JPH0345883B2 - - Google Patents

Info

Publication number
JPH0345883B2
JPH0345883B2 JP59183756A JP18375684A JPH0345883B2 JP H0345883 B2 JPH0345883 B2 JP H0345883B2 JP 59183756 A JP59183756 A JP 59183756A JP 18375684 A JP18375684 A JP 18375684A JP H0345883 B2 JPH0345883 B2 JP H0345883B2
Authority
JP
Japan
Prior art keywords
magnet
alloy
powder
sintering
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59183756A
Other languages
Japanese (ja)
Other versions
JPS6181603A (en
Inventor
Tadakuni Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP59183756A priority Critical patent/JPS6181603A/en
Publication of JPS6181603A publication Critical patent/JPS6181603A/en
Publication of JPH0345883B2 publication Critical patent/JPH0345883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はNd2Fe14B系合金磁石で代表される希
土類金属(R)と遷移金属(T)とからなる
R2T14B系金属間化合物磁石の製造方法、特に
Nd、Fe、Bを主成分とする永久磁石の粉末冶金
法による製造方法に関する。 〔従来技術〕 一般にR・Fe・B系磁石の製造方法について
は2つの方法に大別される。ひとつは溶解してい
るR・Fe・B系合金を急冷した後、時効して粉
砕した磁石粉末を磁場中で配向して製造する方法
であり、これによつて所謂高分子複合型磁石が得
られる。一方はR・Fe・B系磁石合金を溶解し
てインゴツトを作り、このインゴツトを微粉砕し
た後、磁場中で成形し、焼結して製造する方法で
あり、これによつて焼結型磁石が得られる。な
お、粉末冶金法によつて製造されるR・Fe・B
系の焼結型磁石に関しては特開昭59−46008に記
載されている。 R・Fe・B系磁石の粉末冶金法による製造工
程は溶解、粉砕、磁場中配向、圧縮成形、焼結、
時効の順に進められる。R・Fe・B系磁石合金
の溶解は真空あるいは不活性雰囲気中で、アーク
又は高周波加熱によつて行われる。粉砕は粗粉砕
と微粉砕に分けられ、粗粉砕はジヨークラツシヤ
ー、鉄乳鉢やロールミル等で行われる。微粉砕は
ボールミル、振動ミル、ジエツトミル等で行われ
る。磁場中配向及び圧縮成形は金型を用いて磁場
中で同時に行われる。焼結は不活性雰囲気中で、
温度1000〜1150℃の範囲で行われる。また時効は
必要に応じて温度300〜900℃程度の温度で行われ
る。 一般に焼結型磁石では焼結温度を低下させる方
向にもつていくことにより減磁特性の角形性及び
保磁力(He)が向上する。またR・Fe・B系合
金は非常に反応性に富んでおり、微粉末状態での
取り扱い及び成形体の焼結過程での酸化などによ
つて、焼結性の低下、磁気特性の低下及びバラツ
キを生ずる原因となる。従来、焼結型磁石の特性
向上のため、前述のように、焼結はヘリウム、ア
ルゴンなどの不活性雰囲気中で行われ、さらに不
純ガスの影響を軽減するために、粉末成形体の外
部にゲツターを設置して焼結する場合もあるが、
R・Fe・B系合金においては磁石特性上の顕著
な効果をもたらすに至つていない。 〔発明の目的〕 本発明の目的はR・Fe・B系磁石合金を用い
て、磁石特性上の顕著な効果をもたらす希土類磁
石を製造することのできる希土類磁石の製造方法
を提供することである。 〔発明の構成〕 本発明ではNd2Fe14Bを主生成相とするNd・
Fe・B系合金粉末にこの合金よりも融点が低く
かつ酸化作用の大きいPr・Fe・B系合金の微粉
末を混合して成形した後この成形体を焼結する。 化学的に活性で低融点なPr・Fe・B系合金微
粉末がNd・Fe・B系合金微粉末中に分散された
成形体中では、焼結過程で磁気特性の高いNd合
金よりもPr合金の酸化が選択的に行われ、結晶
粒界の整つた磁石特性の高い焼結体となる。 〔発明の実施例〕 (i) 実施例 1 高純度のNd、Pr、Fe、Bを使用して、アルゴ
ン雰囲気中において高周波加熱によつて、Nd15.5
Fe78B6.5及びPr15.5Fe78B6.5の組成比を有する
R2Fe14Bを主生成相とするインゴツトをそれぞれ
得た。これらNd合金及びPr合金をそれぞれ粗粉
砕して、Pr合金粉末をNd合金粉末に対して10重
量パーセント混合した後、ボールミルを用いて平
均粒径3μmに湿式粉砕した。次にこの微粉末を
10kOeの磁界中において1ton/cm2の圧力で成形し
た。さらにこの圧粉体を温度1070℃で1時間真空
中で加熱し、次に同じ温度で1時間アルゴンガス
雰囲気中に保持した。その後100℃/時間以下の
冷却速度で除冷した。 上述のようにして製造されたPr合金粉末を10
重量パーセントを含む希土類磁石と従来の希土類
磁石の特性を表に示す。
[Industrial Application Field] The present invention consists of a rare earth metal (R) represented by a Nd 2 Fe 14 B alloy magnet and a transition metal (T).
R 2 T 14 B-based intermetallic compound magnet manufacturing method, especially
This invention relates to a method for manufacturing permanent magnets containing Nd, Fe, and B as main components by powder metallurgy. [Prior Art] In general, methods for manufacturing R, Fe, and B magnets can be roughly divided into two methods. One method is to rapidly cool a molten R/Fe/B alloy, then age and then pulverize the magnet powder, orienting it in a magnetic field.This method produces a so-called polymer composite magnet. It will be done. One is a method in which an ingot is made by melting an R/Fe/B magnet alloy, and this ingot is pulverized, then molded in a magnetic field, and sintered. This process produces a sintered magnet. is obtained. In addition, R・Fe・B manufactured by powder metallurgy method
