JPH0345883B2 - - Google Patents
Info
- Publication number
- JPH0345883B2 JPH0345883B2 JP59183756A JP18375684A JPH0345883B2 JP H0345883 B2 JPH0345883 B2 JP H0345883B2 JP 59183756 A JP59183756 A JP 59183756A JP 18375684 A JP18375684 A JP 18375684A JP H0345883 B2 JPH0345883 B2 JP H0345883B2
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- alloy
- powder
- sintering
- alloy powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 13
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 238000005245 sintering Methods 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 7
- 150000002910 rare earth metals Chemical class 0.000 claims description 7
- 229910052779 Neodymium Inorganic materials 0.000 claims description 6
- 238000004663 powder metallurgy Methods 0.000 claims description 4
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 30
- 229910000521 B alloy Inorganic materials 0.000 description 10
- 229910000640 Fe alloy Inorganic materials 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910000583 Nd alloy Inorganic materials 0.000 description 3
- 229910001154 Pr alloy Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Description
〔産業上の利用分野〕
本発明はNd2Fe14B系合金磁石で代表される希
土類金属(R)と遷移金属(T)とからなる
R2T14B系金属間化合物磁石の製造方法、特に
Nd、Fe、Bを主成分とする永久磁石の粉末冶金
法による製造方法に関する。
〔従来技術〕
一般にR・Fe・B系磁石の製造方法について
は2つの方法に大別される。ひとつは溶解してい
るR・Fe・B系合金を急冷した後、時効して粉
砕した磁石粉末を磁場中で配向して製造する方法
であり、これによつて所謂高分子複合型磁石が得
られる。一方はR・Fe・B系磁石合金を溶解し
てインゴツトを作り、このインゴツトを微粉砕し
た後、磁場中で成形し、焼結して製造する方法で
あり、これによつて焼結型磁石が得られる。な
お、粉末冶金法によつて製造されるR・Fe・B
系の焼結型磁石に関しては特開昭59−46008に記
載されている。
R・Fe・B系磁石の粉末冶金法による製造工
程は溶解、粉砕、磁場中配向、圧縮成形、焼結、
時効の順に進められる。R・Fe・B系磁石合金
の溶解は真空あるいは不活性雰囲気中で、アーク
又は高周波加熱によつて行われる。粉砕は粗粉砕
と微粉砕に分けられ、粗粉砕はジヨークラツシヤ
ー、鉄乳鉢やロールミル等で行われる。微粉砕は
ボールミル、振動ミル、ジエツトミル等で行われ
る。磁場中配向及び圧縮成形は金型を用いて磁場
中で同時に行われる。焼結は不活性雰囲気中で、
温度1000〜1150℃の範囲で行われる。また時効は
必要に応じて温度300〜900℃程度の温度で行われ
る。
一般に焼結型磁石では焼結温度を低下させる方
向にもつていくことにより減磁特性の角形性及び
保磁力(He)が向上する。またR・Fe・B系合
金は非常に反応性に富んでおり、微粉末状態での
取り扱い及び成形体の焼結過程での酸化などによ
つて、焼結性の低下、磁気特性の低下及びバラツ
キを生ずる原因となる。従来、焼結型磁石の特性
向上のため、前述のように、焼結はヘリウム、ア
ルゴンなどの不活性雰囲気中で行われ、さらに不
純ガスの影響を軽減するために、粉末成形体の外
部にゲツターを設置して焼結する場合もあるが、
R・Fe・B系合金においては磁石特性上の顕著
な効果をもたらすに至つていない。
〔発明の目的〕
本発明の目的はR・Fe・B系磁石合金を用い
て、磁石特性上の顕著な効果をもたらす希土類磁
石を製造することのできる希土類磁石の製造方法
を提供することである。
〔発明の構成〕
本発明ではNd2Fe14Bを主生成相とするNd・
Fe・B系合金粉末にこの合金よりも融点が低く
かつ酸化作用の大きいPr・Fe・B系合金の微粉
末を混合して成形した後この成形体を焼結する。
化学的に活性で低融点なPr・Fe・B系合金微
粉末がNd・Fe・B系合金微粉末中に分散された
成形体中では、焼結過程で磁気特性の高いNd合
金よりもPr合金の酸化が選択的に行われ、結晶
粒界の整つた磁石特性の高い焼結体となる。
〔発明の実施例〕
(i) 実施例 1
高純度のNd、Pr、Fe、Bを使用して、アルゴ
ン雰囲気中において高周波加熱によつて、Nd15.5
Fe78B6.5及びPr15.5Fe78B6.5の組成比を有する
R2Fe14Bを主生成相とするインゴツトをそれぞれ
得た。これらNd合金及びPr合金をそれぞれ粗粉
砕して、Pr合金粉末をNd合金粉末に対して10重
量パーセント混合した後、ボールミルを用いて平
均粒径3μmに湿式粉砕した。次にこの微粉末を
10kOeの磁界中において1ton/cm2の圧力で成形し
た。さらにこの圧粉体を温度1070℃で1時間真空
中で加熱し、次に同じ温度で1時間アルゴンガス
雰囲気中に保持した。その後100℃/時間以下の
冷却速度で除冷した。
上述のようにして製造されたPr合金粉末を10
重量パーセントを含む希土類磁石と従来の希土類
磁石の特性を表に示す。
[Industrial Application Field] The present invention consists of a rare earth metal (R) represented by a Nd 2 Fe 14 B alloy magnet and a transition metal (T).
