JPS5985844A - Rapidly cooled magnet alloy - Google Patents

Rapidly cooled magnet alloy

Info

Publication number
JPS5985844A
JPS5985844A JP57195324A JP19532482A JPS5985844A JP S5985844 A JPS5985844 A JP S5985844A JP 57195324 A JP57195324 A JP 57195324A JP 19532482 A JP19532482 A JP 19532482A JP S5985844 A JPS5985844 A JP S5985844A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
magnetic properties
rapidly cooled
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57195324A
Other languages
Japanese (ja)
Other versions
JPS6116416B2 (en
Inventor
Kimiyuki Jinno
神野 公行
Sakae Higano
栄 日向野
Mitsuru Nagakura
永倉 充
Hiroshi Yamamoto
洋 山元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Mitsubishi Steel KK
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Mitsubishi Steel KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd, Mitsubishi Steel KK filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP57195324A priority Critical patent/JPS5985844A/en
Publication of JPS5985844A publication Critical patent/JPS5985844A/en
Publication of JPS6116416B2 publication Critical patent/JPS6116416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting

Abstract

PURPOSE:To improve the machinability and magnetic characteristics by spraying a molten alloy consisting of Nd, Pr and Sm as rare earth elements, Fe and Co represented by a prescribed compositional formula on the surface of a prescribed rotating body. CONSTITUTION:An alloy represented by a compositional formula Re1-x(Fe1-y Coy)x (where x is 0.4-0.7, y is 0.01-0.4, and Re is two or more among Nd, Pr and Sm as rare earth elements) is refined. The molten alloy is sprayed on a rotating body rotating at 5-30m/sec surface speed, and it is rapidly cooled. The resulting magnet alloy has superior machinability and magnetic characteristics.

Description

【発明の詳細な説明】 本発明は急冷磁石合金に関し、さらに詳細にはNd 、
Pr 、Smの希土類元素のうちの2種以上と、Fe 
、Coからなる合金から得られる急冷磁石合金に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to rapidly solidified magnetic alloys, and more particularly to Nd,
Two or more of the rare earth elements Pr, Sm and Fe
The present invention relates to a rapidly solidified magnetic alloy obtained from an alloy consisting of , Co, and Co.

従来、希土類元素を含む希土類磁石合金として、smc
o5、smco7、Sm2co17などで代表される金
属間化合物磁石が知られている。これらの希土類磁石は
磁気特性が優れているため、現在広く利用されている。
Conventionally, as a rare earth magnet alloy containing rare earth elements, SMC
Intermetallic compound magnets represented by o5, smco7, Sm2co17, etc. are known. These rare earth magnets have excellent magnetic properties and are currently widely used.

一般に希土類磁石の製造方法は、優れた磁気特性を得る
目的で、溶解−粉砕−プレス成形−焼結一時効熱処理が
必要であり、かつ濡疫管理が極めて複雑であること、金
属間化合物11?Eiであるため脆く、機械加工性が極
めて悪いなどの欠点を有している。
In general, the manufacturing method of rare earth magnets requires melting, crushing, press forming, and sintering temporary heat treatment in order to obtain excellent magnetic properties, and moisture management is extremely complicated. Since it is Ei, it has drawbacks such as being brittle and having extremely poor machinability.

本発明はこの点を改善すべくなされたもので、その要旨
は組成式 Re I−X (Fe +−yco v )
 X[ただし0.4≦Xで0.7.0.01≦Y≦0.
4コで示され、Reは希土類元素のNd 、pr、3m
の中の2種以−Fからなる合金の溶湯を5〜30 m/
secの表面速度を有する回転体の表面に射出して、溶
湯から急速に冷却されてなることを特徴とする急冷磁石
合金である。
The present invention was made to improve this point, and the gist thereof is the compositional formula Re I-X (Fe +-yco v )
X [However, 0.4≦X and 0.7.0.01≦Y≦0.
Re is the rare earth element Nd, pr, 3m
5 to 30 m/m of molten alloy consisting of two or more of -F
This is a rapidly solidified magnetic alloy characterized by being rapidly cooled from a molten metal by injecting it onto the surface of a rotating body having a surface speed of sec.

