JPH02298003A - Manufacture of rare-earth permanent magnet - Google Patents

Manufacture of rare-earth permanent magnet

Info

Publication number
JPH02298003A
JPH02298003A JP1119644A JP11964489A JPH02298003A JP H02298003 A JPH02298003 A JP H02298003A JP 1119644 A JP1119644 A JP 1119644A JP 11964489 A JP11964489 A JP 11964489A JP H02298003 A JPH02298003 A JP H02298003A
Authority
JP
Japan
Prior art keywords
heat treatment
stage
stage heat
rare earth
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1119644A
Other languages
Japanese (ja)
Inventor
Teruo Kiyomiya
照夫 清宮
Haruhiro Yukimura
治洋 幸村
Kazuo Matsui
一雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP1119644A priority Critical patent/JPH02298003A/en
Publication of JPH02298003A publication Critical patent/JPH02298003A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a permanent magnet which displays a high coercive force and a high energy product by a method wherein an R-Fe(Co)-B-based molten metal containing a specific amount of titanium is quenched and solidified and it is heat-treated in two stages. CONSTITUTION:An alloy which is expressed by a general formula of Rx(Fe1-wCow)1-x-y-zByTiz (where R represents one or two or more kinds of rare- earth elements including Y) and whose compositions are 6<=x<=16, 2<=y<=25, 0<=z<=12 and 0<=w<=1.0 is melted by using an arc; it is sprayed onto the surface of a turning roll through a quartz nozzle and is cooled at high speed; an amorphous or fine crystalline thin belt is obtained. A first-stage heat treatment is executed isothermally at 300 to 800 deg.C; then, a second-stage heat treatment is executed at 600 to 1000 deg.C and isothermally at a temperature higher than that at the first-stage heat treatment.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類−銖(コバルト)−ホウ素系(以下、r
R−Fe (Co)−B系」という)永久磁石に関し、
更に詳しくは、チタンを含有するR−Fe (Co)−
B系溶融合金を液体急冷凝固させ、それを2段熱処理す
ることによって、希土類含有量の少ない組成でも高保磁
力、高エネルギー積を呈する希土類永久磁石を製造する
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a rare earth-cobalt-boron system (hereinafter referred to as r
Regarding permanent magnets (referred to as "R-Fe (Co)-B system"),
More specifically, R-Fe (Co)- containing titanium
The present invention relates to a method for producing a rare earth permanent magnet that exhibits high coercive force and high energy product even with a composition with a low rare earth content by rapidly solidifying a B-based molten alloy as a liquid and subjecting it to two-stage heat treatment.

[従来の技術] R−Fe−B系永久磁石の製法には、粉末冶金的手法に
より作製する焼結法、鋳造合金を熱間加工後に熱処理し
て作製する鋳造法、溶融状態から急冷して極めて微細な
構造をもつように固化する急冷法がある。
[Prior art] Methods for producing R-Fe-B permanent magnets include a sintering method in which powder metallurgy is used, a casting method in which a cast alloy is heat-treated after hot working, and a method in which it is rapidly cooled from a molten state. There is a rapid cooling method that solidifies the material into an extremely fine structure.

これらの中で急冷法では、溶解−高速急冷一粗粉砕一(
冷間ブレス)(温間プレス)−磁石という工程で行われ
、他の方法に比べて工程が面素化される利点があり、様
々な研究が進められている。
Among these, the quenching method involves melting, high-speed quenching, coarse pulverization, and
(cold pressing) (warm pressing) - It is performed using a magnet process, and has the advantage of making the process smoother than other methods, and various research is underway.

[発明が解決しようとする課題] 急冷法により得られる永久磁石も基本的にはRI Fo
zB化合物を主相とする。0.01〜1μm程度のRm
F41+4B微細粒子をアモルファス相が取り囲んだ極
めて微細な組織により、磁壁のビン止めが保磁力を決定
するピンニング型磁石となっている。
[Problem to be solved by the invention] Permanent magnets obtained by the rapid cooling method are basically RI Fo.
The main phase is a zB compound. Rm of about 0.01 to 1 μm
Due to the extremely fine structure in which F41+4B fine particles are surrounded by an amorphous phase, it is a pinning type magnet in which the binding of the domain wall determines the coercive force.

保磁力発生機構が焼結磁石や鋳造磁石とは異なるにもか
かわらず、実用化されている急冷磁石の希土類含有量は
R=13%であり、若干主相のそれよりも多くなってい
る。Rの含有量が12%未満になると保磁力iHcが急
激に劣化する。特開昭59−64739には.RxCo
=10%になるとiHcは6kOe以下になることが示
されている。(なお本明細書で「%」は全て「原子%」
を意味している) 焼結法、鋳造法、急冷法を問わず、いずれの方法におい
ても、従来のR−Fe−B系永久磁石合金では、希土類
元素の含有量が12%未満では保磁力iHcが急激に低
下する現象がみられる。
Although the coercive force generation mechanism is different from that of sintered magnets and cast magnets, the rare earth content of the rapidly solidified magnets in practical use is R=13%, which is slightly higher than that of the main phase. When the R content is less than 12%, the coercive force iHc rapidly deteriorates. In Japanese Patent Publication No. 59-64739. RxCo
= 10%, it has been shown that iHc becomes 6 kOe or less. (In this specification, all "%" are "atomic %")
Regardless of the sintering method, casting method, or quenching method, in conventional R-Fe-B permanent magnet alloys, coercive force decreases when the rare earth element content is less than 12%. A phenomenon in which iHc rapidly decreases is observed.