R 2 T 14 B-based intermetallic compound magnet manufacturing method, especially
This invention relates to a method for manufacturing permanent magnets containing Nd, Fe, and B as main components by powder metallurgy. [Prior Art] In general, methods for manufacturing R, Fe, and B magnets can be roughly divided into two methods. One method is to rapidly cool a molten R/Fe/B alloy, then age and then pulverize the magnet powder, orienting it in a magnetic field.This method produces a so-called polymer composite magnet. It will be done. One is a method in which an ingot is made by melting an R/Fe/B magnet alloy, and this ingot is pulverized, then molded in a magnetic field, and sintered. This process produces a sintered magnet. is obtained. In addition, R・Fe・B manufactured by powder metallurgy method
The sintered type magnet of this type is described in JP-A-59-46008. The manufacturing process of R/Fe/B magnets using the powder metallurgy method includes melting, crushing, orientation in a magnetic field, compression molding, sintering,
They proceed in the order of the statute of limitations. The R.Fe.B magnetic alloy is melted in vacuum or in an inert atmosphere by arc or high frequency heating. Grinding is divided into coarse grinding and fine grinding, and coarse grinding is performed using a geo crusher, an iron mortar, a roll mill, etc. Fine pulverization is performed using a ball mill, vibration mill, jet mill, etc. Orientation in a magnetic field and compression molding are performed simultaneously in a magnetic field using a mold. Sintering is done in an inert atmosphere.
It is carried out at a temperature range of 1000-1150℃. Further, aging is carried out at a temperature of about 300 to 900°C, if necessary. Generally, in a sintered magnet, the squareness and coercive force (He) of the demagnetization characteristics are improved by lowering the sintering temperature. Additionally, R/Fe/B alloys are highly reactive, and if handled in a fine powder state or oxidized during the sintering process of compacts, sinterability may deteriorate, magnetic properties may deteriorate, etc. This causes variation. Conventionally, in order to improve the characteristics of sintered magnets, sintering was performed in an inert atmosphere such as helium or argon, as described above, and in order to further reduce the influence of impurity gases, sintering was performed outside the powder compact. In some cases, a getter is installed and sintered,
R.Fe.B alloys have not yet brought about significant effects on magnetic properties. [Object of the Invention] An object of the present invention is to provide a method for producing a rare earth magnet that can produce a rare earth magnet that provides remarkable effects on magnetic properties using an R, Fe, and B magnet alloy. . [Structure of the invention] In the present invention, Nd・Fe 14 B is the main phase formed.
