0.10 or z is less than 4.5, a decrease in saturation magnetization is induced. The processing steps in the method of the present invention for producing the powder having this unique alloy composition will be described below in outline.

a)粗粉砕 溶製合金はまず粗粉砕される。a) Coarse crushing The molten alloy is first roughly crushed.

この粗粉砕は、機械的粉砕および水素吸収崩壊粉砕等、
粉砕手段を問わず、次工程の微粉砕のために比較的均一
な微粒子を形成するための前段階の粉砕である。粒子が
大きすぎると次工程の振動粉砕効率が低下し粉砕時間が
長くなり、粒子に歪を蓄積してしまうので、必要な工程
である。
This coarse pulverization includes mechanical pulverization, hydrogen absorption disintegration pulverization, etc.
Regardless of the pulverizing means, it is the pulverization in the previous stage for forming relatively uniform fine particles for the fine pulverization in the next step. If the particles are too large, the vibration pulverization efficiency in the next step is lowered, the pulverization time becomes long, and distortion is accumulated in the particles, which is a necessary step.

b)振動ミルによる微粉砕 微粉砕は、個々の粒子が磁気的に好ましい大きさまで微
細化するため必要となり、この工程は次の圧粉体→焼結
体を経て粗成長を促し、最終粉末が方向性の揃った粒子
を形成するためのものである。
b) Fine pulverization by vibrating mill Fine pulverization is necessary because individual particles are refined to a magnetically preferable size, and this step promotes coarse growth through the next green compact → sintered body, and the final powder is This is for forming particles with uniform directionality.

c)圧縮成形 次に、圧粉体にするために圧縮成形が行われる。これ
は、次工程で加熱するとき、互いに隣接する粒子が焼結
し、粗成長を伴い磁気的に方向の揃った可能な限り粒径
の大きい最終合金粉末を得るためのものである。
c) Compression molding Next, compression molding is performed to obtain a green compact. This is to obtain the final alloy powder having the largest possible grain size in which the grains adjacent to each other sinter when being heated in the next step and undergo coarse growth and are magnetically aligned in direction.

d)焼結体の形成 焼結体の形成は隣接粒子の熱間粗成長をさせるもので、
100%緻密な焼結磁石を形成するためではなく、熱間粒
成長を通して磁気的に方向性の揃った最終合金粉末の原
形を形成させることが目的である。
d) Formation of Sintered Body The formation of the sintered body causes the hot rough growth of adjacent particles.
The purpose is not to form a 100% dense sintered magnet, but to form the original shape of the final alloy powder that is magnetically oriented through hot grain growth.

e)水素化合物崩壊と機械的粉砕 いったん粒成長して磁気的に方向性が揃った粒子焼結体
を、その構造を破壊しないで最終粉末にするために、水
素化合物の崩壊効果を利用する。特にNdFeB系磁石は機
械的な応力が磁気特性を劣化させるため、機械的粉砕前
に行う。
e) Hydrogen compound disintegration and mechanical crushing The disintegration effect of the hydrogen compound is utilized in order to make the particle sintered body, which has once grown into particles and has magnetically uniform directionality, into the final powder without destroying its structure. Especially for NdFeB magnets, mechanical stress deteriorates the magnetic properties, so it is performed before mechanical grinding.

最終粒径は最終合金粉末が酸化しない範囲で可能な限り
大きいことが必要である。
It is necessary that the final particle size is as large as possible within the range where the final alloy powder does not oxidize.

粒度条件については、水素化合物形成による崩壊とその
後の機械的粉砕とによって10〜500μmの粒径の粒子と
する。
Regarding the particle size condition, particles having a particle size of 10 to 500 μm are obtained by disintegration due to hydrogen compound formation and subsequent mechanical crushing.