また磁石特性を改善するためR−Fe−B系に種々の添
加物を加えることが試みられており、例えば特開昭63
−190138にはT1を適量添加すると保磁力の温度
特性を向上させうろことが記載されている。
In addition, attempts have been made to add various additives to the R-Fe-B system in order to improve the magnetic properties; for example, in JP-A-63
190138 describes that adding an appropriate amount of T1 can improve the temperature characteristics of coercive force.

本発明の目的は、希土類元素の含有量が少ない(12%
未満)&[l/i!6N域であっても、等方性でも高保
磁力、高エネルギー積を示す永久磁石を製造しうる方法
を提供することにある。
The purpose of the present invention is to reduce the content of rare earth elements (12%
less than) & [l/i! The object of the present invention is to provide a method for producing a permanent magnet that is isotropic and exhibits high coercive force and high energy product even in the 6N region.

〔課題を解決するための手段] 本発明は.RxCo11(F e +−1,lCOm 
) +−*−y−mB、Ti、(但し.RxCoはYを
包含する希土類元素の1種または2種以上)なる一般式
で表され、6≦x≦16.2≦y≦25.0<z≦12
゜0≦wfa1.Oである液体急冷合金を使用する。
[Means for Solving the Problems] The present invention. RxCo11(F e +-1, lCOm
) +-*-y-mB, Ti, (wherein RxCo is one or more rare earth elements including Y), and is represented by the general formula: 6≦x≦16.2≦y≦25.0 <z≦12
゜0≦wfa1. A liquid quenched alloy that is O is used.

そして第1段目の熱処理を300〜800℃で等温で行
い、次いで第2段目の熱処理を600〜1000℃で且
つ第1段目より高い温度で等温で行う。このように本発
明の特徴は、特にTi(チタン)を適量添加した組成の
材料を液体急冷する点、及び液体急冷した合金について
特定の2段階の熱処理を行う点である。
Then, the first stage heat treatment is performed isothermally at 300 to 800°C, and then the second stage heat treatment is performed isothermally at 600 to 1000°C and at a higher temperature than the first stage. As described above, the features of the present invention are that a material having a composition in which an appropriate amount of Ti (titanium) is added is liquid-quenched, and that the liquid-quenched alloy is subjected to a specific two-step heat treatment.

液体急冷法には種々の形式があり、その特徴を利用して
任意の手法を採用してよい。特、に、遠心法、単ロール
法・、双ロール法は薄帯を連続的に大量に作製でき、工
業生産に適している。
There are various types of liquid quenching methods, and any method may be adopted by taking advantage of its characteristics. In particular, the centrifugal method, single-roll method, and twin-roll method are suitable for industrial production because they can continuously produce a large amount of ribbons.

上記の方法は、いずれも電気炉あるいは高周波炉により
合金を溶解し、その溶融合金をガス圧によりルツボ先端
のノズルから噴出させ、回転する冷却用回転体の表面上
で接触凝固させるものである。量産性の面から、本発明
の場合には単ロール法、即ち1個の回転するロールの周
面上に溶融合金を噴出する方法が最も適当である。
In all of the above methods, an alloy is melted in an electric furnace or a high-frequency furnace, and the molten alloy is ejected from a nozzle at the tip of a crucible using gas pressure, and is solidified by contact on the surface of a rotating cooling body. From the standpoint of mass production, in the case of the present invention, a single roll method, that is, a method in which molten alloy is jetted onto the circumferential surface of one rotating roll, is most suitable.

勿論、その他の方法でもよい。Of course, other methods may also be used.

本発明における各成分の限定理由は以下のjiiりであ
る。これらは実施例に記載したような多くの実験結果か
ら求められた。Rのilxは、6%未満ではiHcが5
kOa未満となり、16%を超えると最大エネルギー積
(BH)、、、が5MGOeとなり、いずれも実用上好
ましくない、Bの量yは2%未満ではiHcが5kOe
未満と小さく、25%を超えると(BH)、□が低下す
る。LHc増加のためにTiを添加することが必要で、
そのNZは0.1%以上、1%以上で効果は顕著となる
。しかし2が12%を超えるとBr、iHc共に低下す
る。
The reasons for limiting each component in the present invention are as follows. These were determined from the results of many experiments as described in the Examples. When the ilx of R is less than 6%, the iHc is 5.
If the amount y of B is less than 2%, the maximum energy product (BH) will be 5MGOe, and if the amount y of B is less than 2%, the iHc will be 5kOe.
If it is less than 25%, it is small, and if it exceeds 25% (BH), □ decreases. It is necessary to add Ti to increase LHc,
The effect becomes significant when the NZ content is 0.1% or more, or 1% or more. However, when 2 exceeds 12%, both Br and iHc decrease.