Fine powder of a Pr/Fe/B alloy having a lower melting point and greater oxidizing action than the Fe/B alloy powder is mixed with the Fe/B alloy powder, and the molded body is then sintered. In a compact in which chemically active, low-melting-point Pr/Fe/B alloy fine powder is dispersed in Nd/Fe/B alloy fine powder, the Pr/Fe/B alloy powder has a higher magnetic property than the Nd alloy during the sintering process. The alloy is selectively oxidized, resulting in a sintered body with well-organized grain boundaries and high magnetic properties. [Embodiments of the invention] (i) Example 1 Using high-purity Nd, Pr, Fe, and B, Nd 15.5
It has a composition ratio of Fe 78 B 6.5 and Pr 15.5 Fe 78 B 6.5 .
Ingots containing R 2 Fe 14 B as the main phase were obtained. These Nd alloys and Pr alloys were each coarsely ground, Pr alloy powder was mixed with 10% by weight of Nd alloy powder, and then wet ground to an average particle size of 3 μm using a ball mill. Next, add this fine powder
Molding was performed at a pressure of 1 ton/cm 2 in a magnetic field of 10 kOe. Further, this green compact was heated in vacuum at a temperature of 1070° C. for 1 hour, and then kept in an argon gas atmosphere at the same temperature for 1 hour. Thereafter, it was slowly cooled at a cooling rate of 100° C./hour or less. 10% of the Pr alloy powder produced as described above
The properties of rare earth magnets and conventional rare earth magnets, including weight percentages, are shown in the table.
本発明を以上詳しく説明したが、Nd、Fe、B
を主成分とするNd2Fe14B系磁石合金を粉末冶金
法によつて製造する方法において、Nd・Fe・B
系磁石合金粉末に対し、Pr2Fe14Bを主生成相と
するPr・Fe・B系磁石合金粉末を0〜23重量%
(0を含まず)混合した成形体を焼結する方法に
より著しく優れた永久磁石材料が得られる。
Although the present invention has been explained in detail above, Nd, Fe, B
In the method of manufacturing a Nd 2 Fe 14 B based magnetic alloy mainly composed of Nd, Fe, B
0 to 23% by weight of Pr/Fe/B based magnet alloy powder with Pr 2 Fe 14 B as the main phase based on the based magnet alloy powder.
A significantly superior permanent magnet material can be obtained by sintering a mixed compact (not containing zero).
第1図a乃至cはそれぞれNd15.5Fe78B6.5の組
成合金粉末にPr15.5Fe78B6.5の組成合金粉末を0
〜25重量パーセント混合して得られた希土類磁石
をPr15.5Fe78B6.5の組成合金粉末との混合比と最
大エネルギー積、残留磁束密度及び保磁力との関
係で示した図である。
Figures 1a to 1c show an alloy powder with a composition of Nd 15.5 Fe 78 B 6.5 and an alloy powder with a composition of Pr 15.5 Fe 78 B 6.5 .
FIG. 2 is a diagram showing the relationship between the mixing ratio of a rare earth magnet obtained by mixing ~25% by weight with an alloy powder having a composition of Pr 15.5 Fe 78 B 6.5 , maximum energy product, residual magnetic flux density, and coercive force.
