JPS61252604A - Manufacture of rare earth magnet - Google Patents

Manufacture of rare earth magnet

Info

Publication number
JPS61252604A
JPS61252604A JP60093808A JP9380885A JPS61252604A JP S61252604 A JPS61252604 A JP S61252604A JP 60093808 A JP60093808 A JP 60093808A JP 9380885 A JP9380885 A JP 9380885A JP S61252604 A JPS61252604 A JP S61252604A
Authority
JP
Japan
Prior art keywords
cooled
magnet
didymium
sintering
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60093808A
Other languages
Japanese (ja)
Other versions
JPH0426524B2 (en
Inventor
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP60093808A priority Critical patent/JPS61252604A/en
Publication of JPS61252604A publication Critical patent/JPS61252604A/en
Publication of JPH0426524B2 publication Critical patent/JPH0426524B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To obtain economical and high-performance R-Fe-B-based magnet by sintering a powder compact of the (Pr-Nd)Fe-B-based alloy formed by raw material of didymium mainly composed of Pr, Nd, then gradually cooling it at the particular cooling rate and then quickly cooling it through heat treatment at a specified temperature. CONSTITUTION:In manufacturing the R2T14B-based magnet (R is yttrium and rare earth element, T is a transition metal) by the powder metallurgical method, the powder compact of (Pr-Nd)Fe-B-based alloy using the raw material of didymium mainly composed of Pr, Nd is sintered, then gradually cooled at the cooling rate of 500 deg.C/hr or less and then it is quickly cooled through heat treatment at a temperature range of 350 deg.C-650 deg.C. Using didymium with a ratio of Pr and Nd of 3:7 and purity of 90% or more, Fe and ferroboron, an ingot of (Pr-Nd)Fe-B-based alloy consisting of R35wt%, B1.1wt% and Fe (remainder) is formed. Then it is ground and molded under the magnetic field, in order to form a compact. This compact is kept under the vacuum condition for 1hr at 1,060 deg.C. Thereafter, it is kept for 1hr under the Ar atmosphere for sintering. Thereafter, it is cooled gradually at the cooling rate of 100 deg.C/hr and then heat-treated for 1hr at a temperature range of 300 deg.C-700 deg.C. Finally, it is cooled again quickly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類磁石の製造方法に関し、特にNd 2 
Fe 14 B系合金磁石で代表される希土類金属(R
)と遷移金属(T)とからなるR、T、4B系金属間化
合物磁石の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for manufacturing rare earth magnets, particularly Nd 2
Rare earth metals (R
) and a transition metal (T) and a transition metal (T).

〔従来技術〕[Prior art]

R−Fe−B系磁石の製造方法は2つに大別される。ひ
とつは、溶解している合金を急冷した後。
Methods for manufacturing R-Fe-B magnets are roughly divided into two. One is after the molten alloy is rapidly cooled.

時効し、粉砕した磁石粉末を磁場中で配向して製造され
る高分子複合型磁石である。他のひとつは、溶解して得
られた磁石合金のインゴットを微粉砕し、磁場中で成形
した後、焼結して製造される焼結型磁石である。本発明
は後者の焼結型磁石に関係している。
This is a polymer composite magnet manufactured by orienting aged and pulverized magnet powder in a magnetic field. The other type is a sintered magnet, which is manufactured by pulverizing an ingot of a magnetic alloy obtained by melting, shaping it in a magnetic field, and then sintering it. The present invention relates to the latter sintered magnet.

R−Fe−B系磁石の粉末冶金法によって製造される焼
結型磁石に関する文献として、特開昭5946008や
日本応用磁気学会第35回研究会資料「Nd−Fe−B
系新磁石」(昭和59年5月)があげられる。これらの
文献には、溶解して得られたインゴットを粉砕し、得ら
れた微粉末を成形した圧粉体を、 Ar雰囲気中で焼結
した後、急冷する方法について記述しである。そしてこ
れらの合金には高純度のNdが使用されている。
Documents related to sintered magnets manufactured by powder metallurgy of R-Fe-B magnets include Japanese Patent Application Laid-Open No. 5946008 and Japanese Society of Applied Magnetics Research 35th Research Meeting Materials "Nd-Fe-B
"New Magnet System" (May 1981). These documents describe a method of pulverizing an ingot obtained by melting, molding the obtained fine powder, sintering it in an Ar atmosphere, and then rapidly cooling it. High purity Nd is used in these alloys.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

高純度のNdは、 PrとNdの分離が容易でないため
に、高価となっている。したがって高純度のNdを使用
する上記の従来の焼結型磁石の場合においては、磁石の
原料価格が相当高価になった。また性能的にみて必ずし
も満足すべきものではなかった。
High purity Nd is expensive because it is difficult to separate Pr and Nd. Therefore, in the case of the above-mentioned conventional sintered magnet using high-purity Nd, the cost of the raw material for the magnet has become considerably high. Furthermore, performance was not necessarily satisfactory.

