JPS6117125B2 - - Google Patents

Info

Publication number
JPS6117125B2
JPS6117125B2 JP57009288A JP928882A JPS6117125B2 JP S6117125 B2 JPS6117125 B2 JP S6117125B2 JP 57009288 A JP57009288 A JP 57009288A JP 928882 A JP928882 A JP 928882A JP S6117125 B2 JPS6117125 B2 JP S6117125B2
Authority
JP
Japan
Prior art keywords
powder
permanent magnet
alloy
rare earth
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57009288A
Other languages
Japanese (ja)
Other versions
JPS58125804A (en
Inventor
Naoyuki Ishigaki
Hitoshi Yamamoto
Yutaka Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP57009288A priority Critical patent/JPS58125804A/en
Publication of JPS58125804A publication Critical patent/JPS58125804A/en
Publication of JPS6117125B2 publication Critical patent/JPS6117125B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はRM5およびR2M17系希土類コバルト系
永久磁石の原料粉末およびその製造方法に関す
る。 希土類コバルト系磁石は、今日多量生産されて
いるアルニコ系磁石、フエライト系磁石と比較し
て高い保磁力と大きなエネルギー積を有する優れ
た永久磁石材料として近年需要が急速に高まり、
その利用分野は電子工業界を中心に多岐に広まつ
ている。この希土類コバルト磁石合金はいずれも
十分に高い飽和磁化の強さ(4πIs)と結晶磁気
異方性(K)をかね備えているので、高い保磁力
とエネルギー積を有する優れた永久磁石材料にな
ることが知られている。具体的にはRM5系ならび
にR2M17系合金が今日永久磁石材料として注目さ
れ、その工業化が進められている。 一般に本系磁石合金は溶解、粉砕、磁界中プレ
ス成型、焼結および時効処理の製造工程により作
られる。 溶解はアークボタン溶解炉や高周波溶解炉など
を用いてアルゴン雰囲気などの不活性雰囲気で行
われる。 粉砕は鋳塊の粗粉砕と微粉砕工程から成り、ジ
ヨークラツシヤや鉄製乳鉢などによる粗粉砕後、
ボール・ミル、バイブレーシヨン・ミル、ジエツ
ト・ミルなどによつて微粉砕を行う。磁界中プレ
ス成型では、金型を用い8〜15KOeの磁界中に
於て粉末を配向しながら圧縮成型体を作る。その
後、焼結・時効処理を行い、最終の永久磁石材料
となる。 本発明は上述の従来技術による溶解工程の簡略
化と粗粉砕工程を省略し、さらに希土類コバルト
系永久磁石の磁気特性を向上せしめうる希土類コ
バルト系永久磁石の原料粉末およびその製造方法
を提案するものであり、所要の配合原料の溶解時
の溶融合金を非酸化性雰囲気中において103℃/
min以上の超急冷処理により直接的に粒径1mm以
下の粒状粉末にすることを特徴とし、該粉末を微
粉砕して平均粒径2〜10μmの粉末にしてプレス
用の微粉末とする。その後金型を用いて8〜
15KOeの磁界中に於て粉末を配向しながら0.5〜
5T/cm2の圧力で圧縮成型体を作る。次いでアル
ゴン、水素などの非酸化性雰囲気中あるいは真空
中で1100〜1250℃において焼結し、その後300〜
950℃において時効処理を行つて希土類コバルト
系永久磁石を製造するものである。 本発明に係る希土類コバルト系磁石合金の原料
粉末は不活性ガスまたは還元性ガスなどの非酸化
性雰囲気中において所要の配合原料をアークボタ
ン溶解炉や高周波溶解炉などを用いて溶解し、こ
の溶融合金を直接超急冷処理により粗粒状の粉末
にするものである。したがつて、従来工程におけ
る溶解合金の鋳造工程がなくなり溶解工程の簡略
化と粗粉砕工程が省略されるために生産効率およ
び生産コストの点から非常に有利となる。 また、本願に述べる超急冷処理は、不活性ガス
または還元性ガスなどの非酸化性雰囲気中におい
て、たとえば第1図において、溶融合金3を一旦
容器1に受け、その容器下部のノズル2を介し
て、溶融合金4を流下し、駆動モーター6により
超高速にて回転する水冷円盤5または水冷ドラム
等回転冷却体に衝突させることにより、溶融合金
を103℃/min以上の冷却速度で超急冷すると共
に、回転による遠心力により合金を粉末状7にす
る。 あるいはまた、溶融合金状態から噴霧法によつ
て合金粉末を得る場合には噴霧ガスとしてアルゴ
ンあるいは窒素ガスを噴射することによつて、ノ
ズルから流出する溶融合金を粉末状態にして、た
だちに水冷ドラムなどに衝突させることにより合
金粉末を103℃/min以上の冷却速度によつて急
冷処理するものである。その際の粗粒状粉末の大
きさは1mm以下とし、望ましくは粒径0.02〜1mm
が好ましい。また前記粗粒状粉末を微粉砕して平
均粒径2〜10μmの粉末にしてプレス用微粉末と
する。 本発明の希土類コバルト系合金粉末は、合金の
溶融状態から103℃/minの超急冷処理により、
ただちに粗粒状の粉末にするために組成物に著し
く均質で、従来技術の高周波溶解後鋳型に鋳造す
る場合に発生し易い永久磁石合金として有害な
Fe−Coに富む初晶の発生も抑制でき、また103
℃/min以上になつた場合には非晶質状態の合金
粉末が得られる。 したがつて、本発明製法に依る合金粗粉末を微
粉砕して得られるプレス用の原料微粉末を磁石に
した場合、従来法による磁石と比較して減磁曲線
の角型性の優れた永久磁石が得られるという、す
ぐれた効果を有する。 また、従来工程により粗粉砕した粉末よりも粒
度分布の優れた粉末がえられ、微粉砕後の粉末に
おいても粒度分布が均一で、流動性が良く、した
がつて次工程のプレス成型の際の成型性も改善さ
れ、生産効率も向上するという効果も有する。 本発明において溶融合金の冷却速度を103℃/
min以上と限定した理由は、これより遅い冷却速
度の場合には合金粉末の組成の均質性が劣り、か
つまたFe−Coに富む初晶の発生を抑制できず
に、優れた永久磁石を得ることができない。ま
た、粗粒状粉末の大きさを1mm以下に限定した理
由は、1mm以上の大きさの粉末になつた場合、次
工程の微粉砕に長時間を要し、工業的生産に不適
となり、また得られる微粉末の粒度分布がかなり
広くなつてプレス成型性が劣り、かつ優れた永久
磁石をうることができなくなる。 また好ましい粗粉末粒径として0.02〜1mmとし
た理由は、0.02mm以下の大きさの粉末になると合
金粉末中の酸素量が多くなり表面酸化も認めら
れ、磁気特性がやゝ劣化する傾向にあるからであ
る。 またプレス用微粉末の平均粒径を2〜10μmに
限定した理由は、2μm未満では粉末の含有酸素
量が多くなり、その後の焼結工程において、希土
類元素(R)の酸化物(R2O3)を多量に生成し、
磁気特性の著しい劣下を招来し、また10μmを越
えると焼結時に十分な焼結密度が得られず、この
場合にもすぐれた磁気特性が得られない。 以下、本発明の実施例について説明する。 (実施例 1) 純度99.9%以上のSm24.0wt%、Y2.9wt%、純
度99.5%以上のCo53.1wt%、Fe12.1wt%、
Cu7.9wt%から成る合金を、アルゴンガス雰囲気
中で高周波溶解し、第1図に示すような装置で冷
却速度3.000℃/minで粉化して0.05〜0.75mmの粗
粒状の粉末1Kgを作つた。得られた粗粉末を有機
溶媒中でボールミル微粉砕を行い、平均粒径2〜
10μmの微粉末にした。この粉末を10KOeの磁
界中でプレス成型し、圧縮成型体を得た。次いで
この成型体を真空中1220℃2時間の焼結を行い、
その後液体窒素中に急冷処理した。800℃4時間
の時効処理を施し、本発明に依る永久磁石を得
た。また比較例として同一組成から成る合金を高
周波溶解後、金型に鋳造した合金鋳塊を用い、ア
ルゴン流気中鉄乳鉢中で粗粉砕後、上述と同様の
方法で永久磁石にした。 上述2つの方法によつて得られた永久磁石の磁
気特性を第1表に示す。
The present invention relates to a raw material powder for RM 5 and R 2 M 17 rare earth cobalt permanent magnets and a method for producing the same. Demand for rare earth cobalt-based magnets has rapidly increased in recent years as an excellent permanent magnet material with higher coercive force and larger energy product than the alnico-based magnets and ferrite-based magnets that are mass-produced today.