本発明の急冷磁石合金は従来の結晶の希土類磁石合金と
成分おにび金相的に全く異なる。本発明の組成式の範囲
から4りられる急冷合金の構造は、X線回折の結果から
判断すると、急冷時の回転体の表面速度が30m/se
cに近い場合には、X線的に非晶質構造である。また、
5m/secに近い場合には、結晶、例えば同組成のも
のについてアーク溶解したインゴットと比較すると、そ
の回折パターンは類似しているが、ただ回折ピーク高さ
がインゴットのものより著しく小さいので、優れた磁気
特性を示すものと考えられる。
The rapidly solidified magnet alloy of the present invention is completely different from conventional crystalline rare earth magnet alloys in terms of composition and phase. Judging from the results of X-ray diffraction, the structure of the rapidly solidified alloy obtained from the range of the compositional formula of the present invention is such that the surface speed of the rotating body during rapid cooling is 30 m/sec.
If it is close to c, it is an amorphous structure based on X-rays. Also,
When the velocity is close to 5 m/sec, the diffraction pattern is similar when compared with an arc-melted ingot of the same composition, but the diffraction peak height is significantly smaller than that of the ingot, making it superior. It is thought that it exhibits magnetic properties.

この場合の急冷磁石合金に存在する物質は、希土類金属
Re  (Nd 、 Pr 、 Sm )、Re(Fe
、Co)?およびRe2 (Fe、Go)17で示され
るいずれかの金属間化合物あるいは金属−ト金属間化合
物の混合物からなる。したがって、本発明のうち、優れ
た磁気特性を得るには表面速度が5〜30 m/、se
cの範囲にありしかも希土類金属Re  (Nd 、 
Pr 、 8m )、金属間化合物Re  (Fe 、
Co ) 2 、およびRe2(Fe、Co)+7の存
在量が、同一組成からなる多結晶の合金の存在量よりも
少なくすることが条件である。このことは次の試験から
あきらかである。すなわち、前記組成式から得られる合
金を高周波溶解あるいはアーク溶解法で作製した。εの
合金は多結晶合金であり、粉末X線回折法により物質の
同定を行なうと、希土類(Nd 、Pr 1Sm )の
種類および成分量により、次の物質の存在が確認された
。(1)としてReがNrl−Prの場合にはRe金属
、Rez(re 1Co )+7、(21としてReが
Nd −8mの場合には、Re金属、Re  (Fe、
CO)2Re 2  (Fe 、 Co ) +7、[
31としてReがPr−8mの場合には、Re金属、R
e(Fe、Co)2、Rez  (Fe、Co)+7、
 どしてReがNd −Pr−3mの場合には、Re金
属Re  (Fe、Co)2、Re2 (Fe、Co)
17で示される単独元素と金属間化合物の五合物からな
る合金として同定された。
The substances present in the rapidly solidified magnet alloy in this case include the rare earth metals Re (Nd, Pr, Sm), Re(Fe
, Co)? and Re2 (Fe, Go)17 or a mixture of metal-to-intermetallic compounds. Therefore, in the present invention, in order to obtain excellent magnetic properties, the surface velocity should be 5 to 30 m/, se
c and rare earth metals Re (Nd,
Pr, 8m), intermetallic compound Re (Fe,
The condition is that the amounts of Co ) 2 and Re2(Fe, Co)+7 are smaller than the amounts of polycrystalline alloys having the same composition. This is clear from the following test. That is, an alloy obtained from the above composition formula was produced by high frequency melting or arc melting. The alloy ε is a polycrystalline alloy, and when the substance was identified by powder X-ray diffraction, the presence of the following substance was confirmed based on the type and content of rare earth elements (Nd, Pr 1Sm ). (1) When Re is Nrl-Pr, Re metal, Rez (re 1Co ) + 7, (21 when Re is Nd -8m, Re metal, Re (Fe,
CO)2Re2(Fe,Co)+7,[
When Re is Pr-8m as 31, Re metal, R
e (Fe, Co)2, Rez (Fe, Co)+7,
When Re is Nd-Pr-3m, Re metal Re (Fe, Co)2, Re2 (Fe, Co)
It was identified as an alloy consisting of a single element shown by No. 17 and a pentacompound of an intermetallic compound.

これらの合金の磁気特性を室温で試料振動型磁力計によ
り測定すると、保磁力(+Hc )は〜400(Oe)
程度、印加磁tllOK (Oe )時の磁化(σIO
K )は、〜42 (emu /!] )程度テアル1
この塊状多結晶合金は、磁気特性の改善の目的により階
段昇・降温あるいは一定温度で、ある時間保持する方法
の組み合わせなどの熱処理方法を実施した場合でも+H
cおよびσ値の改善は極めて小さく、希土類磁石として
利用することは磁気特性あるいはコスト而からもほとん
ど希望がもてない。それを本発明では急冷処理によって
、磁気特性のすぐれたものとなし得るのである。
When the magnetic properties of these alloys were measured using a sample vibrating magnetometer at room temperature, the coercive force (+Hc) was ~400 (Oe).
Magnetization (σIO) when applied magnetism tllOK (Oe)
K) is ~42 (emu/!) degree 1
This blocky polycrystalline alloy has a +
The improvement in c and σ values is extremely small, and there is little hope of using it as a rare earth magnet due to its magnetic properties or cost. In the present invention, it can be made to have excellent magnetic properties by rapid cooling treatment.