この場合、粒子粒径10〜500μmの範囲については、10
μm未満では容易に酸化し、500μmを越えると配向性
が低下する。
In this case, the particle size range of 10-500 μm is 10
If it is less than μm, it is easily oxidized, and if it exceeds 500 μm, the orientation is deteriorated.

f)加熱脱水素 加熱脱水素処理は、水素化合物として吸収された水素を
放出させることが主体で、粒子が再び固着しない温度条
件を設定する。その温度範囲は600℃が水素放出に必要
な最低温度であり、1000℃が粒子が融着し始める温度で
ある。
f) Thermal dehydrogenation The thermal dehydrogenation treatment mainly releases hydrogen absorbed as a hydrogen compound, and sets temperature conditions in which particles are not fixed again. In the temperature range, 600 ° C. is the minimum temperature required for hydrogen release, and 1000 ° C. is the temperature at which particles start to fuse.

また、600℃未満では磁化特性(特に保磁力)の完全な
復帰がなく、1,000℃を越えると粉体が溶着してしま
う。このため、600〜1,000℃の範囲に条件を設定するこ
とが好ましい。樹脂成形方法としては圧縮成形,射出成
形とも適用できる。
Further, if the temperature is lower than 600 ° C, the magnetic properties (especially coercive force) are not completely restored, and if the temperature exceeds 1,000 ° C, the powder is fused. Therefore, it is preferable to set the condition in the range of 600 to 1,000 ° C. As the resin molding method, compression molding and injection molding can be applied.

[実施例1] Nd0.8Dy0.1Ce0.1{(Fe0.8Co0.20.920.086.0 の一般式で示されるように成分元素を秤量し、Arガス中
でアーク溶解し原料合金を得た。次に原料合金をステン
レス乳鉢にて粗粉砕し、ついでトルエンを満たしたポッ
ト内に封入し振動ミルによって約10μmの粒子を得た。
微粉化後ゴムチューブ(40mmφ×100mm)に封入し、静
水圧下5t/cm2の圧縮成形して圧粉体を作成した。次にこ
の圧粉体を真空排気(約10-3Torr)した後、1,080℃,1
時間加熱し圧粉を固着し、室温まで冷却後、熱処理炉か
ら取出し、ステンレス製の高圧容器に入れ、50kg/cm2
水素ガスを導入し、水素吸入により崩壊作用を与えた後
に、再びステンレス乳鉢で粉砕した。この時点ではほと
んど衝撃を加えることなく分離し、500μmの工業用フ
ルイによって所望の粒径の素材を容易に得ることができ
た。
Example 1 Component elements were weighed as shown by the general formula of Nd 0.8 Dy 0.1 Ce 0.1 {(Fe 0.8 Co 0.2 ) 0.92 B 0.08 } 6.0 and arc-melted in Ar gas to obtain a raw material alloy. Next, the raw material alloy was roughly pulverized in a stainless mortar, and then enclosed in a pot filled with toluene, and particles of about 10 μm were obtained by a vibration mill.
After pulverization, it was enclosed in a rubber tube (40 mmφ × 100 mm) and compression molded under hydrostatic pressure at 5 t / cm 2 to prepare a green compact. Next, this green compact was evacuated (about 10 -3 Torr) and then heated at 1,080 ℃ for 1 hour.
After heating for a period of time to fix the powder compact and cooling it to room temperature, it was taken out of the heat treatment furnace, placed in a stainless steel high-pressure container, introduced with 50 kg / cm 2 hydrogen gas, and given a disintegrating action by inhaling hydrogen, and then again using stainless steel. It was ground in a mortar. At this point, the material was separated with almost no impact, and a raw material having a desired particle size could be easily obtained with an industrial sieve of 500 μm.

