JPH0345884B2 - - Google Patents

Info

Publication number
JPH0345884B2
JPH0345884B2 JP59183759A JP18375984A JPH0345884B2 JP H0345884 B2 JPH0345884 B2 JP H0345884B2 JP 59183759 A JP59183759 A JP 59183759A JP 18375984 A JP18375984 A JP 18375984A JP H0345884 B2 JPH0345884 B2 JP H0345884B2
Authority
JP
Japan
Prior art keywords
alloy
magnet
powder
sintering
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59183759A
Other languages
Japanese (ja)
Other versions
JPS6181605A (en
Inventor
Tadakuni Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP59183759A priority Critical patent/JPS6181605A/en
Publication of JPS6181605A publication Critical patent/JPS6181605A/en
Publication of JPH0345884B2 publication Critical patent/JPH0345884B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はNd2Fe14B系合金磁石で代表される希
土類金属(R)と遷移金属(T)とからなる
R2T14B系金属間化合物磁石の製造方法、特に
Nd、Fe、Bを主成分とする永久磁石の粉末冶金
法よる製造方法に関する。 〔従来技術〕 一般にR、Fe、B系磁石の製造方法について
は2つの方法に大別される。ひとつは溶解してい
るR、Fe、B系合金を急冷した後、時効して粉
砕した磁石粉末を磁場中で配向して製造する方法
であり、これによつて所謂高分子複合型磁石が得
られる。一方はR、Fe、B系磁石合金を溶解し
てインゴツトを作り、このインゴツトを微粉砕し
た後、磁場中で成形し、焼結して製造する方法で
あり、これによつて焼結型磁石が得られる。な
お、粉末冶金法によつて製造されるR、Fe、B
系の焼結型磁石に関しては特開昭59−46008に記
載されている。 R、Fe、B系磁石の粉末冶金法による製造工
程は溶解、粉砕、磁場中配向、圧縮成形、焼結、
時効の順に進められる。R、Fe、B系磁石合金
の溶解は真空あるいは不活性雰囲気中で、アーク
又は高周波加熱によつて行われる。粉砕は粗粉砕
と微粉砕に分けられ、粗粉砕はジヨークラツシヤ
ー、鉄乳鉢やロールミル等で行われる。微粉砕は
ボールミル、振動ミル、ジエツトミル等で行われ
る。磁場中配向及び圧縮成形は金型を用いて磁場
中で同時に行われる。焼結は不活性雰囲気中で、
温度1000〜1150℃の範囲で行われる。また時効は
必要に応じて温度300〜900℃程度の温度で行われ
る。 一般に焼結型磁石では焼結温度を低下させる方
向にもつていくことにより減磁特性の角形性及び
保磁力(Hc)が向上する。またR、Fe、B系合
金は非常に反応性に富んでおり、微粉末状態での
取り扱い及び成形体の焼結過程での酸化などによ
つて、焼結性の低下、磁気特性の低下及びバラツ
キを生ずる原因となる。従来、焼結型磁石の特性
向上のため前述のように、焼結はヘリウム、アル
ゴンなどの不活性雰囲気中で行われ、さらに不純
ガスの影響を軽減するために、粉末成形体の外部
にゲツターを設置して焼結する場合もあるが、
R、Fe、B系合金においては磁石特性上の顕著
な効果をもたらすに至つていない。 〔発明の目的〕 本発明の目的はR、Fe、B系磁石合金を用い
て、磁石特性上の顕著な効果をもたらす希土類磁
石を製造することのできる希土類磁石の製造方法
を提供することである。 〔発明の構成〕 本発明ではNd2Fe14Bを主生成相とするNd、
Fe、B系合金粉末にこの合金よりも融点が低く
かつ酸化作用の大きいLa、Fe、B系合金の微粉
末を混合して成形した後この成形体を焼結する。 化学的に活性で低融点なLa、Fe、B系合金微
粉末がNd、Fe、B系合金微粉末中に分散された
成形体中では、焼結過程で磁気特性の高いNd合
金よりもLa合金の酸化が選択的に行われ、結晶
粒界の整つた磁石特性の高い焼結体となる。 〔発明の実施例〕 (i) 実施例 1 高純度のNd、La、Fe、Bを使用して、アルゴ
ン雰囲気中において高周波加熱によつて、Nd15.5
Fe78B6.5及びLa15.5Fe78B6.5の組成比を有する
R2Fe14Bを主生成相とするインゴツトをそれぞれ
得た。これらNd合金及びLa合金をそれぞれ粗粉
砕して、La合金粉末をNd合金粉末に対して5重
量パーセント混合した後、ボールミルを用いて平
均粒径3μmに湿式粉砕した。次にこの微粉末を
10KOeの磁界中において1ton/cm2の圧力で成形
した。さらにこの圧粉体を温度1060℃で1時間真
空中で加熱し、次に同じ温度で1時間アルゴンガ
ス雰囲気中に保持した。その後100℃/時間以下
の冷却速度で除冷した。 上述のようにして製造されたLa合金粉末を5
重量パーセントを含む希土類磁石と従来の希土類
磁石の特性を表に示す。
[Industrial Application Field] The present invention consists of a rare earth metal (R) represented by a Nd 2 Fe 14 B alloy magnet and a transition metal (T).
R 2 T 14 B-based intermetallic compound magnet manufacturing method, especially
This invention relates to a method for manufacturing permanent magnets containing Nd, Fe, and B as main components by powder metallurgy. [Prior Art] In general, methods for manufacturing R, Fe, and B magnets can be roughly divided into two methods. One method is to rapidly cool a molten R, Fe, and B-based alloy, then age and then pulverize the magnet powder, orienting it in a magnetic field. Through this method, a so-called polymer composite magnet can be obtained. It will be done. One is a method in which an ingot is made by melting an R, Fe, and B-based magnetic alloy, and this ingot is finely pulverized, then molded in a magnetic field, and sintered to produce a sintered magnet. is obtained. In addition, R, Fe, B manufactured by powder metallurgy method