つぎに本発明の特許請求の範囲についてその限定理由を
述べる。
Next, the reasons for limiting the scope of the claims of the present invention will be described.

まず組成式Re +−x (Fe I−YCOY ) 
Xで×く0.4の場合には1七値が1000(Oe)以
下となる。
First, the composition formula Re +-x (Fe I-YCOY)
If X is 0.4, the 17 value will be 1000 (Oe) or less.

また、x > 0.7の場合には!W値が極端に低下す
ること、および希土類元素の量が著しく多いため、工業
製品としてはコスト高となり不利である。また、遷移金
属の(Fe+−vcOv)でY〈0.01の場合には磁
化σ値が低下し、さらに急冷して得られるリボン状薄帯
の形状について良質なものが得にくい欠点がある。また
、y>0.4の場合には葭およびσ値が低下し、優れた
磁5− 気持性を有する急冷磁石合金が1qられない。
Also, if x > 0.7! Since the W value is extremely reduced and the amount of rare earth elements is extremely large, it is disadvantageous as an industrial product due to high cost. Further, in the case of transition metal (Fe+-vcOv) and Y<0.01, the magnetization σ value decreases, and there is also a drawback that it is difficult to obtain a ribbon-shaped ribbon of good quality by rapid cooling. Further, when y>0.4, the magnetic flux and σ value decrease, and a rapidly solidified magnetic alloy having excellent magnetic properties cannot be produced.

本発明の急冷磁石合金は、一般に非晶質磁性材料の製造
に使用されている金属製の回転体の表面上に溶湯を射出
し、リボン状試r1を得る液体急冷法によって製造され
る。液体急冷法とは、構成元素の原F8+あるいは合金
を石英、酸化物あるいは高融点金属製のルツボに装入し
、これを高周波あるいは抵抗加熱溶解後、ルツボ下端部
に設番プられた溶湯出口部からArガス射出圧0.1〜
1kg/cm2で金属製の回転体表面に射出急冷し、リ
ボン状の磁石合金を得るものである。
The quenched magnetic alloy of the present invention is produced by a liquid quenching method in which a molten metal is injected onto the surface of a metal rotating body, which is generally used in the production of amorphous magnetic materials, to obtain a ribbon-shaped sample r1. In the liquid quenching method, the constituent elements F8+ or alloys are charged into a crucible made of quartz, oxide, or high melting point metal, melted by high frequency or resistance heating, and then passed through a molten metal outlet set at the bottom of the crucible. Ar gas injection pressure from 0.1 to
A ribbon-shaped magnetic alloy is obtained by injection and quenching onto the surface of a metal rotating body at 1 kg/cm2.

これら溶解・射出作業は希土類元素の酸化を防止する目
的で、全てArあるいは窒素ガスな°どの不活性ガス雰
囲気中で実施しなければならない。溶湯急冷用の回転体
の材質はOLI、FeおよびそのCrメッキ、ステンレ
スなどの耐熱、耐触性の合金あるいはセラミックス製が
利用でき、さらに伝熱性およびぬれ性などを肖慮し、回
転体表面に異種金属あるいはセラミックの表面処理を有
するものが良い。回転体の形状はロ6− −ル、円板などであり、又円筒の内面に溶湯を射出する
ようにしてもよい。
These melting and injection operations must all be carried out in an inert gas atmosphere such as Ar or nitrogen gas in order to prevent oxidation of the rare earth elements. The material of the rotating body for rapidly cooling molten metal can be OLI, Fe and its Cr plating, heat-resistant and contact-resistant alloys such as stainless steel, or ceramics. It is preferable to use a surface treatment of different metals or ceramics. The shape of the rotating body is a roll, a disk, etc., and the molten metal may be injected into the inner surface of a cylinder.