Claims (1)
石合金を粉末冶金法によつて製造する方法におい
て、Nd・Fe・B系磁石合金粉末に対して
Pr2Fe14Bを主生成相とするPr・Fe・B系磁石合
金粉末を0乃至23重量パーセント(0を含まず)
混合した成形体を焼結することを特徴とする希土
類磁石の製造方法。1. In a method for manufacturing a Nd 2 Fe 14 B magnet alloy containing Nd, Fe, and B as main components by a powder metallurgy method, for Nd/Fe/B magnet alloy powder,
0 to 23 weight percent of Pr/Fe/B magnetic alloy powder with Pr 2 Fe 14 B as the main phase (excluding 0)
A method for producing a rare earth magnet, characterized by sintering a mixed compact.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59183756A JPS6181603A (en) | 1984-09-04 | 1984-09-04 | Preparation of rare earth magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59183756A JPS6181603A (en) | 1984-09-04 | 1984-09-04 | Preparation of rare earth magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6181603A JPS6181603A (en) | 1986-04-25 |
JPH0345883B2 true JPH0345883B2 (en) | 1991-07-12 |
Family
ID=16141425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59183756A Granted JPS6181603A (en) | 1984-09-04 | 1984-09-04 | Preparation of rare earth magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6181603A (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5015304A (en) * | 1987-05-11 | 1991-05-14 | Union Oil Company Of California | Rare earth-iron-boron sintered magnets |
US4981513A (en) * | 1987-05-11 | 1991-01-01 | Union Oil Company Of California | Mixed particulate composition for preparing rare earth-iron-boron sintered magnets |
US5055129A (en) * | 1987-05-11 | 1991-10-08 | Union Oil Company Of California | Rare earth-iron-boron sintered magnets |
US5015306A (en) * | 1987-05-11 | 1991-05-14 | Union Oil Company Of California | Method for preparing rare earth-iron-boron sintered magnets |
JPH01146310A (en) * | 1987-12-03 | 1989-06-08 | Tokin Corp | Manufacture of rare earth magnet |
JPH02288305A (en) * | 1989-04-28 | 1990-11-28 | Nippon Steel Corp | Rare earth magnet and manufacture thereof |
JP2782024B2 (en) * | 1992-01-29 | 1998-07-30 | 住友特殊金属株式会社 | Method for producing raw material powder for R-Fe-B-based permanent magnet |
US5387291A (en) * | 1992-03-19 | 1995-02-07 | Sumitomo Special Metals Co., Ltd. | Process for producing alloy powder material for R-Fe-B permanent magnets and alloy powder for adjusting the composition therefor |
CN108389676A (en) * | 2018-03-29 | 2018-08-10 | 江苏南方永磁科技有限公司 | A kind of temperature tolerance permanent-magnet material and preparation method thereof |
CN108515177B (en) * | 2018-05-18 | 2020-09-01 | 江西理工大学 | Nanocrystalline composite rare earth permanent magnet material with multi-main-phase structure and preparation thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5946008A (en) * | 1982-08-21 | 1984-03-15 | Sumitomo Special Metals Co Ltd | Permanent magnet |
-
1984
- 1984-09-04 JP JP59183756A patent/JPS6181603A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5946008A (en) * | 1982-08-21 | 1984-03-15 | Sumitomo Special Metals Co Ltd | Permanent magnet |
Also Published As
Publication number | Publication date |
---|---|
JPS6181603A (en) | 1986-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4601875A (en) | Process for producing magnetic materials | |
JPH0216368B2 (en) | ||
JPH0345885B2 (en) | ||
JPH0345883B2 (en) | ||
JPH0685369B2 (en) | Permanent magnet manufacturing method | |
JPH0345884B2 (en) | ||
JPH0576161B2 (en) | ||
JPH0344405B2 (en) | ||
JPS6348805A (en) | Manufacture of rare-earth magnet | |
JPS61264133A (en) | Permanent magnet alloy and its manufacture | |
JPH0568841B2 (en) | ||
JPS6233402A (en) | Manufacture of rare-earth magnet | |
JPH07110965B2 (en) | Method for producing alloy powder for resin-bonded permanent magnet | |
JPH0426524B2 (en) | ||
JPH044383B2 (en) | ||
JPS5853699B2 (en) | Method for manufacturing rare earth intermetallic compound magnets | |
JPS6184342A (en) | Manufacture of rare earth metal-base magnet | |
JPS6117125B2 (en) | ||
JPH0119461B2 (en) | ||
JPS6238841B2 (en) | ||
JPS6236366B2 (en) | ||
JPH0796694B2 (en) | Method of manufacturing permanent magnet material | |
JPS60165702A (en) | Manufacture of permanent magnet | |
JPH07211568A (en) | Manufacture of rare-earth permanent magnet | |
JPH055362B2 (en) |