したがって本発明の目的は安価で而も性能のよりR−F
e−B系磁石を提供しようとするものである。
Therefore, the object of the present invention is to provide a low cost and high performance R-F
The purpose is to provide an e-B magnet.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明者は9種々実験を行なった結果、 Pr・Ndを
主成分とするジジム(Ce含有量はIQwt%でも可で
あるが、望ましくは5wt%以下)を磁石用合金原料と
して使用することにより、高純度Ndを使用したNdF
e−、B系磁石に比べ、安価で而も高性能な磁石が製造
できることを見出した。合わせて、圧粉体の焼結後、冷
却速度や熱処理をある範囲に制御することにより磁石の
より一層の高性能化が実現できることも見出したのであ
る。
As a result of nine different experiments, the present inventor found that by using didymium whose main components are Pr and Nd (Ce content can be IQwt%, but preferably 5wt% or less) as an alloy raw material for magnets. , NdF using high purity Nd
It has been found that it is possible to produce a magnet that is cheaper and has higher performance than e- and B-based magnets. In addition, they discovered that by controlling the cooling rate and heat treatment within a certain range after sintering the green compact, it was possible to achieve even higher performance of the magnet.

すなわち本発明によれば、 R2T14B系磁石(ここ
でRはイツトリウム及び希土類元素、Tは遷!金属をあ
らねす。)を粉末冶金法によって製造する方法において
、 Pr、Ndを主成分としたジジムを原料とし′た(
Pr−Nd)・Fe−B系合金の粉末成形体を、焼結後
500’C/hr以下の冷却速度で徐冷することと焼結
徐冷後350℃〜650℃の温度で熱処理し急冷するこ
とによって製造することを特徴とする希土類磁石の製造
方法が得られる。
That is, according to the present invention, in a method for producing an R2T14B magnet (where R stands for yttrium and a rare earth element, and T stands for a metal) by a powder metallurgy method, didymium containing Pr and Nd as main components is used. was used as raw material (
After sintering, a powder compact of Pr-Nd)/Fe-B alloy is slowly cooled at a cooling rate of 500'C/hr or less, and after sintering and slow cooling, it is heat treated at a temperature of 350°C to 650°C and then rapidly cooled. A method for producing a rare earth magnet is obtained, which is characterized in that it is produced by the following steps.

従来の希土類磁石の例としてSmCo系磁石では、原料
の低価格化を安価な希土類金属との一部置換で行なうと
、原料価格の低下率よりも。
As an example of conventional rare earth magnets, in the case of SmCo magnets, if the cost of raw materials is reduced by partially replacing them with cheaper rare earth metals, the rate of decline in raw material prices will be greater than the rate of decline in raw material prices.

磁石性能(エネルギー積)の減少率が大きくなるという
傾向を示している。したがって2本発明は原料価格の低
下と磁石の高性能化が同時に達成でき、従来の磁石材料
とは全く異なった傾向を示す発明であり、工業上極めて
有益である。
This shows a tendency for the rate of decrease in magnet performance (energy product) to increase. Therefore, the present invention can simultaneously reduce the cost of raw materials and improve the performance of the magnet, exhibiting a completely different tendency from conventional magnet materials, and is extremely useful industrially.

〔実施例〕〔Example〕

はじめにこの種の磁石合金の粉末冶金法(っいて一般的
に説明すると、その製造工程は、原料の溶解、粉砕、磁
場中配向、圧縮成形、焼結の順に進められる。溶解は、
アーク、高周波等の真空または不活性雰囲気中で行なう
。粉砕は。
Firstly, the powder metallurgy method (generally speaking, the manufacturing process for this type of magnetic alloy proceeds in the following order: melting of raw materials, pulverization, orientation in a magnetic field, compression molding, and sintering.
Perform in vacuum or inert atmosphere using arc, high frequency, etc. As for the crushing.

