JPS60165702A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS60165702A
JPS60165702A JP59021447A JP2144784A JPS60165702A JP S60165702 A JPS60165702 A JP S60165702A JP 59021447 A JP59021447 A JP 59021447A JP 2144784 A JP2144784 A JP 2144784A JP S60165702 A JPS60165702 A JP S60165702A
Authority
JP
Japan
Prior art keywords
ambient
permanent magnet
aging
under
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59021447A
Other languages
Japanese (ja)
Inventor
Masaaki Tokunaga
徳永 雅亮
Hiroshi Kogure
小暮 浩
Noriaki Meguro
目黒 訓昭
Shigeo Tanigawa
茂穂 谷川
Masao Iwata
雅夫 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP59021447A priority Critical patent/JPS60165702A/en
Publication of JPS60165702A publication Critical patent/JPS60165702A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To obtain a permanent magnet which has improved Hc and shows less fluctuation by applying the predetermined heat processing which is carried out after the sequential aging through multistage or continuous temperature rise from a low temperature side to an allow having the predetermined composition of the rare earth metal R-Fe-B system. CONSTITUTION:In an alloy R(Fe1-xBx)z, R is a kind of the rare earth element or a combination of two kinds of such elements, (x) and (z) are selected in the following range, 0.02<=x<=0.15, 4.5<=A<=7.5, or a part of Fe is replaced with Co, Mn, Ni or a part of B with Si, Ge. For example, an alloy Nd(Fe0.8Co0.1B0.1)5.4 is dissolved by arc and an ingot is formed. It is then converted to fine powder with graian size of 3-5mum (F.S.S.S.) under the N2 ambient. The powder is presssurized for molding in the direction at the right angle to the direction of field under the Ar ambient. Temperature is raised in multistages under the Ar ambient from room temperature 500 deg.C up to 800-1,000 deg.C for the ageing. Thereafter, the mold is cooled rapidly under the Ar ambient. According to this constitution, a permanent magnet which has improved Hc and shows less fluctuation can be obtained.

Description

【発明の詳細な説明】 本発明は主に希土類金属(以下Rと略記する。)とFe
からなる金属間化合物永久磁石材料の製造法に関するも
のである。待にB添加によって改良されたF<−Fe 
−B系永久磁石材料の製造法に関するものである。
Detailed Description of the Invention The present invention mainly focuses on rare earth metals (hereinafter abbreviated as R) and Fe.
The present invention relates to a method for producing an intermetallic compound permanent magnet material comprising: F<-Fe improved by B addition
- This invention relates to a method for manufacturing a B-based permanent magnet material.

すでに知られているように、R−Fe合!、例えばR2
Fe、、はR−Co合金よりも高い飽和磁化を有し、高
価なCOを含有せず、永久磁石材料として高いポテンシ
ャルを有する永久磁石材料である。しかしながら、永久
磁石材料として必要なHaが得られず、長い間装置され
たままであった。近年、液体急冷技術の進歩にともない
、R−Fe合金に本方法を利用し、高い保磁力を得るこ
とに成功している。(例えば、J 、 J 、 Cro
at。
As already known, R-Fe combination! , for example R2
Fe is a permanent magnet material that has higher saturation magnetization than R-Co alloy, does not contain expensive CO, and has high potential as a permanent magnet material. However, the necessary Ha as a permanent magnet material could not be obtained, and the device remained in use for a long time. In recent years, with the progress of liquid quenching technology, this method has been successfully applied to R-Fe alloys to obtain high coercive force. (For example, J, J, Cro
at.

Journal of AppHed PhVStO3
52(3)M arch 1981.2509“lyl
 agneNc P ropertiesof mel
t −5pun P r −F e alloys”〉
さらに、N、C,KoonらはBを微量添加したR−F
e−B合金を超急冷し、600〜800℃km。
Journal of Applied PhVStO3
52 (3) M arch 1981.2509 “lyl
agneNc properties of mel
t-5punPr-Fealloys"〉
Furthermore, N., C., and Koon et al.
The e-B alloy is ultra-quenched at 600-800℃km.

時効結晶化させることにより高保磁力を実・現している
。(N、C,Koon et al Ar1I)1.P
hys 。
A high coercive force is achieved through aging crystallization. (N, C, Koon et al Ar1I)1. P
hys.

