JPS6115936A - Rare earth element-base permanent magnet - Google Patents

Rare earth element-base permanent magnet

Info

Publication number
JPS6115936A
JPS6115936A JP59136545A JP13654584A JPS6115936A JP S6115936 A JPS6115936 A JP S6115936A JP 59136545 A JP59136545 A JP 59136545A JP 13654584 A JP13654584 A JP 13654584A JP S6115936 A JPS6115936 A JP S6115936A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
permanent magnet
base permanent
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59136545A
Other languages
Japanese (ja)
Inventor
Hiroshi Shishido
宍戸 浩
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59136545A priority Critical patent/JPS6115936A/en
Publication of JPS6115936A publication Critical patent/JPS6115936A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a rare earth element-base permanent magnet having high coercive force and superior workability by very rapidly cooling a molten Cu-Ni- Co alloy contg. a rare earth element. CONSTITUTION:A Cu-Ni-Co alloy contg. a rare earth element and having a composition represented by formula I (where R is at least one kind of rare earth element such as Y, La, Ce, Pr, Nd, Pm or Sm, a=40-60wt%, b=15-35wt%, and x=5-40wt%) is refined. The molten alloy is very rapidly cooled at >=10<3> deg.C/ sec cooling rate by feeding to a cooling body rotating at a high speed such as a rotating body or a roll to form a thin plate of 30-300mum thickness. The thin plate is annealed at 500-750 deg.C to manufacture a thin plate of a rare earth element-base permanent magnet having high coercive force and superior workability.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、各種の電気計測器や通信機器などに用いて
好適な希土類遷移金属系の永久磁石に関し、とくにその
保磁力ひいては(B H) wax特性の改善を因った
ものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to rare earth transition metal permanent magnets suitable for use in various electrical measuring instruments, communication devices, etc. This is due to the improvement in wax characteristics.

(従来の技術) 近年、各種の電気計測器や通信機器さらにはマイクロモ
ータなどに対し、小型化、軽量化、高性能化および高信
頼化への要求が一段と強まっている。このため上記した
ような機器に使用される永久磁石としては、(BH)m
a、xがより大きい材料が求められている。
(Prior Art) In recent years, there has been an increasing demand for smaller size, lighter weight, higher performance, and higher reliability for various electrical measuring instruments, communication devices, and even micro motors. Therefore, as a permanent magnet used in the above-mentioned equipment, (BH)m
Materials with larger a and x are required.

ところで上記のような用途に用いて好適なものとして希
土類系永久磁石があり、この磁石は開発当初から高保磁
力磁石として発展し規在に至っている。
By the way, there are rare earth permanent magnets that are suitable for use in the above-mentioned applications, and these magnets have been developed as high coercive force magnets since the beginning of their development, and have become commonplace.

(発明が解決しようとする問題点) この発明は、かような磁石特性に一層優れる希土類系永
久磁石を提案することを第1の目的とする。
(Problems to be Solved by the Invention) The first object of the present invention is to propose a rare earth permanent magnet that has even more excellent magnetic properties.

ところでこの希土類系永久磁石は、上記したように磁石
特性は優れているものの、加工性が極めて悪いこと、な
らびに機器への組込み後の着磁が難しいところに問題を
残していた。従ってかかる磁石は、たとえば第2図に製
造工程を示したような粉末成形−焼結法によって製造せ
ざるを得なかったわけであるが、希土類元素という高価
な原料が必要なことに加え、かかる繁雑な工程が不可欠
であったため、製造コストが高いところにも問題があっ
た。
Although this rare earth permanent magnet has excellent magnetic properties as described above, it still has problems in that it has extremely poor workability and is difficult to magnetize after being incorporated into equipment. Therefore, such magnets had to be manufactured by, for example, the powder compaction-sintering method as shown in the manufacturing process shown in Figure 2, but in addition to requiring expensive raw materials such as rare earth elements, such a process was complicated. Another problem was that the production costs were high because several steps were required.