Its application fields are expanding into a wide variety of fields, mainly in the electronics industry. All of these rare earth cobalt magnet alloys have sufficiently high saturation magnetization strength (4πIs) and magnetocrystalline anisotropy (K), making them excellent permanent magnet materials with high coercive force and energy product. It is known. Specifically, RM 5 series and R 2 M 17 series alloys are currently attracting attention as permanent magnet materials, and their industrialization is progressing. Generally, the present magnetic alloy is produced through the following manufacturing processes: melting, crushing, press molding in a magnetic field, sintering, and aging treatment. Melting is performed in an inert atmosphere such as an argon atmosphere using an arc button melting furnace or a high frequency melting furnace. Grinding consists of coarse grinding and fine grinding of the ingot, and after coarse grinding with a geo crusher or iron mortar,
Pulverization is performed using a ball mill, vibration mill, jet mill, etc. In press molding in a magnetic field, a compression molded body is produced using a mold while orienting powder in a magnetic field of 8 to 15 KOe. After that, it undergoes sintering and aging treatment to become the final permanent magnet material. The present invention proposes a raw material powder for rare earth cobalt permanent magnets and a method for producing the same, which can simplify the melting process and the coarse pulverization process of the above-mentioned conventional technology, and further improve the magnetic properties of rare earth cobalt permanent magnets. The molten alloy when melting the required blended raw materials is heated at 10 3 °C/
It is characterized in that it is directly made into granular powder with a particle size of 1 mm or less by ultra-quenching treatment at a temperature of 1 mm or more, and the powder is finely pulverized to a powder with an average particle size of 2 to 10 μm, which is used as a fine powder for pressing. After that, using a mold, 8~
0.5~ while orienting the powder in a magnetic field of 15KOe.
A compression molded body is made at a pressure of 5T/ cm2 . It is then sintered at 1100-1250°C in a non-oxidizing atmosphere such as argon or hydrogen, or in vacuum, followed by sintering at 300-1250°C.
Rare earth cobalt permanent magnets are produced by aging at 950°C. The raw material powder of the rare earth cobalt magnet alloy according to the present invention is obtained by melting the required blended raw materials in a non-oxidizing atmosphere such as an inert gas or reducing gas using an arc button melting furnace or a high frequency melting furnace. The alloy is directly processed into coarse-grained powder by ultra-quenching treatment. Therefore, the casting process of the molten alloy in the conventional process is eliminated, the melting process is simplified, and the coarse crushing process is omitted, which is very advantageous in terms of production efficiency and production cost. Furthermore, in the ultra-quenching treatment described in this application, in a non-oxidizing atmosphere such as an inert gas or a reducing gas, for example, as shown in FIG. The molten alloy 4 is allowed to flow down and collide with a rotating cooling body such as a water-cooled disc 5 or a water-cooled drum that is rotated at an ultra-high speed by a drive motor 6, thereby ultra-quenching the molten alloy at a cooling rate of 10 3 °C/min or more. At the same time, the alloy is turned into powder 7 by the centrifugal force caused by the rotation. Alternatively, when obtaining alloy powder from the molten alloy state by a spraying method, the molten alloy flowing out from the nozzle is turned into a powder state by injecting argon or nitrogen gas as the atomizing gas, and the molten alloy is immediately transferred to a water-cooled drum or the like. The alloy powder is rapidly cooled at a cooling rate of 10 3 °C/min or more by colliding with the powder. In this case, the size of the coarse powder should be 1 mm or less, preferably 0.02 to 1 mm.