Letter 39 (10) 15 (1981) 
840 ”Ma(InetiCProperNes o
fAmorphous and Crystalliz
edF 0o、s2 s、、、8)o、q ” bCO
5’ ”O,oS ” ’待聞昭58−123853号
公報)しかしながら」−記作製法においては結晶質と非
晶質の混合状態が必要であり、得られる月利の形態は一
般に粉末ないし薄帯に限定される。
Letter 39 (10) 15 (1981)
840 “Ma(InetiCProperNeso
fAmorphous and Crystaliz
edF 0o, s2 s, , 8) o, q ” bCO
5' ``O, oS'' ``Machibun Sho 58-123853 Publication) However,'' the production method requires a mixed state of crystalline and amorphous materials, and the obtained monthly yield is generally in the form of powder or thin powder. Limited to obi.

したがって、永久磁石材料として利用する際には圧縮成
形等によってバルク化をはかつてやる必要がある。又、
超急冷による粉末は等方性で角型が悪く着磁が困難で実
用の際問題が多い。
Therefore, when using it as a permanent magnet material, it is necessary to bulk it by compression molding or the like. or,
Powder obtained by ultra-quenching is isotropic and has a poor square shape, making it difficult to magnetize and causing many problems in practical use.

一方、体用らは結晶質のNd −Fe −Bを用い磁場
中成形、焼結を用い異方性化をはかり高特性を得た。(
第29回3MConf、1983 booklet P
 110、5essionEB、 EB−1”New 
Materialfor Permanent Mag
nets on a base of Ndand F
e ” )得られた磁気特性は、35〜40MGOeで
希土類磁石の中では最も高い。しかしながら水系磁石の
キュリ一点は300℃前後であり、熱安定性に問題があ
った。すなわち、水系磁石を加熱した場合、熱によって
磁化の反転が生じ、減磁しやすい傾向を持つ。本欠点を
改良するためには 、1−1cの増加をはかるのが1つ
の方法である。すでに知られている熱処理法は焼結後6
00℃近傍で加熱するというちのである。(第29回3
 M Conf、発表)しかしながら、本熱処即方法で
は得られる 工Hcにも限界があり、熱処理による L
HCのバラツキも多かった。
On the other hand, for body use, crystalline Nd-Fe-B was used, and high properties were obtained by molding and sintering in a magnetic field to create anisotropy. (
29th 3MConf, 1983 booklet P
110, 5essionEB, EB-1”New
Material for Permanent Mag
nets on a base of
e") The obtained magnetic properties are 35 to 40 MGOe, the highest among rare earth magnets. However, the Curie point of water-based magnets is around 300°C, and there was a problem with thermal stability. In other words, when heating water-based magnets, In this case, heat causes reversal of magnetization and tends to cause demagnetization.One way to improve this drawback is to increase 1-1c.Already known heat treatment methods is 6 after sintering
This means that it is heated to around 00°C. (29th 3
(M Conf, announced) However, there is a limit to the amount of Hc that can be obtained with this instant heat treatment method;
There was also a lot of variation in HC.

本発明はこれらR−Fe−B合金のpHc向上。The present invention aims to improve the pHc of these R-Fe-B alloys.

、Haのバラツキの低減を目的になされたもので、熱処
理を室温から500℃の温度範囲より始め高温側へ順次
多段で時効を加え、800〜1ooo℃の温度範囲で時
効終了後急冷することにより上記目的を達成したもので
ある。
This was done for the purpose of reducing the variation in Ha.The heat treatment is performed in the temperature range from room temperature to 500℃, aging is sequentially applied in multiple stages to the high temperature side, and after the aging is completed in the temperature range of 800 to 100℃, it is rapidly cooled. The above objectives have been achieved.

本発明の熱処理は低温側から多段時効ないし連続昇温に
よって行われる。時効開始温度は室温から500℃を選
ぶことが適切で500℃以上の温度からの時効開始は 
zHcの向上および エHcバラツキの低減がはかれな
い。急冷開始温度が800℃以下の場合、 エHCの増
加が顕著ではなく、1000℃以上の場合は 、Hcの
低下が著しい。
The heat treatment of the present invention is performed by multi-stage aging or continuous heating from the low temperature side. It is appropriate to select a temperature at which aging starts from room temperature to 500°C, and aging starts at a temperature of 500°C or higher.
It is not possible to improve zHc and reduce dHc variation. When the quenching start temperature is 800°C or less, the increase in HC is not significant, and when it is 1000°C or higher, the decrease in Hc is significant.