次に素材中の水素分を除去するため、排気しながら200
℃,400℃,500℃,600℃,800℃,900℃,1,000℃の各温度で
4時間加熱し、その後炉冷し室温まで冷却した。処理後
粉体をパルス磁界中で着磁した後に、振動磁力計により
磁気特性を測定したところ、第1図に示すような加熱温
度に対する保磁力の変化を得た。図面でも明らかなよう
に600℃以下では保磁力がほとんど得られないが、900〜
1,000℃で保磁力が最大となった。1,000℃の処理後の試
料は再び部分的に固着し樹脂結合磁石の原料合金粉とし
ては不適当であった。
Next, in order to remove the hydrogen content in the material, exhaust the gas to 200
The sample was heated at each temperature of ℃, 400 ℃, 500 ℃, 600 ℃, 800 ℃, 900 ℃, 1,000 ℃ for 4 hours, then furnace cooled and cooled to room temperature. After the treated powder was magnetized in a pulsed magnetic field and the magnetic characteristics were measured by a vibrating magnetometer, a change in coercive force with respect to the heating temperature was obtained as shown in FIG. As is clear from the drawing, coercive force is hardly obtained below 600 ° C, but 900 ~
The coercive force became maximum at 1,000 ° C. The sample after the treatment at 1,000 ° C. was partially fixed again and was not suitable as the raw material alloy powder for the resin-bonded magnet.

[実施例2] Nd0.92Dy0.08(Fe0.9150.0855.4 の一般式で示されるように成分元素を秤量し、Arガス中
でアーク溶解して上記組成の原料合金(約100gのインゴ
ット)を3個得た。次に溶融作製した原料合金インゴッ
ト3個をそれぞれ、ステンレス乳鉢にて粒径200μm以
下になるまで機械的粉砕を行い、さらに振動ミルによっ
て平均粒径5μmになるまで粉砕を行った。微粉化後、
実施例1同様にゴムチューブ(40mmφ×100mm)に封入
し、磁場中で静水圧下5t/cm2の圧縮成形をして圧粉体を
作成した。次にこの圧粉体を真空排気(約10-3Torr)し
た後、1,080℃,1時間加熱し圧粉を固着し、室温まで冷
却後、熱処理炉から取出し、ステンレス製の高圧容器に
入れ、50kg/cm2の水素ガスを導入して2時間処理し、水
素吸収により崩壊させた後に、300℃において真空熱処
理を施し、その後振動ミルで各インゴット3個をそれぞ
れ粉砕し、平均粒径26μm、19μm、14μmの粉体3種
を作成した。
[Example 2] Nd 0.92 Dy 0.08 (Fe 0.915 B 0.085 ) 5.4 The constituent elements were weighed as represented by the general formula and arc-melted in Ar gas to obtain a raw material alloy (about 100 g of ingot) having the above composition. I got three. Next, each of the three melt-produced raw material alloy ingots was mechanically pulverized in a stainless mortar to a particle size of 200 μm or less, and further pulverized by a vibration mill to an average particle size of 5 μm. After pulverization,
A rubber tube (40 mmφ × 100 mm) was filled in the same manner as in Example 1, and compression molding was performed under hydrostatic pressure at 5 t / cm 2 in a magnetic field to prepare a green compact. Next, this powder compact was evacuated (about 10 -3 Torr), heated at 1,080 ° C for 1 hour to fix the powder compact, cooled to room temperature, removed from the heat treatment furnace, and placed in a stainless steel high-pressure container. After introducing hydrogen gas of 50kg / cm 2 for 2 hours and disintegrating by absorbing hydrogen, vacuum heat treatment is performed at 300 ° C, and then each ingot is crushed with a vibration mill to obtain 3 particles each with an average particle diameter of 26μm. Three types of powder of 19 μm and 14 μm were prepared.

この各々を磁場中において静水圧下5t/cm2で圧縮成形し
て磁石体を成形し、820℃,2時間における熱処理による
脱水素処理を行った後、エポキシ樹脂の真空含浸させ、
常温にて樹脂を硬化させた。下記表1にこの得られた磁
石3種の磁石特性結果を示すと共に、第2図にそれぞれ
3種の減磁曲線を示す。
Each of these was compression-molded under hydrostatic pressure in a magnetic field at 5 t / cm 2 to form a magnet body, which was subjected to dehydrogenation treatment by heat treatment at 820 ° C. for 2 hours, and then vacuum-impregnated with an epoxy resin,
The resin was cured at room temperature. Table 1 below shows the results of the magnet characteristics of the obtained three types of magnets, and FIG. 2 shows the respective three types of demagnetization curves.