is preferred. Further, the coarse granular powder is finely pulverized to a powder having an average particle size of 2 to 10 μm, which is used as a fine powder for pressing. The rare earth cobalt alloy powder of the present invention is produced by ultra-rapid cooling treatment at 10 3 °C/min from the molten state of the alloy.
The composition is extremely homogeneous in order to immediately make it into a coarse-grained powder, which is harmful as a permanent magnet alloy that tends to occur when casting into a mold after high-frequency melting in the prior art.
The generation of primary crystals rich in Fe−Co can also be suppressed, and 10 3
C/min or more, an amorphous alloy powder is obtained. Therefore, when the raw material fine powder for pressing obtained by finely pulverizing the alloy coarse powder according to the production method of the present invention is made into a magnet, it is possible to obtain a permanent magnet with superior squareness of the demagnetization curve compared to the magnet made by the conventional method. It has the excellent effect of producing a magnet. In addition, a powder with a better particle size distribution than coarsely pulverized powder can be obtained using the conventional process, and the finely pulverized powder also has a uniform particle size distribution and good fluidity, so it is easy to use during press molding in the next process. It also has the effect of improving moldability and improving production efficiency. In the present invention, the cooling rate of the molten alloy is set to 10 3 °C/
The reason for limiting the cooling rate to min or more is that if the cooling rate is slower than this, the homogeneity of the composition of the alloy powder will be poor, and the generation of Fe-Co-rich primary crystals will not be suppressed, making it impossible to obtain an excellent permanent magnet. I can't. The reason for limiting the size of the coarse powder to 1 mm or less is that if the powder is 1 mm or larger, it will take a long time to pulverize in the next step, making it unsuitable for industrial production. The particle size distribution of the resulting fine powder becomes quite wide, resulting in poor press moldability and making it impossible to obtain an excellent permanent magnet. The reason why the preferred coarse powder particle size is 0.02 to 1 mm is that if the powder size is less than 0.02 mm, the amount of oxygen in the alloy powder increases, surface oxidation is observed, and the magnetic properties tend to deteriorate slightly. It is from. The reason for limiting the average particle size of the fine powder for pressing to 2 to 10 μm is that if the particle size is less than 2 μm, the amount of oxygen contained in the powder increases, and in the subsequent sintering process, rare earth element (R) oxides (R 2 O 3 ) produces a large amount of
If the thickness exceeds 10 μm, sufficient sintering density cannot be obtained during sintering, and excellent magnetic properties cannot be obtained in this case either. Examples of the present invention will be described below. (Example 1) Sm24.0wt%, Y2.9wt% with a purity of 99.9% or more, Co53.1wt%, Fe12.1wt% with a purity of 99.5% or more,
An alloy consisting of 7.9 wt% Cu was melted at high frequency in an argon gas atmosphere and pulverized at a cooling rate of 3,000°C/min using the apparatus shown in Figure 1 to produce 1 kg of coarse powder of 0.05 to 0.75 mm. . The obtained coarse powder was pulverized by a ball mill in an organic solvent, and the average particle size was 2 to 2.
It was made into a fine powder of 10 μm. This powder was press-molded in a magnetic field of 10 KOe to obtain a compression-molded body. Next, this molded body was sintered in a vacuum at 1220°C for 2 hours.
Thereafter, it was rapidly cooled in liquid nitrogen. A permanent magnet according to the present invention was obtained by aging at 800°C for 4 hours. Further, as a comparative example, an alloy ingot made by high-frequency melting an alloy having the same composition and casting into a mold was used, and after coarsely pulverizing the alloy in an iron mortar in an argon atmosphere, it was made into a permanent magnet in the same manner as described above. Table 1 shows the magnetic properties of the permanent magnets obtained by the above two methods.