本発明の急冷11磁石合金、高速回転体例えば回転ロー
ル表面上での冷却速度により得られる磁石合金の磁気特
性が大幅に変化する。優れた磁気特性を有する磁石合金
を得るためには、回転体の表面速度が5〜30 m /
secを有する必要がある。この回転体の表面速度とは
例えば回転ロールの場合、ロールの円周×回転数(r。
The magnetic properties of the rapidly cooled 11 magnet alloy of the present invention, the obtained magnet alloy, vary significantly depending on the cooling rate on the surface of a high-speed rotating body, such as a rotating roll. In order to obtain a magnet alloy with excellent magnetic properties, the surface speed of the rotating body should be 5 to 30 m /
sec. For example, in the case of a rotating roll, the surface speed of the rotating body is the circumference of the roll x the number of rotations (r).

p、m>で規定されるものである。回転ロール表面速度
が5〜30 IIl/secで得られるリボン状磁石合
金のリボン厚さは10〜数百μm程度であるが、回転体
の表面速度が30 m /secを越えると極端にリボ
ンの厚さが薄くなり良質な連続した長尺のリボンが得に
くくなる。これらの製造方法から、得られる急冷磁石合
金は薄帯であるから、薄板状の硬質磁性材料の用途には
、焼結磁石を切断して作る方法と比較して製造面での工
程数の大幅な簡略化の他に機械加工および切断のみで製
品化が計れるのでコスト面でも有利である。又、高温で
の熱処理を必毀とせずに磁気特性を改善することができ
るのでこの点でも右利である。
p, m>. The ribbon thickness of the ribbon-shaped magnet alloy obtained when the surface speed of the rotating roll is 5 to 30 m/sec is about 10 to several hundred μm, but when the surface speed of the rotating body exceeds 30 m/sec, the ribbon thickness becomes extremely thin. As the thickness becomes thinner, it becomes difficult to obtain a continuous long ribbon of good quality. Since the rapidly solidified magnetic alloy obtained from these manufacturing methods is a thin ribbon, it requires a significantly larger number of manufacturing steps than the method of cutting sintered magnets for use with thin plate-shaped hard magnetic materials. In addition to the simplification, it is also advantageous in terms of cost because it can be manufactured by only machining and cutting. Furthermore, since the magnetic properties can be improved without necessarily requiring heat treatment at high temperatures, this is also an advantage.

以下に本発明の詳細を実施例により説明する。The details of the present invention will be explained below using Examples.

実施例1 使用した原料の1iil!麿は希土類金属、「eおよび
COとも99.8%以上である。急冷試料の作製は、先
ずアーク溶解により所定の配合組成の合金インゴットを
作成し、上述した回転ロール法によりロール表面速度1
1.8 m/secの場合で実施した。表1には希土類
元素Ndとprの組成比を変化させた場合の磁気特性!
トおよびσIOK +直を3秤類について示す。なお試
料1〜3の合金インゴットの磁気特性は 此−〜400
(Oe)、σ暉=42 (emu /(1)であった。
Example 1 1iil of the raw materials used! Maro is a rare earth metal, and both e and CO are 99.8% or more. To prepare a rapidly cooled sample, first, an alloy ingot with a predetermined composition is created by arc melting, and then the roll surface speed is set to 1 by the above-mentioned rotating roll method.
The test was carried out at a speed of 1.8 m/sec. Table 1 shows the magnetic properties when changing the composition ratio of rare earth elements Nd and pr.
and σIOK + direct are shown for the three scales. The magnetic properties of the alloy ingots of samples 1 to 3 are as follows: ~400
(Oe), σ = 42 (emu/(1)).

0Q o    Q    O 七    。  0 0 0 0 0 Q     o     。0Q o Q O Seven. 0 0 0 0 0 Q        .

州ば                  0    
 ロ     6o     OO o    o   6 tg 莫6 z     r−C%J   の 垣 一〇一 実施例2 表2はRa I−X (F[! +−vco v ) 
x [(jl、L O,4≦×≦0.7.0.01 @
Y≦0.4] F示す1’Lル1成式においてY=0.
2の場合にX値を変化させて得られる急冷試料の組成お
よび磁気特性を示す。D−ル表面速度は11.8 m/
secで行なった。
state 0
B 6 o OO o o 6 tg Mo 6 z r-C%J of 101 Example 2 Table 2 shows Ra I-X (F[! +-vco v )
x [(jl, L O, 4≦×≦0.7.0.01 @
Y≦0.4] In the 1'L 1 formula shown in F, Y=0.
The composition and magnetic properties of rapidly cooled samples obtained by changing the X value in case 2 are shown. D-ru surface speed is 11.8 m/
It was done in sec.