またFeをCoで置喚することでキュリー温度が改良さ
れ温度特性が向上する。そ装置1典量Wはその全域にわ
たって高保磁力が得られる。
Furthermore, by substituting Fe with Co, the Curie temperature is improved and the temperature characteristics are improved. A high coercive force can be obtained over the entire area of the device.

W−1、即ちFeを全てCoで置換しても8kOe以上
の保磁力を有する磁石が得られる。
W-1, that is, even if all Fe is replaced with Co, a magnet having a coercive force of 8 kOe or more can be obtained.

更にBの一部をC,P、St、A1等により置換するこ
とも可能であり、製造性の改善、低価格化が可能となる
Furthermore, it is also possible to replace a part of B with C, P, St, A1, etc., making it possible to improve manufacturability and reduce costs.

[作用コ 溶融合金を直接急冷凝固すると、急冷後の組織は、合金
組成や急冷条件により異なるが、一般的にアモルファス
あるいは微結晶又はその混合組織となる。これを熱処理
することにより、その微結晶又はアモルファスと微結晶
からなるMi織およびサイズを更にコントロールでき、
0.01〜!μm程度のR1F614B微細粒子をアモ
ルファス相が取り囲んだ永久磁石にとって非常に好まし
い組織が得られる。
[Function] When a molten alloy is directly quenched and solidified, the structure after quenching will vary depending on the alloy composition and quenching conditions, but will generally be amorphous, microcrystalline, or a mixed structure thereof. By heat-treating this, the microcrystalline or Mi texture consisting of amorphous and microcrystals and the size can be further controlled.
0.01~! A very desirable structure for a permanent magnet is obtained in which R1F614B fine particles of about μm size are surrounded by an amorphous phase.

急冷法で得られるR−Fe (Co)−B系材料につい
て種々の添加元素の影響を検討すると、特にTiを添加
した場合.RxCo含有量が少ない組成(12%未満)
でも高保るn力を示し、実用に適した高性能磁石を製作
できることが判った。
When examining the effects of various additive elements on R-Fe (Co)-B materials obtained by the rapid cooling method, we found that, in particular, when Ti was added. Composition with low RxCo content (less than 12%)
However, it was found that a high-performance magnet suitable for practical use could be manufactured by exhibiting a high n-force.

またR含有量が12%以上の場合でもTiの添加により
保磁力を改良できた。
Furthermore, even when the R content was 12% or more, the coercive force could be improved by adding Ti.

しかしTiの添加は保磁力の向上に寄与するものの、ヒ
ステリシスループの角型性が悪いため最大エネルギー積
(BH)□8が低い。そこで本発明では液体急冷法によ
って急冷凝固した材料について、不活性雰囲気または真
空中において2段階の熱処理を行う。第1段目は300
〜800℃での等温処理、第2段目は600〜1000
℃で且つ第1段目よりも高い温度での等温処理である。
However, although the addition of Ti contributes to improving the coercive force, the maximum energy product (BH) □8 is low because the squareness of the hysteresis loop is poor. Therefore, in the present invention, a material rapidly solidified by a liquid quenching method is subjected to two-step heat treatment in an inert atmosphere or in a vacuum. The first stage is 300
Isothermal treatment at ~800°C, second stage at 600-1000°C
It is an isothermal treatment at a temperature higher than that of the first stage.

この2段階の熱処理によって(B)i)、、、は向上す
る。第1段目の熱処理では主相を核発生させる(核の数
をコントロールする)。また第2段目の熱処理では主相
を成長させる(サイズをコントロールする)、このよう
に2段熱処理を行うことにより、主相の数とサイズとが
磁気特性上、最適なものになる。この熱処理効果は.R
xCo含有量の少ない(12%未満)組成で特に有効で
ある。R含有量が多い(16%を趨える)&l成では効
果は見られない。
This two-step heat treatment improves (B)i). In the first heat treatment, the main phase is nucleated (the number of nuclei is controlled). In addition, in the second stage heat treatment, the main phase is grown (the size is controlled). By performing the two-stage heat treatment in this way, the number and size of the main phases are optimized in terms of magnetic properties. This heat treatment effect is. R
It is particularly effective in compositions with a low xCo content (less than 12%). No effect is seen in compositions with high R content (over 16%).

[実施例1] N d* F e*1−xBs T i h  (6≦
x≦20)なる組成を有する合金をアーク溶解した。こ
の溶融合金を、20m/秒で回転するロール表面に内径
0.7鶴の石英ノズルを通してアルゴンガス圧1kg/
cm” で射出して高速冷却し、アモルファスあるいは
微結晶質からなる薄帯を得た。
[Example 1] N d* Fe*1-xBs T i h (6≦
An alloy having a composition (x≦20) was arc melted. This molten alloy was passed through a quartz nozzle with an inner diameter of 0.7 onto the surface of a roll rotating at 20 m/sec at an argon gas pressure of 1 kg/
cm" and was rapidly cooled to obtain an amorphous or microcrystalline ribbon.