【表】 第1表から明らかなごとく、本発明による希土
類コバルト系永久磁石は従来の方法で作られた磁
石よりも優れた特性を有することが判る。 (実施例 2) 純度99.9%以上のSm27.0wt%、純度99.8%以
上のCo47.6wt%、Fe12.1wt%、Ni5.4wt%、
Cu7.9wt%から成る合金粉末を実施例1と同様に
冷却速度4500℃/minにて冷却粉化し、粒度0.02
〜0.5mmの粗粉末を得、その後実施例1と同様の
条件で粉末圧縮成型体にした。この成型体を水素
雰囲気中1200℃2時間焼結罪、液体窒素中に急冷
処理し、ひき続いて850℃1時間の時効処理を施
し、本発明に依る永久磁石を得た。 また比較のために、高周波溶解後、金型に鋳造
した合金鋳塊を用いて、アルゴン流気中鉄乳鉢に
よつて粗粉砕した粉末を上述と同様の条件で永久
磁石にした。これら2つの方法で得られた永久磁
石の特性を第2表に示す。
[Table] As is clear from Table 1, the rare earth cobalt-based permanent magnet according to the present invention has better characteristics than magnets made by conventional methods. (Example 2) Sm 27.0wt% with a purity of 99.9% or more, Co47.6wt% with a purity of 99.8% or more, Fe12.1wt%, Ni 5.4wt%,
An alloy powder consisting of Cu7.9wt% was cooled and powdered at a cooling rate of 4500℃/min in the same manner as in Example 1, and the particle size was 0.02.
A coarse powder of ~0.5 mm was obtained, and then a powder compression molded body was obtained under the same conditions as in Example 1. This molded body was sintered in a hydrogen atmosphere at 1200°C for 2 hours, rapidly cooled in liquid nitrogen, and then aged at 850°C for 1 hour to obtain a permanent magnet according to the present invention. For comparison, an alloy ingot cast into a mold after high-frequency melting was coarsely ground in an iron mortar in an argon stream, and a powder was made into a permanent magnet under the same conditions as described above. Table 2 shows the properties of the permanent magnets obtained by these two methods.