〔比較例1] 次に比較例として、水素粉砕を行わずに合金粉を製造し
た。すなわち、実施例2同様に Nd0.92Dy0.08(Fe0.9150.0855.4 の一般式で示されるように成分元素を秤量し、Arガス中
でアーム溶解し、溶融作製した原料合金インゴットをス
テンレス乳鉢にて粒径200μm以下になるまで機械的粉
砕を行い、さらに振動ミルによって平均粒径5μmにま
で粉砕を行った。微粉化後、ゴムチューブ(40mmφ×10
0mm)に封入し、磁場中で静水圧下5t/cm2の圧縮成形を
して圧粉体を作成した。次にこの圧粉体を真空排気(約
10-3Torr)した後、1,080℃,1時間の熱処理を施し圧粉
を固着し、室温まで冷却後、実施例2のように水素粉砕
を行うことなく、この磁石体に対し機械的な粉砕を加
え、粒径500μmとし、さらに振動ミルにおいて粉砕し
て平均粒径16μmとし、磁場中で静水圧下5t/cm2の圧力
をかけて圧粉体を形成した。
Comparative Example 1 Next, as a comparative example, alloy powder was produced without performing hydrogen pulverization. That is, as in Example 2, the component elements were weighed as represented by the general formula of Nd 0.92 Dy 0.08 (Fe 0.915 B 0.085 ) 5.4 , arm-melted in Ar gas, and the melt-produced raw material alloy ingot was placed in a stainless mortar. Mechanical crushing to a particle size of 200 μm or less, and further crushing to an average particle size of 5 μm with a vibration mill. After pulverization, rubber tube (40mmφ × 10
0 mm) and compacted under hydrostatic pressure at 5 t / cm 2 in a magnetic field to prepare a green compact. Next, the green compact is evacuated (about
10 −3 Torr), heat treatment at 1,080 ° C. for 1 hour to fix the powder compact, and after cooling to room temperature, mechanical crushing was performed on this magnet body without hydrogen crushing as in Example 2. Was added to obtain a green compact having a particle size of 500 μm and further pulverized in a vibration mill to have an average particle size of 16 μm, and a pressure of 5 t / cm 2 was applied under hydrostatic pressure in a magnetic field to form a green compact.

次に圧粉体を820℃、2時間の熱処理を行い、得られた
磁石体にエポキシ樹脂を真空含浸させ、常温にて樹脂を
硬化させた。この得られた磁石の測定結果を表2に示す
と共に、第2図にその減磁曲線を示す。第2図から明ら
かなように、比較例と実施例2に比較した場合、水素粉
砕したものの方が大きな保磁力が得られた。
Next, the green compact was heat-treated at 820 ° C. for 2 hours, the obtained magnet body was vacuum-impregnated with epoxy resin, and the resin was cured at room temperature. The measurement results of the obtained magnet are shown in Table 2 and its demagnetization curve is shown in FIG. As is clear from FIG. 2, when the comparative example and the example 2 were compared, a larger coercive force was obtained with the hydrogen pulverized product.