この薄帯を、真空中300〜1000℃の温度範囲で1
段の熱処理を施した。第1図に各条件で得られた最高の
保磁力I Hc及び残留磁束密度Brを示す、また比較
例としてTiを添加していない組成(Nd、F eqm
−xBs  i 6≦x≦20)について、同様の処理
を行い、各条件で得られた最高の保磁力もあわせて示す
。なお磁気特性は全て磁石粉体をカプセルに充填し、V
SMで測定した。
This ribbon was heated in a vacuum at a temperature of 300 to 1000℃ for 1
The steps were heat treated. Figure 1 shows the highest coercive force I Hc and residual magnetic flux density Br obtained under each condition.
-xBs i 6≦x≦20), the same processing was performed and the highest coercive force obtained under each condition is also shown. All magnetic properties are determined by filling the capsule with magnetic powder and using V
Measured by SM.

第1図からT1の添加によりNd含有量の少ない(12
%未満)!成でも5kOe以上の高保磁力が得られ、ま
たNd含有量の多い(12%以上)組成でも保磁力が向
上することが判る。
Figure 1 shows that the addition of T1 reduces the Nd content (12
%less than)! It can be seen that a high coercive force of 5 kOe or more can be obtained even with a composition with a high Nd content (12% or more), and that the coercive force is improved even with a composition with a high Nd content (12% or more).

次に上記の液体急冷法で得た薄帯について、真空中で、
通常の1段熱処理を施した場合と、本発明の2段熱処理
を施した場合の(B I−() 、、。
Next, regarding the ribbon obtained by the liquid quenching method described above, in a vacuum,
(B I-(), . . . when subjected to normal one-stage heat treatment and when subjected to two-stage heat treatment according to the present invention.

の比較結果を第2図に示す。熱処理パターンは次の通り
である。
Figure 2 shows the comparison results. The heat treatment pattern is as follows.

・1段熱処理パターン・・・700℃×1時間・2段熱
処理パターン(本発明) 第1段目・・・500℃×1時間 第2段目・・・700℃×1時間 2段熱処理バター゛ンの効果はNd量xfJ<12%未
満の場合に特に有効であり、16%を超えると効果はな
くなる。
・1-stage heat treatment pattern: 700°C x 1 hour ・2-stage heat treatment pattern (invention) 1st stage: 500°C x 1 hour 2nd stage: 700°C x 1 hour 2-stage heat treatment butter This effect is particularly effective when the Nd amount xfJ<12%, and becomes ineffective when it exceeds 16%.

[実施例2] N d +*F @ 、、−、syT i h  (2
≦y≦25)なる組成を有する液体急冷合金を実施例1
と同様の手順で製作し、真空中300−1000tの温
度範囲で1段の熱処理を施した。得られた材料のBr、
lHc特性を第3図に示す。同図から、2≦y≦25に
おいて高磁気特性が1%られることか判る。
[Example 2] N d + *F @ , -, syT i h (2
Example 1 A liquid rapidly solidified alloy having a composition of ≦y≦25)
It was manufactured using the same procedure as above, and subjected to one stage of heat treatment in a temperature range of 300 to 1000 tons in vacuum. Br of the obtained material,
The lHc characteristics are shown in FIG. From the figure, it can be seen that the high magnetic properties are reduced by 1% when 2≦y≦25.

次に1&体急冷法で得た上記組成の薄帯について、真空
中で、通常の1段熱処理を施した場合と、本発明の2段
熱処理を施した場合の(BH)amxの比較結果を第4
図に示す。熱処理パターンは次の通りである。
Next, we will compare the (BH) amx of the ribbons with the above composition obtained by the 1 & body quenching method when subjected to normal 1-stage heat treatment in vacuum and when subjected to 2-stage heat treatment of the present invention. Fourth
As shown in the figure. The heat treatment pattern is as follows.

・1段熱処理パターン・・・650℃×1時間・2段熱
処理パターン(本発明) 第1段目・・・400℃×1時間 第2段目・・・650℃×1時間 2段熱処理によって角型性が改善され、(BH)。8が
向上する。
・1-stage heat treatment pattern: 650°C x 1 hour ・2-stage heat treatment pattern (invention) 1st stage: 400°C x 1 hour 2nd stage: 650°C x 1 hour 2-stage heat treatment The squareness is improved (BH). 8 improves.

[実施例3] N(1+oF6oz−mBa ”riffi  (0≦
2≦12)なる組成を有する液体急冷合金を実施例1と
同様の手順で作製し、真空中300〜1000℃の温度
範囲で1段の熱処理を施した。得られた材料のBr、L
Hc特性を第5図に示す、同図より、O<z≦12にお
いて高磁気特性が得られることか判る。
[Example 3] N(1+oF6oz-mBa"riffi (0≦
A liquid rapidly solidified alloy having a composition of 2≦12) was prepared in the same manner as in Example 1, and subjected to one stage of heat treatment in a temperature range of 300 to 1000° C. in vacuum. Br, L of the obtained material
The Hc characteristics are shown in FIG. 5. From the same figure, it can be seen that high magnetic characteristics are obtained when O<z≦12.