【表】 第2表から明らかなごとく、本発明による希土
類コバルト系永久磁石は、従来の方法よりも優れ
た特性を有することが判る。 (実施例 3) 純度99.9%以上のSm、純度99.9%以上の
Co43.6wt%、Fe14.8wt%、Ni5.0wt%、Cu6.8wt
%、Mn1.2wt%、Zr1.5wt%から成る合金粉末を
実施例1と同様に冷却速度6500℃/minにて冷却
粉化し、粒度0.01〜0.45mmの粗粉末が得られ、そ
の後実施例1と同様の条件にて粉末圧縮成型体と
した。つぎに、この成型体を100Torrの減圧アル
ゴン雰囲気中で1210℃2時間焼結し液体窒素中急
冷処理を施した。 ひき続いて800℃1時間、700℃2時間、600℃
2時間および500℃5時間の多段時効処理を施
し、本発明に依る永久磁石を得た。 また比較例として鋳造後の合金鋳塊を粗粉砕
し、上述と同様の方法で永久磁石を得た。 上記2つの方法で得られた永久磁石の特性を第
3表に示す。
[Table] As is clear from Table 2, it can be seen that the rare earth cobalt permanent magnet according to the present invention has better characteristics than the conventional method. (Example 3) Sm with a purity of 99.9% or more, Sm with a purity of 99.9% or more
Co43.6wt%, Fe14.8wt%, Ni5.0wt%, Cu6.8wt%
%, Mn 1.2wt%, and Zr 1.5wt% were cooled and powdered at a cooling rate of 6500°C/min in the same manner as in Example 1 to obtain coarse powder with a particle size of 0.01 to 0.45mm, and then Example 1 A powder compression molded body was made under the same conditions as above. Next, this molded body was sintered at 1210° C. for 2 hours in a reduced pressure argon atmosphere of 100 Torr, and then rapidly cooled in liquid nitrogen. Subsequently, 800℃ for 1 hour, 700℃ for 2 hours, and 600℃
A multi-stage aging treatment of 2 hours and 5 hours at 500°C was performed to obtain a permanent magnet according to the present invention. Further, as a comparative example, an alloy ingot after casting was roughly pulverized, and a permanent magnet was obtained in the same manner as described above. Table 3 shows the properties of the permanent magnets obtained by the above two methods.