粗粉砕と微粉砕にわけられ、粗粉砕はショークラッシャ
ー、鉄乳鉢やロールミル等で行なわれる。微粉砕は、ボ
ールミル、振動ミル、ジェットミル等で行なわれる。磁
界中配向及び圧縮成形は、金型を用いて磁界中で同時に
行なわれるのが通例である。焼結は1000〜1150
℃の範囲で。
It is divided into coarse pulverization and fine pulverization, and coarse pulverization is performed using a show crusher, iron mortar, roll mill, etc. Fine pulverization is performed using a ball mill, vibration mill, jet mill, or the like. Orientation in a magnetic field and compression molding are usually performed simultaneously in a magnetic field using a mold. Sintering is 1000-1150
In the range of °C.

不活性雰囲気中で行なわれる。焼結後は、焼結体を急冷
していた。
It is carried out in an inert atmosphere. After sintering, the sintered body was rapidly cooled.

以下実施例について具体的に述べる。なおはじめの冷却
速度に関する例においては、比較のために従来の高純度
のNdを用いた例を併記しである。
Examples will be described in detail below. In the first example regarding the cooling rate, an example using conventional high-purity Nd is also shown for comparison.

実施例1゜ 従来例として高純度(99チ以上)のNdとFe、Bを
使用し、又本発明の実施例、としてPrとNd。
Example 1 High purity (99% or higher) Nd, Fe, and B were used as a conventional example, and Pr and Nd were used as an example of the present invention.

比が1対9で純度97%以上のジジムとFe、Bを使用
して、アルゴン雰囲気中で、高周波加熱により、それぞ
れ、 Nd33wt%、  B1.0wt%、  Fe
残部からなるNd−Fe−B系合金と、 R33wt%
、B1.0wt%、  Fe残部からなる(Pr−Nd
)Fe−B系合金のインゴットを得た。
Using didymium, Fe, and B with a ratio of 1:9 and a purity of 97% or higher, 33 wt% Nd, 1.0 wt% B, and Fe were produced by high-frequency heating in an argon atmosphere.
Nd-Fe-B alloy consisting of the balance and R33wt%
, B1.0wt%, the remainder being Fe (Pr-Nd
) An ingot of Fe-B alloy was obtained.

次にこのインゴットを粗粉砕した後、ボールミルにて平
均粒径約3μmに粉砕した。 次にこの粉末を30 K
Oeの磁界中、  1ton/ 2の圧力でα 成形した。この成形体を1080℃で1時間真空保持し
た後、 Ar雰囲気中で1時間保持し焼結した。
Next, this ingot was coarsely ground, and then ground to an average particle size of about 3 μm using a ball mill. Then this powder was heated to 30K
α molding was performed at a pressure of 1 ton/2 in a magnetic field of Oe. This molded body was held in vacuum at 1080°C for 1 hour and then held in an Ar atmosphere for 1 hour to sinter.

その後、50℃〜500′C//hrの冷却速度で約3
00’Cまで徐冷した。
After that, the cooling rate of 50°C to 500'C//hr is approximately 3
It was slowly cooled down to 00'C.

その焼結体の磁石特性を第1図に示す。従来のNd1i
’e−B系磁石に比較し1本発明による(Pr・冷却速
度でミーは高い値を示し、又(BH)rrlaxは著し
く高い値が得られている。(図中、○印は(Pr−Nd
)・Fe−B系磁石を、Δ印はNd−Fe−B系磁石を
表わす。) 以下余日 実施例2゜ PrとNdの比が6対7で純度90%以上のジジムとF
eとフェロボロンを使用して、実施例1と同様にして、
 R35wt%、 B1.1wt%、 Fe残部からな
る(Pr−Nd)・Fe4系合金のインゴットを得た。
Figure 1 shows the magnetic properties of the sintered body. Conventional Nd1i
Compared to the 'e-B series magnet, the present invention shows a high value for (Pr/cooling rate) and a significantly high value for (BH)rrlax. (In the figure, the ○ marks indicate (Pr -Nd
)・Fe-B type magnet, and Δ mark represents Nd-Fe-B type magnet. ) Example 2 for the rest of the day: Didym and F with a Pr:Nd ratio of 6:7 and a purity of 90% or more
In the same manner as in Example 1 using e and ferroboron,
An ingot of a (Pr-Nd)/Fe4 alloy consisting of 35 wt% R, 1.1 wt% B, and the balance Fe was obtained.