本発明の適用できる永久磁石は一般に溶解によるインゴ
ット作成、粉砕、磁界中成形、焼結、熱処理の工程によ
って製造される。溶解は通常の方法で、Ar中ないし真
空中で行う。Bはフェロボロンを用いることも可能であ
る。粉砕は粗粉砕と微粉砕にT程的にはわかれるが、粗
粉砕はスタンプミル、ショークラッシャ、ブラウンミル
、ディスクミルで、又微粉砕はジエン]・ミル、振動ミ
ル。
Permanent magnets to which the present invention can be applied are generally manufactured by the steps of melting into an ingot, crushing, forming in a magnetic field, sintering, and heat treatment. The melting is carried out in a conventional manner in Ar or vacuum. It is also possible to use ferroboron for B. Grinding can be roughly divided into coarse grinding and fine grinding, and coarse grinding is done by stamp mills, show crushers, brown mills, and disc mills, and fine grinding is done by diene mills and vibration mills.

ボールミル等で行われる。いずれも酸化を防ぐために非
酸化性雰囲気中で行うが、有機溶媒や不活性ガスが用い
られる。粉砕粒度は3〜5μra (F。
This is done using a ball mill, etc. Both are carried out in a non-oxidizing atmosphere to prevent oxidation, and organic solvents and inert gases are used. The grinding particle size is 3-5 μra (F.

S、S、S、>が望ましい。磁界中成形は配向度向上、
異方性化のために必要で、一般に縦磁場成形(加圧方向
と磁場印加方向が平行)および横磁場成形(加圧方向と
磁場印加方向が垂直)が用いられる。横磁場成形の方が
縦磁場成形よりも配向度は優れている。焼結はAr、H
e等の不活性ガス中又は真空中で行われる。さらにはN
2ガス中の焼結も可能である。焼結後の冷却は急冷が望
ましい。
S, S, S, > is desirable. Molding in a magnetic field improves orientation,
This is necessary for anisotropy, and generally vertical magnetic field shaping (the direction of pressure and the direction of magnetic field application are parallel) and transverse magnetic field shaping (the direction of pressure and the direction of magnetic field application are perpendicular) are used. Horizontal magnetic field forming has a better degree of orientation than vertical magnetic field forming. Sintering is Ar, H
It is carried out in an inert gas such as e or in vacuum. Furthermore, N
Sintering in two gases is also possible. Rapid cooling is preferable for cooling after sintering.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 N d (F eo、9B0.1)5.、なる組成を有
する合金をアーク溶解にて作製した。得られたインゴッ
トをスタンプミルおよびディスクミルで微粉砕した。
Example 1 N d (F eo, 9B0.1)5. An alloy having the following composition was produced by arc melting. The obtained ingot was pulverized using a stamp mill and a disc mill.

粉砕媒体はN2ガスであり、粉砕粒度は3.5μm(F
、S、S、S、)である。得られた微粉砕粉を15 k
 Osの磁場中で横磁場成形した。成形圧力は2ton
/ am’である。得られた成形体をAr雰囲気中で2
段焼結した。第1段は1180℃x1hr、第2段は1
100℃x Ihrであり、焼結後Ar気流中に急冷し
た。急冷後の磁気特性は以下の通りであった。
The grinding medium is N2 gas, and the grinding particle size is 3.5 μm (F
, S, S, S,). 15k of the resulting finely ground powder
Transverse magnetic field shaping was performed in a magnetic field of Os. Molding pressure is 2 tons
/ am'. The obtained molded body was heated in an Ar atmosphere for 2
Sintered in stages. The first stage is 1180℃ x 1 hr, the second stage is 1 hour
The temperature was 100°C x Ihr, and after sintering, it was rapidly cooled in an Ar gas flow. The magnetic properties after quenching were as follows.