The sintered type magnet of this type is described in JP-A-59-46008. The manufacturing process of R, Fe, and B magnets using powder metallurgy includes melting, crushing, orientation in a magnetic field, compression molding, sintering,
They proceed in the order of the statute of limitations. The R, Fe, B based magnetic alloy is melted in vacuum or in an inert atmosphere by arc or high frequency heating. Grinding is divided into coarse grinding and fine grinding, and coarse grinding is performed using a geo crusher, an iron mortar, a roll mill, etc. Fine pulverization is performed using a ball mill, vibration mill, jet mill, etc. Orientation in a magnetic field and compression molding are performed simultaneously in a magnetic field using a mold. Sintering is done in an inert atmosphere.
It is carried out at a temperature range of 1000-1150℃. Further, aging is carried out at a temperature of about 300 to 900°C, if necessary. Generally, in a sintered magnet, the squareness and coercive force (H c ) of the demagnetization characteristics are improved by lowering the sintering temperature. In addition, R, Fe, and B-based alloys are highly reactive, and if handled in a fine powder state or oxidized during the sintering process of compacts, sinterability may deteriorate, magnetic properties may deteriorate, etc. This causes variation. Conventionally, in order to improve the characteristics of sintered magnets, sintering was performed in an inert atmosphere such as helium or argon, and in order to further reduce the effects of impurity gases, getter was added to the outside of the powder compact. In some cases, it is installed and sintered,
R, Fe, and B-based alloys have not brought about significant effects on magnetic properties. [Object of the Invention] The object of the present invention is to provide a method for producing a rare earth magnet that can produce a rare earth magnet that has a remarkable effect on magnetic properties by using an R, Fe, B-based magnet alloy. . [Structure of the invention] In the present invention, Nd whose main phase is Nd 2 Fe 14 B,
Fe, B alloy powder is mixed with fine powder of La, Fe, B alloy, which has a lower melting point and greater oxidizing action than this alloy, is molded, and then the molded body is sintered. In a compact in which chemically active, low-melting-point La, Fe, and B-based alloy fine powder is dispersed in Nd, Fe, and B-based alloy fine powder, during the sintering process La The alloy is selectively oxidized, resulting in a sintered body with well-organized grain boundaries and high magnetic properties. [Embodiments of the Invention] (i) Example 1 Using high-purity Nd, La, Fe, and B, Nd 15.5
It has a composition ratio of Fe 78 B 6.5 and La 15.5 Fe 78 B 6.5 .
Ingots containing R 2 Fe 14 B as the main phase were obtained. These Nd alloy and La alloy were each coarsely ground, the La alloy powder was mixed with 5 weight percent of the Nd alloy powder, and the mixture was wet ground using a ball mill to an average particle size of 3 μm. Next, add this fine powder
Molding was carried out at a pressure of 1 ton/cm 2 in a magnetic field of 10 KOe. Further, this green compact was heated in vacuum at a temperature of 1060° C. for 1 hour, and then kept in an argon gas atmosphere at the same temperature for 1 hour. Thereafter, it was slowly cooled at a cooling rate of 100° C./hour or less. The La alloy powder produced as described above was
The properties of rare earth magnets and conventional rare earth magnets, including weight percentages, are shown in the table.