The sintered type magnet of this type is described in JP-A-59-46008. The manufacturing process of R/Fe/B magnets using the powder metallurgy method includes melting, crushing, orientation in a magnetic field, compression molding, sintering,
They proceed in the order of the statute of limitations. The R.Fe.B magnetic alloy is melted in vacuum or in an inert atmosphere by arc or high frequency heating. Grinding is divided into coarse grinding and fine grinding, and coarse grinding is performed using a geo crusher, an iron mortar, a roll mill, etc. Fine pulverization is performed using a ball mill, vibration mill, jet mill, etc. Orientation in a magnetic field and compression molding are performed simultaneously in a magnetic field using a mold. Sintering is done in an inert atmosphere.
It is carried out at a temperature range of 1000-1150℃. Further, aging is carried out at a temperature of about 300 to 900°C, if necessary. Generally, in a sintered magnet, the squareness and coercive force (He) of the demagnetization characteristics are improved by lowering the sintering temperature. Additionally, R/Fe/B alloys are highly reactive, and if handled in a fine powder state or oxidized during the sintering process of compacts, sinterability may deteriorate, magnetic properties may deteriorate, etc. This causes variation. Conventionally, in order to improve the characteristics of sintered magnets, sintering was performed in an inert atmosphere such as helium or argon, as described above, and in order to further reduce the influence of impurity gases, sintering was performed outside the powder compact. In some cases, a getter is installed and sintered,
R.Fe.B alloys have not yet brought about significant effects on magnetic properties. [Object of the Invention] An object of the present invention is to provide a method for producing a rare earth magnet that can produce a rare earth magnet that provides remarkable effects on magnetic properties using an R, Fe, and B magnet alloy. . [Structure of the invention] In the present invention, NdFe 14 B is the main phase formed.
Fine powder of a Pr/Fe/B alloy having a lower melting point and greater oxidizing action than the Fe/B alloy powder is mixed with the Fe/B alloy powder, and the molded body is then sintered. In a compact in which chemically active, low-melting-point Pr/Fe/B alloy fine powder is dispersed in Nd/Fe/B alloy fine powder, the Pr/Fe/B alloy powder has a higher magnetic property than the Nd alloy during the sintering process. The alloy is selectively oxidized, resulting in a sintered body with well-organized grain boundaries and high magnetic properties. [Embodiments of the invention] (i) Example 1 Using high-purity Nd, Pr, Fe, and B, Nd 15.5
It has a composition ratio of Fe 78 B 6.5 and Pr 15.5 Fe 78 B 6.5 .
Ingots containing R 2 Fe 14 B as the main phase were obtained. These Nd alloys and Pr alloys were each coarsely ground, Pr alloy powder was mixed with 10% by weight of Nd alloy powder, and then wet ground to an average particle size of 3 μm using a ball mill. Next, add this fine powder
Molding was performed at a pressure of 1 ton/cm 2 in a magnetic field of 10 kOe. Further, this green compact was heated in vacuum at a temperature of 1070° C. for 1 hour, and then kept in an argon gas atmosphere at the same temperature for 1 hour. Thereafter, it was slowly cooled at a cooling rate of 100° C./hour or less. 10% of the Pr alloy powder produced as described above
The properties of rare earth magnets and conventional rare earth magnets, including weight percentages, are shown in the table.