次に液体急冷法で得た上記組成の薄帯について、真空中
で、通常の1段熱処理を施した場合と、本発明の2段熱
処理を施した場合の(B H’)aaxの比較結果を第
6図に示す。熱処理パターンは次の通りである。
Next, we will compare the results of (B H')aax when a thin ribbon with the above composition obtained by the liquid quenching method was subjected to a normal one-stage heat treatment in vacuum and a two-stage heat treatment according to the present invention. is shown in Figure 6. The heat treatment pattern is as follows.

・1段熱処理パターン・・・750℃×1時間・2段熱
処理パターン(本発明) 第1段目・・・600℃×1時間 第2段目・・・750℃×1時間 2段熱処理により(BH)□8が向上する。
・1-stage heat treatment pattern: 750°C x 1 hour ・2-stage heat treatment pattern (invention) 1st stage: 600°C x 1 hour 2nd stage: 750°C x 1 hour 2-stage heat treatment (BH) □8 improves.

[実施例4] Nd+o (F @+−w COii ) tx−、T
 lb  (0≦W≦1)なる組成を有する液体急冷合
金を実施例1と同様の手順で作製し、真空中300〜1
000℃の温度範囲で1段の熱処理を施した。
[Example 4] Nd+o (F @+-w COii) tx-, T
A liquid rapidly solidified alloy having a composition of lb (0≦W≦1) was prepared in the same manner as in Example 1, and was heated to 300 to 1 in vacuum.
One stage of heat treatment was performed in a temperature range of 000°C.

得られた材料のBr、1)(c特性を第7図に示す。同
図より、0≦W≦1の全域にわたって高磁気特性が得ら
れることが判る。
The Br, 1) (c characteristics of the obtained material are shown in FIG. 7. From the figure, it can be seen that high magnetic properties are obtained over the entire range of 0≦W≦1.

次に液体急冷法で得た上記組成の薄帯について、真空中
で、通常の1段熱処理を施した場合と、本発明の2段熱
処理を施した場合の(BH)1oの比較結果を第8図に
示す。熱処理パターンは次の通りである。
Next, we will compare the results of (BH) 1o obtained by applying the normal one-stage heat treatment in vacuum and the two-stage heat treatment of the present invention for the ribbons with the above composition obtained by the liquid quenching method. It is shown in Figure 8. The heat treatment pattern is as follows.

・1段熱処理パターン・・・800℃×1時間・2段熱
処理パターン(本発明) 第1段目・・・550℃×1時間 第2段目・・・800℃×1時間 本発明の2段熱処理を施すことによりヒステリンスルー
ブの角型性が改善され(BH)、、つが向上する。
・1-stage heat treatment pattern...800°C x 1 hour ・2-stage heat treatment pattern (invention) 1st stage...550°C x 1 hour 2nd stage...800°C x 1 hour 2 of the present invention By performing the step heat treatment, the squareness of the hysterinous groove is improved (BH), and the squareness is improved.

[実施例5] 種々の希土類元素について、実施例1と同様の処理を行
った結果を第1表に示す。但し、真空中300〜1oo
o℃の温度範囲で1段の熱処理を施した。
[Example 5] Table 1 shows the results of performing the same treatment as in Example 1 for various rare earth elements. However, in vacuum 300~1oo
One stage of heat treatment was carried out in the temperature range of 0°C.

第1表より、種々の希土類元素において、その含有量の
低い(10%以下)組成でもTi添加により十分高い保
磁力が得られることが判る。
From Table 1, it can be seen that a sufficiently high coercive force can be obtained by adding Ti even in a composition with a low content (10% or less) of various rare earth elements.

第1表 次に液体急冷法で得た上記組成の薄帯について、真空中
で、通常の1段熱処理を施した場合と、本発明の2段熱
処理を施した場合の(BH)−亀χの比較結果を第2表
に示す、熱処理パターンは次の通りである。
Table 1 Next, the results of (BH) - χ The comparison results are shown in Table 2, and the heat treatment patterns are as follows.

・1段熱処理パターン・・・750tX1時間・2段熱
処理バダ−ン(本発明) 第1段目・・・600℃×1時間 第2段目・・・750℃×1時間 第2表 2段熱処理を施すことにより(BH)、、、が向上する
。なお比較例から判るように、′rlが添加されていな
い組成では、2段熱処理を行っても(B H)。4の向
上は見られない。
・1st stage heat treatment pattern...750t x 1 hour 2nd stage heat treatment badan (invention) 1st stage...600°C x 1 hour 2nd stage...750°C x 1 hour Table 2 2nd stage By applying heat treatment, (BH) is improved. As can be seen from the comparative example, in the composition in which 'rl was not added, even if two-stage heat treatment was performed (B H). No improvement in 4 was observed.