この発明は、上記の問題を有利に解決して、加工性に富
み、しかも簡便な製造工程下に低コストで済む、希土類
系永久磁石を提案することを第2の目的とする。
A second object of the present invention is to advantageously solve the above-mentioned problems and to propose a rare earth permanent magnet that is highly workable and can be produced at low cost through a simple manufacturing process.

(問題点を解決するための手段) この発明は、希土類系磁石の成分組成について綿密な研
究を行った末究明された新規知見、ならびに最近開発さ
れた液体溶湯から直接に薄帯を得るいわゆる液体急冷直
接製板法の好適利用に立脚するものである。   “ すなわちこの発明は、 化学式(Cua”’bC0100−a−b  )IQQ
−X  RXただしR:Y、la、Ce、Pr、Nd、
PalおよびSmのうちから選んだ少くとも一種、a:
40〜60wt%、 b:15〜35wt%、 X:5〜aowt%、 で示される組成になる希土類系永久磁石である。
(Means for Solving the Problems) This invention is based on new knowledge discovered through thorough research on the component composition of rare earth magnets, as well as the recently developed so-called liquid that produces thin strips directly from molten liquid. This is based on the suitable use of the rapid cooling direct plate manufacturing method. "That is, this invention has the chemical formula (Cua"'bC0100-a-b)IQQ
-X RX However, R: Y, la, Ce, Pr, Nd,
At least one selected from Pal and Sm, a:
The rare earth permanent magnet has a composition as follows: 40 to 60 wt%, b: 15 to 35 wt%, and X: 5 to aowt%.

この発明磁石としては、上記の適正成分組成に調整した
溶湯を、冷却面が高速で更新移動する冷却体上に連続し
て供給し、急冷凝固させて薄帯化させて得たものが、極
薄物でかつ加工性に優れたものを得るという点でとりわ
け有利である。
The magnet of this invention is obtained by continuously supplying the molten metal adjusted to the above-mentioned appropriate composition onto a cooling body whose cooling surface is updated and moving at high speed, and rapidly solidifying it into a thin ribbon. This is particularly advantageous in that it allows the production of thin products with excellent workability.

(作 用) 以下この発明において成分組成を上記のとおりに限定し
た理由について説明する。
(Function) The reason why the component composition is limited as described above in this invention will be explained below.

CIJは、2相分離安定化の点で有用な元素であるが、
40wt%に満だないと2相分離において十分な非磁性
相が得られず1、一方eowt%を超えると飽和磁化ひ
いては残留磁化が低下し、十分な(B H) waxを
確保できないので、含有量は40〜60wt%の範囲に
限定した。
CIJ is a useful element in terms of stabilizing two-phase separation, but
If it is less than 40 wt%, a sufficient nonmagnetic phase cannot be obtained in two-phase separation1, whereas if it exceeds eowt%, saturation magnetization and eventually residual magnetization will decrease, making it impossible to ensure sufficient (B H) wax, so the content The amount was limited to a range of 40-60 wt%.

Niは、2相分離安定化と磁性向上のために添加される
が、15wt%未満では非磁性相の量が十分とはいえず
、一方35wt%を超えると2相分離に長時間を要しコ
スト高ともなるので、含有量は15〜35wt%の範囲
に限定した。
Ni is added to stabilize two-phase separation and improve magnetism, but if it is less than 15 wt%, the amount of non-magnetic phase is not sufficient, while if it exceeds 35 wt%, it takes a long time for two-phase separation. Since it also increases the cost, the content is limited to a range of 15 to 35 wt%.

COは、強磁性成分としてこの発明の永久磁石にとって
不可欠であり、上記CuおよびNiと合わせて100*
t%となる範囲で含有させる。
CO is essential for the permanent magnet of this invention as a ferromagnetic component, and together with the above-mentioned Cu and Ni, CO is 100*
It is contained within a range of t%.