[実施例3] Nd0.88Dy0.12〔(Fe0.9Co0.10.9150.0855.6 の一般式で示されるように成分元素を秤量し、前実施例
同様にArガス中でアーム溶解にて上記組成を作製し、ス
テンレス製の高圧容器に入れ、50kg/cm2の水素ガスを導
入して2時間放置し、水素吸収により崩壊させ、10〜50
0μmの粒子を得た。その後、磁場プレスにおいて20kOe
の磁界中において4t/cm2の圧力をかけて圧粉体を作成
し、800℃、2時間の熱処理を施す事によって脱水素処
理を行った。この過程では、粒子が互いに点接触状態で
結合しているので、再度ステンレス乳鉢中で機械的な衝
撃を与えないように最小限の力で粉砕し、500μm以下
の粒子を作成し、エポキシ樹脂を含浸させ常温で硬化さ
せた。この得られた磁石の測定結果を表3に示す。
[Example 3] Nd 0.88 Dy 0.12 [(Fe 0.9 Co 0.1 ) 0.915 B 0.085 ] The constituent elements were weighed as represented by the general formula of 5.6 , and the above composition was obtained by arm dissolution in Ar gas as in the previous example. Was placed in a stainless steel high-pressure container, hydrogen gas of 50 kg / cm 2 was introduced, and the mixture was left standing for 2 hours and then collapsed by absorbing hydrogen.
Particles of 0 μm were obtained. After that, 20kOe in the magnetic field press
In the magnetic field of, a pressure of 4 t / cm 2 was applied to prepare a green compact, and heat treatment was performed at 800 ° C. for 2 hours to perform dehydrogenation treatment. In this process, the particles are bonded to each other in a point contact state, so they are ground again in a stainless mortar with a minimum force so as not to give a mechanical impact, and particles of 500 μm or less are prepared, and an epoxy resin is used. It was impregnated and cured at room temperature. Table 3 shows the measurement results of the obtained magnets.

[比較例2] また、比較のため水素吸蔵崩壊を行わず、実施例3と対
比しつつ、機械的粉砕のみで得られる10〜500μmの粒
子を形成した磁石の測定結果を表4に示す。また第3図
にこの得られた磁石の減磁曲線を比較して示す。第3図
からも明らかように、比較例と実施例3を比較した場
合、水素粉砕したものの方が、機械的粉砕のみのものよ
り大きな保磁力が得られた。
[Comparative Example 2] For comparison, Table 4 shows the measurement results of the magnet in which particles having a particle size of 10 to 500 µm, which were obtained only by mechanical pulverization, were compared with Example 3 without hydrogen storage and collapse. Further, FIG. 3 shows a comparison of demagnetization curves of the obtained magnets. As is clear from FIG. 3, when the comparative example and the example 3 were compared, a larger coercive force was obtained in the case of hydrogen pulverization than in the case of mechanical pulverization alone.

[実施例4] Nd0.92Dy0.08〔(Fe0.97Co0.030.920.085.4 の一般形で示されるように成分元素を秤量し、前実施例
同様にArガス中でアーム溶解にて上記組成合金を作製し
た後、ステンレス乳鉢にて機械的粉砕を行い、粒径200
μm以下とし、さらに振動ミルを用いて平均粒径5μm
になるまで粉砕し、実施例3同様に磁場中にて4t/cm2
圧力を加えて成形し、真空中で1080℃,1時間の熱処理を
施した。
[Example 4] Nd 0.92 Dy 0.08 [(Fe 0.97 Co 0.03 ) 0.92 B 0.08 ] As shown in the general form of 5.4 , the constituent elements were weighed and the above composition was obtained by arm melting in Ar gas as in the previous example. After making the alloy, mechanically crush it in a stainless mortar to obtain a particle size of 200
The average particle size is 5 μm or less using a vibration mill.
It was crushed until it became, and was shaped by applying a pressure of 4 t / cm 2 in a magnetic field as in Example 3, and heat-treated at 1080 ° C. for 1 hour in vacuum.

その後、磁石体を常温にてステンレス製の高圧容器に入
れ、50kg/cm2の水素ガスを導入して2時間放置し、水素
吸収により加工物化させ崩壊作用を与え崩壊させた後、
300℃において真空熱処理を施し、その後振動ミルを用
いて粉砕し、平均粒径16μmを得た。さらに磁場中にて
4t/cm2の圧力を加えて成形し、900℃,2時間の熱処理を
施し、その後エポキシ樹脂を真空含浸させ、常温にて樹
脂を硬化させた。表5にこの磁石の測定結果を示す。
After that, the magnet body was placed in a stainless steel high-pressure container at room temperature, 50 kg / cm 2 of hydrogen gas was introduced, and it was left for 2 hours.
Vacuum heat treatment was performed at 300 ° C., and then pulverization was performed using a vibration mill to obtain an average particle size of 16 μm. Further in the magnetic field
Molding was performed by applying a pressure of 4 t / cm 2 , heat treatment was performed at 900 ° C. for 2 hours, and then epoxy resin was vacuum-impregnated, and the resin was cured at room temperature. Table 5 shows the measurement results of this magnet.