[発明の効果1 本発明は上記のようにR−F e  (Co) −B系
組成にTi元素を適量添加したから、それによって希土
類元素只の含有量が少ない(12%未満の)領域でも、
希土類元素の多い場合と遜色ない高い保磁力i Hcが
得られ、低コスト化を図ることができる。そして本発明
では、このような材料について特定の2饅熱処理を施し
ているため、最大エネルギー積(B l(’)□、が向
上し、実用上すぐれた永久磁石が得られる。
[Effect of the invention 1] Since the present invention adds an appropriate amount of Ti element to the R-Fe (Co) -B system composition as described above, it can be used even in areas where the content of rare earth elements is small (less than 12%). ,
A high coercive force i Hc comparable to that obtained with a large amount of rare earth elements can be obtained, and costs can be reduced. In the present invention, since such a material is subjected to a specific double heat treatment, the maximum energy product (B l(')□) is improved, and a practically excellent permanent magnet can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はN dm F f3nb−1B6 T i4の
i l−1cとBr特性を示すグラフ、第2図はその熱
処理条件の違いによる(BH)、、、特性を示すグラフ
である。 第3図はN d +eF e an−yB、 T i 
6のi HcとBr特性を示すグラフ、第4図はその熱
処理条件の違いによる( B l() @aX特性を示
すグラフである。 第5図はN d +o F e 8!、B s T I
 xのIHCとBr特性を示すグラフ、第6図はその熱
処理条件の違いによる(BH)、、、特性を示すグラフ
である。 第7図はNd+e (Fat−w Cow )van@
i” i 、の(HcとBr特性を示すグラフ、第8図
はその熱処理条件の違いによる(BH)、、。 特性を示すグラフである。 特許出願人  冨土電気化学株式会社 代  理  人     茂  見     1第1I
!I 第2図 第3図 第4図 15i    Nd、、Fs、、−、B、 Ti。 y 第5rlA 第6因 第7図
FIG. 1 is a graph showing the i l-1c and Br characteristics of N dm F f3nb-1B6 Ti4, and FIG. 2 is a graph showing the (BH) characteristics due to differences in heat treatment conditions. Figure 3 shows N d +eFe an-yB, T i
Figure 4 is a graph showing the i Hc and Br characteristics of No. 6, and Figure 4 is a graph showing the characteristics of (B l() @aX) due to the difference in heat treatment conditions. Figure 5 is a graph showing the characteristics of N d + o F e 8!, B s T I
FIG. 6 is a graph showing the IHC and Br characteristics of x, and FIG. 6 is a graph showing the (BH) characteristics due to differences in heat treatment conditions. Figure 7 shows Nd+e (Fat-w Cow)van@
Figure 8 is a graph showing the (Hc and Br characteristics) of (BH) due to the difference in heat treatment conditions. Patent applicant Shigeru Tomito Electrochemical Co., Ltd. Agent See 1st I
! I Fig. 2 Fig. 3 Fig. 4 15i Nd,, Fs, -, B, Ti. y 5th rlA 6th cause 7th figure

Claims (3)

【特許請求の範囲】[Claims] 1.R_xFe_1_−_x_−_y_−_zB_yT
i_z(但し、RはYを包含する希土類元素の1種また
は2種以上)なる一般式で表され、6≦x≦16,2≦
y≦25,0<z≦12である液体急冷合金を用い、第
1段目の熱処理を300〜800℃で等温で行い、次い
で第2段目の熱処理を600〜1000℃で且つ第1段
目より高い温度で等温で行うことを特徴とする希土類永
久磁石の製造方法。
1. R_xFe_1_-_x_-_y_-_zB_yT
Represented by the general formula i_z (where R is one or more rare earth elements including Y), 6≦x≦16, 2≦
Using a liquid quenching alloy with y≦25,0<z≦12, the first stage heat treatment is performed isothermally at 300 to 800°C, then the second stage heat treatment is performed at 600 to 1000°C, and the first stage A method for producing rare earth permanent magnets characterized by isothermal production at temperatures higher than eye temperature.
2.R_x(Fe_1_−_wCo_w)_1_−_x
_−_y_−_zB_yTi_z(但し、RはYを包含
する希土類元素の1種または2種以上)なる一般式で表
され、6≦x≦16,2≦y≦25,0<z≦12, 0<w<1である液体急冷合金を用い、第1段目の熱処
理を300〜800℃で等温で行い、次いで第2段目の
熱処理を600〜1000℃で且つ第1段目より高い温
度で等温で行うことを特徴とする希土類永久磁石の製造
方法。
2. R_x(Fe_1_-_wCo_w)_1_-_x
It is represented by the general formula _-_y_-_zB_yTi_z (where R is one or more rare earth elements including Y), 6≦x≦16, 2≦y≦25, 0<z≦12, 0 Using a liquid quenched alloy with <w<1, the first stage heat treatment is performed isothermally at 300 to 800 °C, and then the second stage heat treatment is performed at 600 to 1000 °C and at a higher temperature than the first stage. A method for producing a rare earth permanent magnet characterized by carrying out the production at an isothermal temperature.
3.R_xCo_1_−_x_−_y_−_zB_yT
i_z(但し、RはYを包含する希土類元素の1種また
は2種以上)なる一般式で表され、6≦x≦16,2≦
y≦25,0<z≦12である液体急冷合金を用い、第
1段目の熱処理を300〜800℃で等温で行い、次い
で第2段目の熱処理を600〜1000℃で且つ第1段
目より高い温度で等温で行うことを特徴とする希土類永
久磁石の製造方法。
3. R_xCo_1_-_x_-_y_-_zB_yT
Represented by the general formula i_z (where R is one or more rare earth elements including Y), 6≦x≦16, 2≦
Using a liquid quenching alloy with y≦25,0<z≦12, the first stage heat treatment is performed isothermally at 300 to 800°C, then the second stage heat treatment is performed at 600 to 1000°C, and the first stage A method for producing rare earth permanent magnets characterized by isothermal production at temperatures higher than eye temperature.
JP1119644A 1989-05-12 1989-05-12 Manufacture of rare-earth permanent magnet Pending JPH02298003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1119644A JPH02298003A (en) 1989-05-12 1989-05-12 Manufacture of rare-earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119644A JPH02298003A (en) 1989-05-12 1989-05-12 Manufacture of rare-earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH02298003A true JPH02298003A (en) 1990-12-10