またY、La、Ce、Pr、Nd、PmJ5J:(fS
Illはいずれも、磁石向上のために不可欠な元素であ
るが、これらの希土類元素の含有量が5wt%に満だな
いと保磁力の改善効果に乏しく、一方40wt%を超え
て添加してもその効果は飽和に達し、不経済でもあるの
で、5〜40wt%の範囲に限定した。
Also, Y, La, Ce, Pr, Nd, PmJ5J: (fS
All of these rare earth elements are essential elements for improving magnets, but if the content of these rare earth elements is less than 5 wt%, the effect of improving coercive force is poor, while on the other hand, even if they are added in excess of 40 wt%, Since the effect reaches saturation and is also uneconomical, it is limited to a range of 5 to 40 wt%.

次にこの発明磁石の製造工程について説明する。Next, the manufacturing process of this invention magnet will be explained.

かかる合金磁石は、前掲第2図に示したような粉末成形
−焼結法によって製造することも勿論できるが、以下に
述べるいわゆる液体急冷直接製板法に従って製造するこ
とが加工性改善の面でとりわけ有利である。
Although such alloy magnets can of course be manufactured by the powder compaction-sintering method as shown in Figure 2 above, it is preferable to manufacture them by the so-called liquid quenching direct sheet manufacturing method described below in terms of improved workability. Especially advantageous.

さて好適成分組成に調整した溶湯は、まず第3図a、b
、c、dおよびeに示したような薄帯化法によって、厚
み=30〜300μm程度の薄帯とする。このとき冷却
速度が、103℃//Sに満たないと急冷直後の薄帯の
柱状晶組織が破壊されてしまい、後述の熱処理によって
も磁気特性の回復は難しくなるので、急冷は103℃/
S以上の冷却速度で行うことが望ましい。
Now, the molten metal adjusted to a suitable composition is first shown in Figure 3 a and b.
A ribbon having a thickness of about 30 to 300 μm is obtained by the ribbon forming method shown in , c, d, and e. At this time, if the cooling rate is less than 103℃//S, the columnar crystal structure of the ribbon immediately after quenching will be destroyed, and it will be difficult to recover the magnetic properties even with the heat treatment described below.
It is desirable to carry out the cooling at a cooling rate of S or higher.

かくして得られた薄帯は、凝固直後の状態では十分満足
のいく磁石特性は得難いので、引続いて熱処理を施す。
Since it is difficult to obtain sufficiently satisfactory magnetic properties of the thus obtained ribbon immediately after solidification, it is subsequently subjected to heat treatment.

第1図に、上掲第3図Cに示した双ロール法によって製
造した(Cu50 N’24 CO!6 )80 Nd
2゜の組成になる板厚150μmの薄帯を、アルゴンガ
ス中で熱処理(1時間保定)したときの保磁力iHcに
ついて調べた結果を、熱処理温度との関係で示す。
Figure 1 shows (Cu50N'24CO!6)80Nd produced by the twin roll method shown in Figure 3C above.
The results of investigating the coercive force iHc when a 150 μm thick ribbon having a composition of 2° was heat treated in argon gas (retained for 1 hour) are shown in relation to the heat treatment temperature.

同図より明らかなように、500〜750℃の温度で焼
鈍することによって優れた保磁力が得られる。
As is clear from the figure, excellent coercive force can be obtained by annealing at a temperature of 500 to 750°C.

またかかる急冷凝固薄帯は、しなやかで靭性に優れ、1
80°曲げを行ってもすぐに折れたりするようなことは
な(、従って加工性にも優れている。
In addition, such a rapidly solidified ribbon is flexible and has excellent toughness, and
Even if it is bent 80 degrees, it will not break immediately (therefore, it has excellent workability.