次にこのインゴットを実施例1と同様にして粉砕、磁場
成形し、成形体を得た。この成形体を1060℃で1時
間真空保持した後、 Ar中で1時間保持し、焼結した
。その後、 1001:/hrの冷却速度で200℃ま
で徐冷した。この焼結体を300℃〜700℃の温度で
各1時間熱処理した後急冷した。
Next, this ingot was crushed and magnetically molded in the same manner as in Example 1 to obtain a molded body. This molded body was held in vacuum at 1060° C. for 1 hour, and then held in Ar for 1 hour to sinter it. Thereafter, it was slowly cooled to 200° C. at a cooling rate of 1001:/hr. This sintered body was heat treated at a temperature of 300° C. to 700° C. for 1 hour each and then rapidly cooled.

その試料の磁石特性を第2図に示す。熱処理温度が35
0℃〜650℃の範囲で高い(BH)maxが得られて
いる。650℃近傍の熱処理でIHCが減少したにもか
かわらずt (BH)maXが減少していないのは、減
磁曲線の角型性の向上によるものである。
Figure 2 shows the magnetic properties of the sample. Heat treatment temperature is 35
High (BH)max has been obtained in the range of 0°C to 650°C. The reason why t (BH)maX did not decrease despite the decrease in IHC due to the heat treatment at around 650° C. is due to the improvement in the squareness of the demagnetization curve.

以上の実施例においては、ジジムの純度としてPrとN
dで表記してきたが、ジジムは精製度の低いPrとNd
の混合物である。したがってこれらの不純物とし−Cは
、他の希土類元素(例えばLa、Ce、Sm等)があげ
られる。 この中で最も多く混在するR元素はCeであ
わ、R中のCe混入量が10wt %以下であれば9本
発明の効果は期待されるが、 5w1%以下であること
が望ましい。
In the above examples, the purity of didymium is Pr and N.
Although it has been expressed as d, didymium is Pr and Nd with low purity.
It is a mixture of Therefore, these impurities -C may include other rare earth elements (for example, La, Ce, Sm, etc.). Among these, the most common R element is Ce, and the effects of the present invention can be expected if the amount of Ce mixed in R is 10wt% or less, but it is preferably 5w1% or less.

また1合金原料の製造において溶解時に、PrとNdを
一緒に溶解しても同様な磁気特性に対する熱処理の効果
が期待できるものである。更に、 Pr−Fe−B系合
金とNd−Fe−B系合金の合金粉末成形体を焼結した
ものについても同様な効果が期待できる。すなわち、焼
結体が、 PrとNdを主成分としたR2Fe14B系
合金であれば、同様な熱処理の効果が実現されるもので
ある。
Furthermore, even if Pr and Nd are melted together during melting in the production of a single alloy raw material, similar heat treatment effects on magnetic properties can be expected. Further, similar effects can be expected from sintered alloy powder compacts of Pr-Fe-B alloy and Nd-Fe-B alloy. That is, if the sintered body is an R2Fe14B alloy containing Pr and Nd as main components, similar heat treatment effects can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上の説明から分るように、 R2Fe、、B系磁石の
粉末冶金法による製造において、安価に製造されるジジ
ムを合金の原料として使用することによって、磁石原料
の低価格化ばかりでなく。
As can be seen from the above description, in the production of R2Fe, B-based magnets by powder metallurgy, the use of didymium, which is produced at low cost, as an alloy raw material not only reduces the price of the magnet raw material.

焼結後の冷却条件や熱処理温度を制御することにより、
高性能な磁石特性が得られる。
By controlling the cooling conditions and heat treatment temperature after sintering,
High performance magnetic properties can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1におけるNd−Pe−B系磁石と(P
r−Nd)・Fe−B系磁石の焼結後の冷却速度と磁気
特性の関係を示す図、第2図は実施例2における(Pr
−Nd)・Fe−B系磁石の熱処理温度と磁気特性の関
係を示す図である。 気4図 重加速度(’C/hr)
Figure 1 shows the Nd-Pe-B magnet in Example 1 and (P
Figure 2 is a diagram showing the relationship between the cooling rate and magnetic properties after sintering of a (Pr-Nd)/Fe-B magnet in Example 2.
FIG. 3 is a diagram showing the relationship between heat treatment temperature and magnetic properties of a -Nd)/Fe-B magnet. Ki 4 heavy acceleration ('C/hr)