表2から希土類元素の組み合せと磁気特性の関係は、希
土類元素としてNdが富み、希土類と(Fe O,8C
o 0.2 )の比であるX値がX−0,6の場合が磁
気特性が良好であった。ちなみに(N(I n、e P
o、2 ) 0.4 (Fe o、s Co O,2>
。6で示される試F11は、!トー7200(00)、
σ1OK−56((!111+17g ) テあった。
From Table 2, the relationship between rare earth element combinations and magnetic properties is that Nd is rich as a rare earth element, and rare earth elements and (FeO, 8C
The magnetic properties were good when the X value, which is the ratio of o 0.2 ), was X-0.6. By the way, (N(I n, e P
o,2 ) 0.4 (Fe o,s Co O,2>
. Test F11, indicated by 6, is! To 7200 (00),
σ1OK-56 ((!111+17g) There was.

試N4〜12の合金インボッ1−の磁気特性は &−〜
400(Oe ) 、(710に=40 (emu /
Q )であ−)だ。
The magnetic properties of alloy inbot 1- of test N4-12 are &-~
400 (Oe), (710 = 40 (emu /
Q) and -).

10− >  兇 歓 ミ k (歓 礼 ミ 祉 歓実施例3 表3はRe +−x (Fe 1−YcOy ) X 
[但し0.4≦’)<≦0.7.0.01≦Y≦0.4
]テ示される組成式においてX=0.6の場合にY値を
変化させたときに得られる合金の急冷試料の組成式およ
び磁気特性を示ず。ロール表面速度は11.8 m/s
ecで実施した。
10- > 兇 ふん み k ( ふ ん り み き Gun Gund 訳 3) Table 3 shows Re +-x (Fe 1-YcOy ) X
[However, 0.4≦')<≦0.7.0.01≦Y≦0.4
] The compositional formula and magnetic properties of the rapidly solidified alloy obtained when the Y value is changed when X=0.6 in the shown compositional formula are not shown. Roll surface speed is 11.8 m/s
It was carried out using ec.

表3からFCとCOの組成比と磁気特性の関係は、Y=
0,2伺近の試料1で示される組成が磁気特性の而で優
れていることが判った。
From Table 3, the relationship between the composition ratio of FC and CO and magnetic properties is Y=
It was found that the composition shown in Sample 1, which was close to 0.2, was excellent in terms of magnetic properties.

2 ×    天 13一 実施例4 表4は(Nd o、e Pr O,2) o、4(Fe
o、8GO0,2)0.6で示される合金の回転ロール
の表面速度を変化させた場合に得られる急冷試料の表面
速度と磁気特性の関係を示す。
2 × Ten 131 Example 4 Table 4 shows (Ndo, e Pr O,2) o, 4(Fe
The relationship between the surface speed and magnetic properties of a rapidly cooled sample obtained when the surface speed of a rotating roll of an alloy represented by o,8GO0,2)0.6 is changed is shown.

表4 試料 ロール表面速度  磁 気 特 性NO,(Il
l /sec )    &      σ(Oe )
   (emu /(1) 15    3.9     600    4616
    7.8     5800    521  
 11.8     7200    56表4から急
冷試料の磁気特性は、回転ロールの表面速度依存性が大
きいことが判った。これは、(Nd O,B pr 0
.2 ) 0.4  (Fe O,[l C0゜、2)
。6の合金インゴットの磁気特性が +tk:= 35
0(Oe ) 、σ1OK=41 (emu 7g )
であるので、溶湯から急速に冷却する際のロール表面1
4− を制御すれば優れた磁気特性を有する試料が得られると
いうことが判った。また、表面速度としては5〜30 
m/secの範囲が磁気特性の面から検討すると必要で
ある。
Table 4 Sample Roll Surface Speed Magnetic Characteristics NO, (Il
l/sec) & σ(Oe)
(emu / (1) 15 3.9 600 4616
7.8 5800 521
11.8 7200 56 From Table 4, it was found that the magnetic properties of the rapidly cooled samples were largely dependent on the surface speed of the rotating roll. This is (Nd O, B pr 0
.. 2) 0.4 (Fe O, [l C0°, 2)
. The magnetic properties of the alloy ingot of No. 6 are +tk:= 35
0 (Oe), σ1OK=41 (emu 7g)
Therefore, the roll surface 1 during rapid cooling from molten metal
It has been found that samples with excellent magnetic properties can be obtained by controlling 4-. In addition, the surface speed is 5 to 30
A range of m/sec is necessary from the viewpoint of magnetic properties.