ここにかような永久磁石薄帯の製造に当っては、第4図
に示した工程で済み、従って前郷第2図に示した従来工
程と較べて、省工程化および低コスト化が有利に達成さ
れるわけである。
In manufacturing such a permanent magnet ribbon, the process shown in Figure 4 is sufficient, and therefore, compared to the conventional process shown in Maego Figure 2, it is advantageous in process saving and cost reduction. It will be achieved.

(実施例) 実施例1 (Cus+s N +25  COso )so N 
dgo の成分を有する合金について、10kgのイン
ゴットを製造したのち、粉砕機で数μm程度の微粉末と
した。ついでこの微粉末を約5ton/d位の圧力で圧
縮成形を行なった。この際、約5k Oeの印加磁場を
加えた。このようにして得た素材を1150℃で焼結し
た後800℃迄徐冷し、800℃からただちに急冷した
(Example) Example 1 (Cus+s N +25 COso )so N
An ingot of 10 kg was produced from an alloy having a component of dgo, and then ground into a fine powder of several μm in size using a crusher. This fine powder was then compression molded at a pressure of about 5 tons/d. At this time, an applied magnetic field of about 5 kOe was applied. The material thus obtained was sintered at 1150°C, slowly cooled to 800°C, and immediately rapidly cooled from 800°C.

このときの磁性を表1に示す。The magnetism at this time is shown in Table 1.

実施例2 (Cu2.N1□5CO5o)8oNd2oの組成にな
る溶湯を、双ロール法によって103℃/Sの冷却速度
で急冷凝固させ、厚み200μ川の薄帯とした。
Example 2 A molten metal having a composition of (Cu2.N1□5CO5o)8oNd2o was rapidly solidified by a twin roll method at a cooling rate of 103° C./S to form a ribbon with a thickness of 200 μm.

ついでこの薄帯にAr雰囲気中で5時間の焼鈍処理を施
した場合における保持力iHcの経時変化を表2に示す
。。
Table 2 shows the change in holding force iHc over time when this ribbon was annealed for 5 hours in an Ar atmosphere. .

実施例3 表3に示した成分組成になる5種類の溶湯を、双ロール
法によって104℃/Sの冷却速度で急冷凝固させてそ
れぞれ厚み130.cltaの薄帯とした。
Example 3 Five types of molten metals having the component compositions shown in Table 3 were rapidly solidified by a twin roll method at a cooling rate of 104°C/S to a thickness of 130°C. It was made into a thin strip of clta.

ついでこれらの薄帯に、Ar雰囲気中で640℃。These ribbons were then heated at 640°C in an Ar atmosphere.

5時間の焼鈍処理を施した。An annealing treatment was performed for 5 hours.

得られた各薄帯の保磁力iHcについて調べた結果を、
表3に示したが、いずれも高い保磁力を呈している。
The results of investigating the coercive force iHc of each ribbon obtained are as follows:
As shown in Table 3, all exhibit high coercive force.

表3 (発明の効果) 以上述べたようにこの発明に従う希土類系永久磁石は、
従来材に較べて磁石特性が格段に優れ、しかもとくに液
体急冷直接製板法によって得た薄帯磁石については、加
工性が大幅に改善され、従ってコストの点でも有利であ
る。
Table 3 (Effects of the invention) As stated above, the rare earth permanent magnet according to the invention is
Magnetic properties are much better than conventional materials, and especially for ribbon magnets obtained by the liquid quenching direct plate manufacturing method, workability is greatly improved, and therefore, they are advantageous in terms of cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に従う(Cu、oNi2゜C026
)8oNd2oの組成になる薄帯の焼鈍潤度と保磁力と
の関係を示したグラフ、 第2図は、粉末成形−焼結法の製造工程を示すブロック
図、 第3図a、b、c、dおよびeはいずれも、溶湯の急冷
薄帯化要領を示した模式図、 第4図は、液体急冷直接製品板法の製造工程を示すブロ
ック図である。
FIG. 1 shows the results according to the present invention (Cu, oNi2°C026
) A graph showing the relationship between the annealing wetness and coercive force of a ribbon with a composition of 8oNd2o. Figure 2 is a block diagram showing the manufacturing process of the powder compaction-sintering method. Figure 3 a, b, c , d and e are all schematic diagrams showing the procedure for quenching molten metal into a ribbon, and FIG. 4 is a block diagram showing the manufacturing process of the liquid quenching direct product plate method.