[比較例3] また、比較例として水素吸蔵しないものを作成し、この
磁石の測定結果を表6に示すと共に、第4図にそれぞれ
の減磁曲線を示した。
[Comparative Example 3] Further, as a comparative example, one which does not store hydrogen was prepared, and the measurement results of this magnet are shown in Table 6 and the demagnetization curves thereof are shown in Fig. 4.

この第4図からも明らかなように、比較例と実施例4を
比較した場合、やはり水素粉砕したものの方が大きな保
持力が得られた。
As is clear from FIG. 4, when the comparative example and the example 4 were compared, a larger holding force was obtained with the hydrogen-milled one.

[発明の効果] 以上のことから、本発明により、樹脂成形する前工程で
水素化粉砕することにより所望の10〜500μmの粒子を
容易に、かつ何ら機械的歪を加えることなく製造でき、
600〜1,000℃の脱水素処理を実施することから、残留磁
化Br,保磁力iHc共本来の磁気特性を発揮できるので希土
類鉄系合金を樹脂結合型永久磁石用原料粉体に適用する
のに効果的である。
[Advantages of the Invention] From the above, according to the present invention, desired particles of 10 to 500 μm can be easily produced by hydrogenating and pulverizing in the previous step of resin molding, and without applying any mechanical strain,
Since the dehydrogenation process is performed at 600-1,000 ℃, the residual magnetism Br and the coercive force iHc can exhibit their original magnetic characteristics, which is effective for applying the rare earth iron-based alloy to the raw material powder for resin-bonded permanent magnets. Target.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明における加熱温度に対する保磁力を示す
磁気特性曲線である。 第2図は本発明における実施例2と比較例を対比する加
熱温度に対する保磁力を示す磁気特性曲線である。 第3図は本発明における実施例3と比較例を対比する加
熱温度に対する保磁力を示す磁気特性曲線である。 第4図は本発明における実施例4と比較例を対比する加
熱温度に対する保磁力を示す磁気特性曲線である。
FIG. 1 is a magnetic characteristic curve showing the coercive force with respect to the heating temperature in the present invention. FIG. 2 is a magnetic characteristic curve showing the coercive force with respect to the heating temperature in comparison with Example 2 of the present invention and Comparative Example. FIG. 3 is a magnetic characteristic curve showing the coercive force with respect to the heating temperature in comparison with Example 3 of the present invention and Comparative Example. FIG. 4 is a magnetic characteristic curve showing the coercive force with respect to the heating temperature in comparison with Example 4 of the present invention and Comparative Example.

フロントページの続き (56)参考文献 特開 昭58−135605(JP,A) 特開 昭61−270316(JP,A) 社団法人粉末冶金技術協会編「金属粉の 生成」35頁、昭和39年日刊工業新聞社発行Continuation of front page (56) References JP-A-58-135605 (JP, A) JP-A-61-270316 (JP, A) "Powder Metallurgical Technology Association," Japan Metallurgy Generation, page 35, 1964 Published by Nikkan Kogyo Shimbun