B「〜12100G BHO〜 88000s メ)lc〜 93000e (3日) maX 〜34.5M G Oe本磁石に4
00℃x1hr + 500℃x1hr + 600℃
x1hr 700℃x1hr +800℃×柚r + 
900℃X1hの多段時効を施し急冷したところ、以下
の磁気特性を得た。
B "~12100G BHO~ 88000s Me) lc~ 93000e (3 days) maX ~34.5M G Oe 4 to this magnet
00℃ x 1hr + 500℃ x 1hr + 600℃
x1hr 700℃x1hr +800℃×Yuzur +
When subjected to multi-stage aging at 900° C. for 1 hour and rapidly cooled, the following magnetic properties were obtained.

Br 〜12080G BH(j 〜95000e z@ O〜133000e (B H) max 〜35.IM G 0s600℃
×柚rの時効と比較して、多段時効の方が高jHcを得
るために効果があり、角型も改善され、高(B H) 
maxが得られる。
Br ~12080G BH (j ~95000e z@O~133000e (B H) max ~35.IM G 0s600℃
Compared to the aging of ×Yuzu, multi-stage aging is more effective in obtaining high jHc, the square shape is also improved, and high (B H)
max is obtained.

実施例2 Pr (Feo、q Bo、1)5 なる組成を有する
合金を実施例1と同様の方法で溶解、粉砕、磁場中成形
Example 2 An alloy having the composition Pr (Feo, q Bo, 1) 5 was melted, crushed, and molded in a magnetic field in the same manner as in Example 1.

焼結した。本磁石に種々の時効を加えた結果を第1表に
示す。第1表中の時効の内容は第2表に示す。
Sintered. Table 1 shows the results of applying various types of aging to this magnet. The contents of the statute of limitations in Table 1 are shown in Table 2.

実施例3 N de、b P ro、4 (F eo、q B11
.01.S !0,04 )5 なる組成を有する合金
を実施例1と同様に、溶解、粉砕。
Example 3 N de, b Pro, 4 (F eo, q B11
.. 01. S! An alloy having a composition of 0.04)5 was melted and pulverized in the same manner as in Example 1.

磁場中成形した。焼結は1100℃×柚r+1120℃
×1hrの2段焼結を行い、Ar気流中に急冷した。
Molded in a magnetic field. Sintering is 1100℃ x Yuzu + 1120℃
Two-stage sintering was performed for 1 hr, followed by rapid cooling in an Ar gas flow.

急冷後600℃x Ihrの時効を施したところ、以下
の磁気特性を得た。
After quenching, aging was performed at 600°C x Ihr, and the following magnetic properties were obtained.

Br−11500G BHC〜70000e 工HC〜 85000s (B H) maX ”□31.5M Gosであった
Br-11500G BHC~70000e Engineering HC~85000s (BH) maX"□31.5M Gos.

さらに常温から1.3℃/ m i nで1000℃ま
で加熱し、1時間保持後Ar気流中に急冷した。得られ
た磁気特性は、 B「〜11480G BHc〜 950008 pHC〜145000e (3@ ) maX 〜32. IM G Oeであっ
た。
Further, it was heated from room temperature to 1000°C at a rate of 1.3°C/min, held for 1 hour, and then rapidly cooled in an Ar gas flow. The obtained magnetic properties were: B'~11480G BHc~950008 pHC~145000e (3@) maX ~32.IMGOe.

7− 実施例4 N d (F eo、B COo、1 so、1>5、
牛 なる合金を実施例1と同様の方法で溶解、粉砕、磁
場中成形、焼結した。焼結後600℃X1hrの時効を
加えた結果、以下の磁気特性を得た。
7- Example 4 N d (F eo, B COo, 1 so, 1>5,
The alloy was melted, crushed, formed in a magnetic field, and sintered in the same manner as in Example 1. As a result of aging at 600° C. for 1 hr after sintering, the following magnetic properties were obtained.

Br−10750G BHC” 87000e zHO〜99000e (BH) max 〜27.IMGOeさらに500℃
から多段時効を行った。すなわち、500℃x1hr 
+600℃x1hr +700℃x1t+r 十800
℃XIhr +900℃×柚r + 1000’CX 
1hrの時効後Ar中に急冷した。得られた磁気特性は
、B r 〜10820G &HC〜95000e z)−1c 〜142000e (B H) maX 〜28.2M G Osであった
Br-10750G BHC" 87000e zHO~99000e (BH) max ~27. IMGOe further 500℃
Multi-stage aging was performed. That is, 500℃ x 1hr
+600℃x1hr +700℃x1t+r 1800
℃XIhr +900℃×Yuzur + 1000'CX
After aging for 1 hr, it was rapidly cooled in Ar. The obtained magnetic properties were B r ~10820G &HC ~95000ez)-1c ~142000e (BH) maX ~28.2M G Os.