Claims (1)

【特許請求の範囲】[Claims] 1、R_2T_1_4B系磁石(ここでRはイットリウ
ム及び希土類元素、Tは遷移金属をあられす。)を粉末
冶金法によって製造する方法において、Pr、Ndを主
成分としたジジムを原料とした(Pr・Nd)・Fe・
B系合金の粉末成形体を、焼結後500℃/_h_r以
下の冷却速度で徐冷することと焼結徐冷後350℃〜6
50℃の温度で熱処理し急冷することによって製造する
ことを特徴とする希土類磁石の製造方法。
1. In the method of manufacturing R_2T_1_4B magnets (where R stands for yttrium and rare earth elements, and T stands for transition metals) using powder metallurgy, didymium containing Pr and Nd as the main components (Pr. Nd)・Fe・
After sintering, the powder compact of B-based alloy is slowly cooled at a cooling rate of 500°C/_h_r or less, and after sintering and slow cooling, it is cooled at 350°C to 6.
A method for producing a rare earth magnet, characterized in that it is produced by heat treatment at a temperature of 50°C and rapid cooling.
JP60093808A 1985-05-02 1985-05-02 Manufacture of rare earth magnet Granted JPS61252604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60093808A JPS61252604A (en) 1985-05-02 1985-05-02 Manufacture of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60093808A JPS61252604A (en) 1985-05-02 1985-05-02 Manufacture of rare earth magnet

Publications (2)

Publication Number Publication Date
JPS61252604A true JPS61252604A (en) 1986-11-10
JPH0426524B2 JPH0426524B2 (en) 1992-05-07

Family

ID=14092702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60093808A Granted JPS61252604A (en) 1985-05-02 1985-05-02 Manufacture of rare earth magnet

Country Status (1)

Country Link
JP (1) JPS61252604A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120457A (en) * 1985-11-21 1987-06-01 Tdk Corp Manufacture of permanent magnet
EP1011113A3 (en) * 1998-12-11 2000-11-15 Shin-Etsu Chemical Co., Ltd. Method for the preparation of a rare earth permanent magnet
CN112750613A (en) * 2020-03-31 2021-05-04 河北泛磁聚智电子元件制造有限公司 Preparation method of ultrahigh maximum magnetic energy product sintered samarium-cobalt magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120457A (en) * 1985-11-21 1987-06-01 Tdk Corp Manufacture of permanent magnet
EP1011113A3 (en) * 1998-12-11 2000-11-15 Shin-Etsu Chemical Co., Ltd. Method for the preparation of a rare earth permanent magnet
CN112750613A (en) * 2020-03-31 2021-05-04 河北泛磁聚智电子元件制造有限公司 Preparation method of ultrahigh maximum magnetic energy product sintered samarium-cobalt magnet

Also Published As

Publication number Publication date
JPH0426524B2 (en) 1992-05-07

Similar Documents

Publication Publication Date Title
US5788782A (en) R-FE-B permanent magnet materials and process of producing the same
JPH0216368B2 (en)
US5930582A (en) Rare earth-iron-boron permanent magnet and method for the preparation thereof
JPS6181606A (en) Preparation of rare earth magnet
JPS6181603A (en) Preparation of rare earth magnet
JPS6348805A (en) Manufacture of rare-earth magnet
JPS62206801A (en) Manufacture of rare earth magnet
JPS61252604A (en) Manufacture of rare earth magnet
JPH0576161B2 (en)
JPH0345884B2 (en)
JP3101798B2 (en) Manufacturing method of anisotropic sintered magnet
JPS6181604A (en) Preparation of rare earth magnet
JPS6233402A (en) Manufacture of rare-earth magnet
JPH0568841B2 (en)
JPH0778709A (en) Manufacture of r-fe-b permanent magnet material
JPH0745412A (en) R-fe-b permanent magnet material
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JPS63114106A (en) Permanent magnet and manufacture thereof
JPH0119461B2 (en)
JPS6293337A (en) Manufacture of rare earth magnet
JPS60165702A (en) Manufacture of permanent magnet
JPH0547964B2 (en)
JPH024942A (en) Permanent magnetic alloy
JPS6342102A (en) Manufacture of sintered rare-earth magnet
JPH0653909B2 (en) Method of manufacturing permanent magnet material