Claims (1)

【特許請求の範囲】 1、化学式(Cu_aNi_bCo_1_0_0_−_
a_−_b)_1_0_0_−_xR_xただしR:Y
、La、Ce、Pr、Nd、 PmおよびSmのうちから選んだ少 くとも一種、 a:40〜60wt%、 b:15〜35wt%、 x:5〜40wt%、 で示される組成になる希土類系永久磁石。
[Claims] 1. Chemical formula (Cu_aNi_bCo_1_0_0_-_
a_-_b)_1_0_0_-_xR_x However, R:Y
, La, Ce, Pr, Nd, Pm, and Sm; a: 40 to 60 wt%; b: 15 to 35 wt%; x: 5 to 40 wt%. permanent magnet.
JP59136545A 1984-07-03 1984-07-03 Rare earth element-base permanent magnet Pending JPS6115936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59136545A JPS6115936A (en) 1984-07-03 1984-07-03 Rare earth element-base permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59136545A JPS6115936A (en) 1984-07-03 1984-07-03 Rare earth element-base permanent magnet

Publications (1)

Publication Number Publication Date
JPS6115936A true JPS6115936A (en) 1986-01-24

Family

ID=15177704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59136545A Pending JPS6115936A (en) 1984-07-03 1984-07-03 Rare earth element-base permanent magnet

Country Status (1)

Country Link
JP (1) JPS6115936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504486A (en) * 1989-01-25 1992-08-06 マサチューセッツ・インスティチュート・オブ・テクノロジー Method and apparatus for producing polycrystalline flakes of magnetic material with strong directionality

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237930Y2 (en) * 1975-04-09 1977-08-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237930Y2 (en) * 1975-04-09 1977-08-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504486A (en) * 1989-01-25 1992-08-06 マサチューセッツ・インスティチュート・オブ・テクノロジー Method and apparatus for producing polycrystalline flakes of magnetic material with strong directionality

Similar Documents

Publication Publication Date Title
JP3057448B2 (en) Rare earth permanent magnet
JPH0515775B2 (en)
JPH044387B2 (en)
JPS586778B2 (en) Anisotropic permanent magnet alloy and its manufacturing method
JPH02298003A (en) Manufacture of rare-earth permanent magnet
JP2625163B2 (en) Manufacturing method of permanent magnet powder
US4396441A (en) Permanent magnet having ultra-high coercive force and large maximum energy product and method of producing the same
JPS6115936A (en) Rare earth element-base permanent magnet
JPS6115944A (en) Rare earth magnet thin strip
JPH0146575B2 (en)
JPS6115943A (en) Rare earth permanent magnet thin strip
JPH06231917A (en) Permanent magnet of rare earth-transition metal base and its manufacture
WO1981000643A1 (en) Magnetic alloys containing fe-cr-co
JPS6115945A (en) Rare earth permanent magnet
JP4043613B2 (en) Fe-based hard magnetic alloy with supercooled liquid region
JPS63115304A (en) High-performance rare-earth cast magnet
JP2580067B2 (en) Manufacturing method of rare earth permanent magnet
JPS6115934A (en) Rare earth element-base permanent magnet
JPS6115950A (en) Rare earth element-base permanent magnet
JPH0521216A (en) Permanent magnet alloy and its production
JPS63111602A (en) High performance rare earth cast magnet
JPS5985844A (en) Rapidly cooled magnet alloy
JPS6321804A (en) Manufacture of permanent magnet of rare-earth iron
JPH0533095A (en) Permanent magnet alloy and its production
JPH01184244A (en) Permanent magnetic material and its manufacture