8−8-

Claims (1)

【特許請求の範囲】 R(Fe1.B、 )、(ここでR:希土類元素の1種
又は2種以上の組合せ、0.02≦X≦0.15 。 4.5≦Δ≦7.5、ただしFeの1部をCo 、 M
n 。 N1で、又Bの1部をS:、aeで置換可能で゛ある。 )なる組成の合金を溶解、粉砕、vA揚場中形。 焼結、熱処理を施す希土類磁石の製造方法において、熱
処理を室温から500℃の温度領域から始め、高温側へ
順次多段ないし連続昇温により時効を加え、800〜1
000℃の温度範囲で時効終了後急冷することを特徴と
する永久磁石の製造法。
[Claims] R(Fe1.B, ), (where R: one type or a combination of two or more rare earth elements, 0.02≦X≦0.15. 4.5≦Δ≦7.5 , however, part of Fe is Co, M
n. In N1, a part of B can be replaced with S:, ae. ) The alloy with the composition is melted, pulverized, and formed into a vA lift. In a method for manufacturing rare earth magnets that involves sintering and heat treatment, heat treatment is started from room temperature to 500°C, and aging is added by sequentially increasing the temperature in multiple stages or continuously to a high temperature range of 800 to 100°C.
A method for producing a permanent magnet characterized by rapid cooling after aging in a temperature range of 0.000°C.
JP59021447A 1984-02-08 1984-02-08 Manufacture of permanent magnet Pending JPS60165702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021447A JPS60165702A (en) 1984-02-08 1984-02-08 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021447A JPS60165702A (en) 1984-02-08 1984-02-08 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS60165702A true JPS60165702A (en) 1985-08-28

Family

ID=12055211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021447A Pending JPS60165702A (en) 1984-02-08 1984-02-08 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS60165702A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342102A (en) * 1986-08-07 1988-02-23 Tohoku Metal Ind Ltd Manufacture of sintered rare-earth magnet
JPH02298003A (en) * 1989-05-12 1990-12-10 Fuji Elelctrochem Co Ltd Manufacture of rare-earth permanent magnet
JPH0499816A (en) * 1990-08-17 1992-03-31 Fuji Elelctrochem Co Ltd Production of rare earth permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342102A (en) * 1986-08-07 1988-02-23 Tohoku Metal Ind Ltd Manufacture of sintered rare-earth magnet
JPH02298003A (en) * 1989-05-12 1990-12-10 Fuji Elelctrochem Co Ltd Manufacture of rare-earth permanent magnet
JPH0499816A (en) * 1990-08-17 1992-03-31 Fuji Elelctrochem Co Ltd Production of rare earth permanent magnet

Similar Documents

Publication Publication Date Title
JPH0216368B2 (en)
JPS6181606A (en) Preparation of rare earth magnet
JPS6181603A (en) Preparation of rare earth magnet
JPS60165702A (en) Manufacture of permanent magnet
JPS6181607A (en) Preparation of rare earth magnet
JPH0345884B2 (en)
JPS6181604A (en) Preparation of rare earth magnet
JPS6233402A (en) Manufacture of rare-earth magnet
JPS62116756A (en) Permanent magnet alloy
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPH0568841B2 (en)
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JPS61252604A (en) Manufacture of rare earth magnet
JPS60171703A (en) Manufacture of permanent magnet
JPH048923B2 (en)
JPS63216307A (en) Alloy powder for magnet
JPS62208609A (en) Resin-bonded permanent magnet and manufacture of its magnetic powder
JPH0227425B2 (en)
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JPS60221551A (en) Permanent magnet alloy
JPS62167842A (en) Production of rare earth magnet
JPS5874005A (en) Permanent magnet
JPS61266551A (en) Permanent magnet alloy
JPS6140738B2 (en)
JPS60162755A (en) Permanent magnet alloy