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】R(T1-yBy(ただしRは少くともNdを
含む希土類金属元素の一種もしくは二種以上を示し、T
はFeもしくはFeおよびCoを示し、0.05≦y≦0.10,4.5≦
z≦6.5の範囲で規定される。)の一般式で示される組
成からなる樹脂結合永久磁石用の合金粉末の製造におい
て、溶製合金を粗粉砕し、ついで振動ミルによって微粉
砕し、得られた粒子を圧縮成形して圧粉体を作成し、こ
の圧粉体を、加熱して固着した焼結体を水素雰囲気中に
封入して水素化合物を形成させて崩壊させた後に、再び
機械的に粉砕し、10〜500μmの粒径の粒子を得、これ
を600〜1,000℃に加熱することによって脱水素処理する
ことを特徴とする樹脂結合永久磁石用の合金粉末の製造
方法。
1. R (T 1-y B y ) z (where R represents one or more rare earth metal elements containing at least Nd, and T
Indicates Fe or Fe and Co, 0.05 ≦ y ≦ 0.10, 4.5 ≦
It is specified in the range of z ≦ 6.5. In the production of alloy powder for resin-bonded permanent magnets having the composition represented by the general formula (1), the molten alloy is roughly pulverized, then finely pulverized by a vibration mill, and the obtained particles are compression-molded to obtain a green compact. This compact was heated, and the sintered compact that had been fixed by heating was enclosed in a hydrogen atmosphere to form a hydrogen compound and disintegrate, and then mechanically pulverized again to obtain a particle size of 10 to 500 μm. And a dehydrogenation treatment by heating the particles to 600 to 1,000 ° C. to produce an alloy powder for a resin-bonded permanent magnet.
JP60164668A 1985-07-25 1985-07-25 Method for producing alloy powder for resin-bonded permanent magnet Expired - Lifetime JPH07110965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60164668A JPH07110965B2 (en) 1985-07-25 1985-07-25 Method for producing alloy powder for resin-bonded permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60164668A JPH07110965B2 (en) 1985-07-25 1985-07-25 Method for producing alloy powder for resin-bonded permanent magnet

Publications (2)

Publication Number Publication Date
JPS6223903A JPS6223903A (en) 1987-01-31
JPH07110965B2 true JPH07110965B2 (en) 1995-11-29

Family

ID=15797554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60164668A Expired - Lifetime JPH07110965B2 (en) 1985-07-25 1985-07-25 Method for producing alloy powder for resin-bonded permanent magnet

Country Status (1)

Country Link
JP (1) JPH07110965B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732092B2 (en) * 1985-12-05 1995-04-10 三菱マテリアル株式会社 Manufacturing method of Nd-Fe-B system sintered alloy magnet excellent in magnetic characteristics with low oxygen and carbon contents
JPH0666174B2 (en) * 1985-12-12 1994-08-24 三菱マテリアル株式会社 Rare earth bonded magnet manufacturing method
DE3850001T2 (en) * 1987-08-19 1994-11-03 Mitsubishi Materials Corp Magnetic rare earth iron boron powder and its manufacturing process.
JP2881409B2 (en) * 1996-10-28 1999-04-12 愛知製鋼株式会社 Method for producing anisotropic magnet powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135605A (en) * 1982-02-08 1983-08-12 Hitachi Metals Ltd Manufacture of permanent magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
社団法人粉末冶金技術協会編「金属粉の生成」35頁、昭和39年日刊工業新聞社発行

Also Published As

Publication number Publication date
JPS6223903A (en) 1987-01-31

Similar Documents

Publication Publication Date Title
US4801340A (en) Method for manufacturing permanent magnets
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JPH0424401B2 (en)
JPS6181606A (en) Preparation of rare earth magnet
JPS6181603A (en) Preparation of rare earth magnet
JPS60228652A (en) Magnet containing rare earth element and its manufacture
JPH0682575B2 (en) Rare earth-Fe-B alloy magnet powder
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPH08181009A (en) Permanent magnet and its manufacturing method
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPS6181604A (en) Preparation of rare earth magnet
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
KR910009448B1 (en) R-fe-b magnetic material
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JP2892012B2 (en) Manufacturing method of rare earth polar anisotropic permanent magnet
JPS60165702A (en) Manufacture of permanent magnet
KR970009409B1 (en) Permanent magnet material processing method
JPH01146308A (en) Manufacture of rare-earth magnet
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JPH0583627B2 (en)
JPS6140738B2 (en)
JPH0733521B2 (en) Method for producing alloy powder for anisotropic bonded magnet