【表】 以上実施例に示すように本発明による原料粉末
は従来の原料粉末に比べて、希土類コバルト系永
久磁石合金の製造において、合金溶解工程の簡略
化と共に粗粉砕工程の省略が可能で、生産コスト
の点からも非常に有利となり、かつまた、磁気特
性の優れた永久磁石が得られる極めて有効な発明
である。
[Table] As shown in the examples above, compared to conventional raw material powders, the raw material powder according to the present invention can simplify the alloy melting process and omit the coarse grinding process in the production of rare earth cobalt permanent magnet alloys. This is an extremely effective invention that is very advantageous in terms of production costs and can provide permanent magnets with excellent magnetic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施装置の説明図である。 1……容器、2……ノズル、3……溶融合金、
4……流下溶融合金、5……水冷円板、6……円
板回転用モーター、7……粗粒状の合金粉末。
FIG. 1 is an explanatory diagram of an apparatus for implementing the present invention. 1... Container, 2... Nozzle, 3... Molten alloy,
4... Flowing molten alloy, 5... Water-cooled disc, 6... Motor for rotating the disc, 7... Coarse grained alloy powder.

Claims (1)

【特許請求の範囲】 1 希土類元素Rと遷移金属元素MからなるRM5
およびR2M17系永久磁石合金組成(ただし、Rは
Y,La,Ce,Pr,Nd,SmおよびMM(ミツシユ
メタル)の1種あるいは2種以上の組合せ、Mは
CuとCo,FeもしくはNiのうち1種あるいは2種
以上の組合せおよび上述遷移金属Mの一部をさら
にMn+Ti,Nb,Zr,Ta,Hfの各元素のうち1
種以上の元素と置換した組合せ)からなり粒径が
1mm以下の非晶質状組織を有することを特徴とす
る希土類コバルト系永久磁石の原料粉末。 2 希土類元素Rと遷移金属元素MからなるRM5
およびR2M17系永久磁石合金(ただし、RはY,
La,Ce,Pr,Nd,SmおよびMM(ミツシユメタ
ル)の1種あるいは2種以上の組合せ、MはCu
とCo,FeもしくはNiのうち1種あるいは2種以
上の組合せおよび上述遷移金属Mの一部をさらに
Mn,Ti,Nb,Zr,Ta,Hfの各元素のうち1種
以上の元素と置換した組合せ)の製造過程におい
て非酸化性雰囲気中において溶融合金を103℃/
min以上の超急冷処理により直接的に粒径が1mm
以下の粒状粉末にすることを特徴とする希土類コ
バルト系永久磁石原料粉末の製造方法。
[Claims] 1 RM 5 consisting of rare earth element R and transition metal element M
and R 2 M 17 series permanent magnet alloy composition (where R is one or a combination of two or more of Y, La, Ce, Pr, Nd, Sm and MM (Mitsushi Metal), and M is
A combination of Cu and one or more of Co, Fe, or Ni, and a part of the above transition metal M, plus one of each element of Mn + Ti, Nb, Zr, Ta, and Hf.
A raw material powder for a rare-earth cobalt-based permanent magnet, characterized by having an amorphous structure with a particle size of 1 mm or less. 2 RM 5 consisting of rare earth element R and transition metal element M
and R 2 M 17 series permanent magnet alloy (where R is Y,
One or more combinations of La, Ce, Pr, Nd, Sm and MM (Mitsushi Metal), M is Cu
and a combination of one or more of Co, Fe, or Ni, and a part of the above-mentioned transition metal M.
In the process of manufacturing molten alloys (combinations in which one or more of the following elements are substituted with one or more of the following elements: Mn, Ti, Nb, Zr, Ta, and Hf), the molten alloy is heated to 10 3 °C/
The particle size is directly reduced to 1mm by ultra-quenching treatment over min.
A method for producing rare earth cobalt permanent magnet raw material powder, which is characterized by forming the following granular powder.
JP57009288A 1982-01-22 1982-01-22 Powder as raw material for permanent magnet and its manufacture Granted JPS58125804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57009288A JPS58125804A (en) 1982-01-22 1982-01-22 Powder as raw material for permanent magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57009288A JPS58125804A (en) 1982-01-22 1982-01-22 Powder as raw material for permanent magnet and its manufacture

Publications (2)

Publication Number Publication Date
JPS58125804A JPS58125804A (en) 1983-07-27
JPS6117125B2 true JPS6117125B2 (en) 1986-05-06

Family

ID=11716285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57009288A Granted JPS58125804A (en) 1982-01-22 1982-01-22 Powder as raw material for permanent magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPS58125804A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244538A (en) * 1985-08-19 1987-02-26 Mitsubishi Metal Corp Manufacture of prco5-type sintered permanent magnet
JPH01225101A (en) * 1988-03-04 1989-09-08 Shin Etsu Chem Co Ltd Rare earth permanent magnet
CN100457335C (en) * 2006-12-19 2009-02-04 浙江工业大学 Device of preparing metal nanometer particle colloid by liquid phase medium pulse laser ablation

Also Published As

Publication number Publication date
JPS58125804A (en) 1983-07-27

Similar Documents

Publication Publication Date Title
US4801340A (en) Method for manufacturing permanent magnets
US4983232A (en) Anisotropic magnetic powder and magnet thereof and method of producing same
JPH0216368B2 (en)
JPH06340902A (en) Production of sintered rare earth base permanent magnet
JP3822031B2 (en) Method for producing replacement spring magnet powder
JPS6393841A (en) Rare-earth permanent magnet alloy
JPH0345885B2 (en)
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH0345883B2 (en)
JPS6348805A (en) Manufacture of rare-earth magnet
JPS6117125B2 (en)
JPH0345884B2 (en)
JPH0576161B2 (en)
JPH0344405B2 (en)
JPS6233402A (en) Manufacture of rare-earth magnet
JPS5853699B2 (en) Method for manufacturing rare earth intermetallic compound magnets
JPH05175026A (en) Manufacture of rare earth permanent magnet
JPH0582319A (en) Permanent magnet
JPH0568841B2 (en)
JPH10135020A (en) Radial anisotropic bond magnet
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JP2002060806A (en) Method for producing alloy powder for permanent magnet and permanent magnet
JPS61252604A (en) Manufacture of rare earth magnet