〔発明の効果〕〔Effect of the invention〕

本発明を以上詳しく説明したが、Nd、Fe、B
を主成分とするNd2Fe14B系磁石合金を粉末冶金
法によつて製造する方法において、Nd・Fe・B
系磁石合金粉末に対し、Pr2Fe14Bを主生成相と
するPr・Fe・B系磁石合金粉末を0〜23重量%
(0を含まず)混合した成形体を焼結する方法に
より著しく優れた永久磁石材料が得られる。
Although the present invention has been explained in detail above, Nd, Fe, B
In the method of manufacturing a Nd 2 Fe 14 B based magnetic alloy mainly composed of Nd, Fe, B
0 to 23% by weight of Pr/Fe/B based magnet alloy powder with Pr 2 Fe 14 B as the main phase based on the based magnet alloy powder.
A significantly superior permanent magnet material can be obtained by sintering a mixed compact (not containing zero).

【図面の簡単な説明】[Brief explanation of drawings]

第1図a乃至cはそれぞれNd15.5Fe78B6.5の組
成合金粉末にPr15.5Fe78B6.5の組成合金粉末を0
〜25重量パーセント混合して得られた希土類磁石
をPr15.5Fe78B6.5の組成合金粉末との混合比と最
大エネルギー積、残留磁束密度及び保磁力との関
係で示した図である。
Figures 1a to 1c show an alloy powder with a composition of Nd 15.5 Fe 78 B 6.5 and an alloy powder with a composition of Pr 15.5 Fe 78 B 6.5 .
FIG. 2 is a diagram showing the relationship between the mixing ratio of a rare earth magnet obtained by mixing ~25% by weight with an alloy powder having a composition of Pr 15.5 Fe 78 B 6.5 , maximum energy product, residual magnetic flux density, and coercive force.

Claims (1)

【特許請求の範囲】[Claims] 1 Nd、Fe、Bを主成分とするNd2Fe14B系磁
石合金を粉末冶金法によつて製造する方法におい
て、Nd・Fe・B系磁石合金粉末に対して
Pr2Fe14Bを主生成相とするPr・Fe・B系磁石合
金粉末を0乃至23重量パーセント(0を含まず)
混合した成形体を焼結することを特徴とする希土
類磁石の製造方法。
1. In a method for manufacturing a Nd 2 Fe 14 B magnet alloy containing Nd, Fe, and B as main components by a powder metallurgy method, for Nd/Fe/B magnet alloy powder,
0 to 23 weight percent of Pr/Fe/B magnetic alloy powder with Pr 2 Fe 14 B as the main phase (excluding 0)
A method for producing a rare earth magnet, characterized by sintering a mixed compact.
JP59183756A 1984-09-04 1984-09-04 Preparation of rare earth magnet Granted JPS6181603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59183756A JPS6181603A (en) 1984-09-04 1984-09-04 Preparation of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59183756A JPS6181603A (en) 1984-09-04 1984-09-04 Preparation of rare earth magnet

Publications (2)

Publication Number Publication Date
JPS6181603A JPS6181603A (en) 1986-04-25
JPH0345883B2 true JPH0345883B2 (en) 1991-07-12

Family

ID=16141425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59183756A Granted JPS6181603A (en) 1984-09-04 1984-09-04 Preparation of rare earth magnet

Country Status (1)

Country Link
JP (1) JPS6181603A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015304A (en) * 1987-05-11 1991-05-14 Union Oil Company Of California Rare earth-iron-boron sintered magnets
US4981513A (en) * 1987-05-11 1991-01-01 Union Oil Company Of California Mixed particulate composition for preparing rare earth-iron-boron sintered magnets
US5055129A (en) * 1987-05-11 1991-10-08 Union Oil Company Of California Rare earth-iron-boron sintered magnets
US5015306A (en) * 1987-05-11 1991-05-14 Union Oil Company Of California Method for preparing rare earth-iron-boron sintered magnets
JPH01146310A (en) * 1987-12-03 1989-06-08 Tokin Corp Manufacture of rare earth magnet
JPH02288305A (en) * 1989-04-28 1990-11-28 Nippon Steel Corp Rare earth magnet and manufacture thereof
JP2782024B2 (en) * 1992-01-29 1998-07-30 住友特殊金属株式会社 Method for producing raw material powder for R-Fe-B-based permanent magnet
US5387291A (en) * 1992-03-19 1995-02-07 Sumitomo Special Metals Co., Ltd. Process for producing alloy powder material for R-Fe-B permanent magnets and alloy powder for adjusting the composition therefor
CN108389676A (en) * 2018-03-29 2018-08-10 江苏南方永磁科技有限公司 A kind of temperature tolerance permanent-magnet material and preparation method thereof
CN108515177B (en) * 2018-05-18 2020-09-01 江西理工大学 Nanocrystalline composite rare earth permanent magnet material with multi-main-phase structure and preparation thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet

Also Published As

Publication number Publication date
JPS6181603A (en) 1986-04-25

Similar Documents

Publication Publication Date Title
US4601875A (en) Process for producing magnetic materials
JPH0216368B2 (en)
JPH0345885B2 (en)
JPH0345883B2 (en)
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH0345884B2 (en)
JPH0576161B2 (en)
JPH0344405B2 (en)
JPS6348805A (en) Manufacture of rare-earth magnet
JPS61264133A (en) Permanent magnet alloy and its manufacture
JPH0568841B2 (en)
JPS6233402A (en) Manufacture of rare-earth magnet
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPH0426524B2 (en)
JPH044383B2 (en)
JPS5853699B2 (en) Method for manufacturing rare earth intermetallic compound magnets
JPS6184342A (en) Manufacture of rare earth metal-base magnet
JPS6117125B2 (en)
JPH0119461B2 (en)
JPS6238841B2 (en)
JPS6236366B2 (en)
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JPS60165702A (en) Manufacture of permanent magnet
JPH07211568A (en) Manufacture of rare-earth permanent magnet
JPH055362B2 (en)