Family

ID=14766551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119644A Pending JPH02298003A (en) 1989-05-12 1989-05-12 Manufacture of rare-earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH02298003A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030595A1 (en) * 2000-10-06 2002-04-18 Santoku Corporation Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet
WO2002039465A1 (en) * 2000-11-13 2002-05-16 Sumitomo Special Metals Co., Ltd. Nanocomposite magnet and method for producing same
JP2002343660A (en) * 2001-05-18 2002-11-29 Sumitomo Special Metals Co Ltd Permanent magnet having a plurality of ferromagnetic phases and manufacturing method therefor
WO2003001541A1 (en) * 2001-06-22 2003-01-03 Sumitomo Special Metals Co., Ltd. Rare earth magnet and method for production thereof
WO2003012802A1 (en) * 2001-07-31 2003-02-13 Sumitomo Special Metals Co., Ltd. Method for producing nanocomposite magnet using atomizing method
WO2002093591A3 (en) * 2001-05-15 2003-03-06 Sumitomo Spec Metals Iron-based rare earth alloy nanocomposite magnet and method for producing the same
WO2003044812A1 (en) * 2001-11-22 2003-05-30 Sumitomo Special Metals Co., Ltd. Nanocomposite magnet
JP2003224010A (en) * 2001-11-20 2003-08-08 Sumitomo Special Metals Co Ltd Compound for rare earth based bonded magnet and bonded magnet using the same
US6706124B2 (en) 2000-05-24 2004-03-16 Sumitomo Special Metals Co., Ltd. Permanent magnet including multiple ferromagnetic phases and method of producing the magnet
US7160398B2 (en) 2002-08-08 2007-01-09 Neomax Co., Ltd. Method of making rapidly solidified alloy for magnet
US7217328B2 (en) 2000-11-13 2007-05-15 Neomax Co., Ltd. Compound for rare-earth bonded magnet and bonded magnet using the compound
JP2019186331A (en) * 2018-04-05 2019-10-24 トヨタ自動車株式会社 Method for manufacturing neodymium-iron-boron based magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165702A (en) * 1984-02-08 1985-08-28 Hitachi Metals Ltd Manufacture of permanent magnet
JPS63190138A (en) * 1986-09-29 1988-08-05 Tdk Corp Rare-earth permanent magnet material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165702A (en) * 1984-02-08 1985-08-28 Hitachi Metals Ltd Manufacture of permanent magnet
JPS63190138A (en) * 1986-09-29 1988-08-05 Tdk Corp Rare-earth permanent magnet material