〔発明の効果〕〔Effect of the invention〕

本発明を以上詳しく説明したが、Nd・Fe・B
を主成分とするNd2Fe14B系磁石合金を粉末冶金
法によつて製造する方法において、Nd・Fe・B
系合金粉末に対し、La2Fe14Bを主生成相とする
La・Fe・B系磁石合金粉末を0〜10重量%(0
を含まず)混合した成形体を焼結する方法により
著しく優れた磁石材料が得られる。
Although the present invention has been explained in detail above, Nd・Fe・B
In the method of manufacturing a Nd 2 Fe 14 B based magnetic alloy mainly composed of Nd, Fe, B
La 2 Fe 14 B is the main phase of the alloy powder.
La, Fe, B based magnet alloy powder from 0 to 10% by weight (0
A significantly superior magnetic material can be obtained by sintering a mixed molded body (without containing any of the above).

【図面の簡単な説明】[Brief explanation of drawings]

第1図a乃至cはそれぞれNd15.5Fe78B6.5の組
成合金粉末にLa15.5Fe78B6.5の組成合金粉末を0
〜11重量パーセント混合して得られた希土類磁石
をLa15.5Fe78B6.5の組成合金粉末の混合比と最大
エネルギー積、残留磁束密度及び保磁力との関係
で示した図である。
Figures 1a to 1c show an alloy powder with a composition of Nd 15.5 Fe 78 B 6.5 and an alloy powder with a composition of La 15.5 Fe 78 B 6.5 .
FIG. 2 is a graph showing the relationship between the mixing ratio of the alloy powder having a composition of La 15.5 Fe 78 B 6.5 , the maximum energy product, the residual magnetic flux density, and the coercive force of a rare earth magnet obtained by mixing ~11% by weight.

Claims (1)

【特許請求の範囲】[Claims] 1 Nd、Fe、Bを主成分とするNd2Fe14B系磁
石合金を粉末冶金法によつて製造する方法におい
て、Nd、Fe、B系磁石合金粉末に対して
La2Fe14Bを主生成相とするLa、Fe、B系磁石合
金粉末を0乃至10重量パーセント(0を含まず)
混合した成形体を焼結することを特徴とする希土
類磁石の製造方法。
1. In a method for producing a Nd 2 Fe 14 B magnet alloy containing Nd, Fe, and B as main components by a powder metallurgy method, for Nd, Fe, and B magnet alloy powder,
0 to 10% by weight of La, Fe, B-based magnetic alloy powder with La 2 Fe 14 B as the main phase (excluding 0)
A method for producing a rare earth magnet, characterized by sintering a mixed compact.
JP59183759A 1984-09-04 1984-09-04 Preparation of rare earth magnet Granted JPS6181605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59183759A JPS6181605A (en) 1984-09-04 1984-09-04 Preparation of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59183759A JPS6181605A (en) 1984-09-04 1984-09-04 Preparation of rare earth magnet

Publications (2)

Publication Number Publication Date
JPS6181605A JPS6181605A (en) 1986-04-25
JPH0345884B2 true JPH0345884B2 (en) 1991-07-12

Family

ID=16141476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59183759A Granted JPS6181605A (en) 1984-09-04 1984-09-04 Preparation of rare earth magnet

Country Status (1)

Country Link
JP (1) JPS6181605A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187825A (en) * 1984-10-05 1986-05-06 Hitachi Metals Ltd Manufacture of permanent magnet material
JPS6231102A (en) * 1985-08-01 1987-02-10 Hitachi Metals Ltd Sintered permanent magnet
US4981513A (en) * 1987-05-11 1991-01-01 Union Oil Company Of California Mixed particulate composition for preparing rare earth-iron-boron sintered magnets
US5015304A (en) * 1987-05-11 1991-05-14 Union Oil Company Of California Rare earth-iron-boron sintered magnets
US5015306A (en) * 1987-05-11 1991-05-14 Union Oil Company Of California Method for preparing rare earth-iron-boron sintered magnets
JPH07106110A (en) * 1993-10-06 1995-04-21 Yasunori Takahashi Powder composition for manufacturing bond magnet, and magnetic anisotropic permanent magnet, and manufacture of magnetic anisotropic permanent magnet
CN103714939B (en) * 2013-12-13 2016-05-25 钢铁研究总院 Two Hard Magnetic principal phase magnets of La-Fe base and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132104A (en) * 1983-01-19 1984-07-30 Sumitomo Special Metals Co Ltd Permanent magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132104A (en) * 1983-01-19 1984-07-30 Sumitomo Special Metals Co Ltd Permanent magnet

Also Published As

Publication number Publication date
JPS6181605A (en) 1986-04-25

Similar Documents

Publication Publication Date Title
US4601875A (en) Process for producing magnetic materials
JPH0216368B2 (en)
JPH0345885B2 (en)
JPH0345883B2 (en)
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH0345884B2 (en)
JPH0576161B2 (en)
JPH0344405B2 (en)
JPS6348805A (en) Manufacture of rare-earth magnet
JPS61264133A (en) Permanent magnet alloy and its manufacture
JPH0568841B2 (en)
JPS6233402A (en) Manufacture of rare-earth magnet
JPH0426524B2 (en)
JPH044383B2 (en)
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPS5853699B2 (en) Method for manufacturing rare earth intermetallic compound magnets
JPS6117125B2 (en)
JPS6184342A (en) Manufacture of rare earth metal-base magnet
JPH0119461B2 (en)
JPS6238841B2 (en)
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JPS60165702A (en) Manufacture of permanent magnet
JPH07211568A (en) Manufacture of rare-earth permanent magnet
JPH055362B2 (en)
JPH1012474A (en) Manufacture of rare-earth permanent magnet and rare-earth permanent magnet