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706124B2 (en) 2000-05-24 2004-03-16 Sumitomo Special Metals Co., Ltd. Permanent magnet including multiple ferromagnetic phases and method of producing the magnet
US7297213B2 (en) 2000-05-24 2007-11-20 Neomax Co., Ltd. Permanent magnet including multiple ferromagnetic phases and method for producing the magnet
WO2002030595A1 (en) * 2000-10-06 2002-04-18 Santoku Corporation Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet
US7004228B2 (en) 2000-10-06 2006-02-28 Santoku Corporation Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet
US7547365B2 (en) 2000-10-06 2009-06-16 Hitachi Metals, Ltd. Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet
EP1403884A3 (en) * 2000-11-13 2006-02-15 Neomax Co., Ltd. A rapidly solidified alloy for preparing a magnet powder and a bonded magnet
US7217328B2 (en) 2000-11-13 2007-05-15 Neomax Co., Ltd. Compound for rare-earth bonded magnet and bonded magnet using the compound
EP1403884A2 (en) * 2000-11-13 2004-03-31 Sumitomo Special Metals Co., Ltd. A rapidly solidified alloy for preparing a magnet powder and a bonded magnet
US6890392B2 (en) 2000-11-13 2005-05-10 Neomax Co., Ltd. Nanocomposite magnet and method for producing same
EP1207537A1 (en) * 2000-11-13 2002-05-22 Sumitomo Special Metals Co., Ltd. Nanocomposite magnet and method for producing same
US6790296B2 (en) 2000-11-13 2004-09-14 Neomax Co., Ltd. Nanocomposite magnet and method for producing same
WO2002039465A1 (en) * 2000-11-13 2002-05-16 Sumitomo Special Metals Co., Ltd. Nanocomposite magnet and method for producing same
WO2002093591A3 (en) * 2001-05-15 2003-03-06 Sumitomo Spec Metals Iron-based rare earth alloy nanocomposite magnet and method for producing the same
US7208097B2 (en) 2001-05-15 2007-04-24 Neomax Co., Ltd. Iron-based rare earth alloy nanocomposite magnet and method for producing the same
JP4670179B2 (en) * 2001-05-18 2011-04-13 日立金属株式会社 Permanent magnet having a plurality of ferromagnetic phases and method for producing the same
JP2002343660A (en) * 2001-05-18 2002-11-29 Sumitomo Special Metals Co Ltd Permanent magnet having a plurality of ferromagnetic phases and manufacturing method therefor
WO2003001541A1 (en) * 2001-06-22 2003-01-03 Sumitomo Special Metals Co., Ltd. Rare earth magnet and method for production thereof
US7258751B2 (en) 2001-06-22 2007-08-21 Neomax Co., Ltd. Rare earth magnet and method for production thereof
US7867343B2 (en) 2001-06-22 2011-01-11 Hitachi Metals, Ltd. Rare earth magnet and method for production thereof
WO2003012802A1 (en) * 2001-07-31 2003-02-13 Sumitomo Special Metals Co., Ltd. Method for producing nanocomposite magnet using atomizing method
EP1414050A4 (en) * 2001-07-31 2005-03-16 Neomax Co Ltd Method for producing nanocomposite magnet using atomizing method
US7507302B2 (en) 2001-07-31 2009-03-24 Hitachi Metals, Ltd. Method for producing nanocomposite magnet using atomizing method
EP1414050A1 (en) * 2001-07-31 2004-04-28 Sumitomo Special Metals Company Limited Method for producing nanocomposite magnet using atomizing method
JP2003224010A (en) * 2001-11-20 2003-08-08 Sumitomo Special Metals Co Ltd Compound for rare earth based bonded magnet and bonded magnet using the same
EP1447823A4 (en) * 2001-11-20 2005-03-02 Neomax Co Ltd Compound for rare earth element based bonded magnet and bonded magnet using the same
EP1447823A1 (en) * 2001-11-20 2004-08-18 Sumitomo Special Metals Company Limited Compound for rare earth element based bonded magnet and bonded magnet using the same
US7261781B2 (en) 2001-11-22 2007-08-28 Neomax Co., Ltd. Nanocomposite magnet
EP1446816A4 (en) * 2001-11-22 2005-03-02 Neomax Co Ltd Nanocomposite magnet
EP1446816A1 (en) * 2001-11-22 2004-08-18 Sumitomo Special Metals Company Limited Nanocomposite magnet
WO2003044812A1 (en) * 2001-11-22 2003-05-30 Sumitomo Special Metals Co., Ltd. Nanocomposite magnet
US7160398B2 (en) 2002-08-08 2007-01-09 Neomax Co., Ltd. Method of making rapidly solidified alloy for magnet
JP2019186331A (en) * 2018-04-05 2019-10-24 トヨタ自動車株式会社 Method for manufacturing neodymium-iron-boron based magnet

Similar Documents

Publication Publication Date Title
JP2002520843A (en) High-performance iron-rare earth-boron-refractory-cobalt nanocomposite
JPS60162750A (en) Rare earth magnet and its production
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JPH02298003A (en) Manufacture of rare-earth permanent magnet
JP2001323343A (en) Alloy for high performance rare earth parmanent magnet and its production method
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
JPH01219143A (en) Sintered permanent magnet material and its production
JPH03261104A (en) Manufacture of anisotropic rare earth permanent magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JPH03260018A (en) Manufacture of anisotropic rare earth metal permanent magnet
US5211766A (en) Anisotropic neodymium-iron-boron permanent magnets formed at reduced hot working temperatures
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JP2580067B2 (en) Manufacturing method of rare earth permanent magnet
US4966633A (en) Coercivity in hot worked iron-neodymium boron type permanent magnets
JPS63115304A (en) High-performance rare-earth cast magnet
JPS61129802A (en) Heat treatment of iron-rare earth metal-boron system permanent magnet
JPS6115943A (en) Rare earth permanent magnet thin strip
JPS63111602A (en) High performance rare earth cast magnet
JPH0521216A (en) Permanent magnet alloy and its production
JP2580066B2 (en) Anisotropic permanent magnet
JPH01171219A (en) Manufacture of permanent magnet integral with york
JPH1088273A (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet and production of rare earth permanent magnet
JPH01128404A (en) Manufacture of permanent magnet
JPH0491403A (en) Anisotropic permanent magnet
JPS6115936A (en) Rare earth element-base permanent magnet