以上のように本発明によれば、多結晶のものの■臣が〜
400(Oe)である合金に対して此が最高7200(
Oe)の値を有する急冷磁石合金を製造することが可能
である。
As described above, according to the present invention, the material of the polycrystalline material is ~
This is the maximum 7200 (Oe) compared to the alloy which is 400 (Oe).
It is possible to produce quenched magnetic alloys with values of Oe).

特許出願人 三菱製鋼株式会社 代理人  弁理士  小松秀岳 15− 213−Patent applicant Mitsubishi Steel Corporation Agent: Patent attorney: Hidetake Komatsu 15- 213-

Claims (1)

【特許請求の範囲】[Claims] (1)  組成式 Re +−x 、(Fe +−vc
o v ) X [ただし0.4≦X≦0.7.0.0
1≦Y≦0.4]で示され、Reは希土類元素のNd 
、 pr 、 3mの中の2種以上からなる合金の溶湯
を5〜30m/secの表面速度を有する回転体の表面
に射出して、溶湯から急速に冷却されてなることを特徴
とする急冷磁石合金。
(1) Composition formula Re +-x, (Fe +-vc
o v ) X [However, 0.4≦X≦0.7.0.0
1≦Y≦0.4], Re is the rare earth element Nd
, pr, 3m, is injected onto the surface of a rotating body having a surface velocity of 5 to 30 m/sec, and the molten metal is rapidly cooled. alloy.
JP57195324A 1982-11-09 1982-11-09 Rapidly cooled magnet alloy Granted JPS5985844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57195324A JPS5985844A (en) 1982-11-09 1982-11-09 Rapidly cooled magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195324A JPS5985844A (en) 1982-11-09 1982-11-09 Rapidly cooled magnet alloy

Publications (2)

Publication Number Publication Date
JPS5985844A true JPS5985844A (en) 1984-05-17
JPS6116416B2 JPS6116416B2 (en) 1986-04-30

Family

ID=16339267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195324A Granted JPS5985844A (en) 1982-11-09 1982-11-09 Rapidly cooled magnet alloy

Country Status (1)

Country Link
JP (1) JPS5985844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011143455A (en) * 2010-01-15 2011-07-28 Toyota Motor Corp Method and device of manufacturing magnet material
CN103691932A (en) * 2013-12-19 2014-04-02 南京信息工程大学 Low consumption nanocrystalline amorphous alloy powder material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629639A (en) * 1979-08-17 1981-03-25 Seiko Instr & Electronics Ltd Amorphous rare earth magnets and producing thereof
JPS57141901A (en) * 1981-02-26 1982-09-02 Mitsubishi Steel Mfg Co Ltd Permanent magnet powder
JPS57210934A (en) * 1981-06-16 1982-12-24 Gen Motors Corp Highly magnetic rare earth-transition metal magnet
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629639A (en) * 1979-08-17 1981-03-25 Seiko Instr & Electronics Ltd Amorphous rare earth magnets and producing thereof
JPS57141901A (en) * 1981-02-26 1982-09-02 Mitsubishi Steel Mfg Co Ltd Permanent magnet powder
JPS57210934A (en) * 1981-06-16 1982-12-24 Gen Motors Corp Highly magnetic rare earth-transition metal magnet
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011143455A (en) * 2010-01-15 2011-07-28 Toyota Motor Corp Method and device of manufacturing magnet material
CN103691932A (en) * 2013-12-19 2014-04-02 南京信息工程大学 Low consumption nanocrystalline amorphous alloy powder material and preparation method thereof
CN103691932B (en) * 2013-12-19 2015-11-18 南京信息工程大学 A kind of low-loss nano-amorphous alloy powder body material and preparation method

Also Published As

Publication number Publication date
JPS6116416B2 (en) 1986-04-30

Similar Documents

Publication Publication Date Title
US4065330A (en) Wear-resistant high-permeability alloy
CA1048304A (en) Binary amorphous alloy of iron or cobalt and boron
US4668310A (en) Amorphous alloys
US20020106297A1 (en) Co-base target and method of producing the same
IE52603B1 (en) Process for the production of amorphous metal alloys based on iron,phosphorus,carbon and chromium
JPS625972B2 (en)
JPS61243152A (en) High magnetic premeability amorphous alloy and its production
JP2625163B2 (en) Manufacturing method of permanent magnet powder
JPS6237335A (en) Aluminum alloy having high corrosion resistance and strength
JPS5985844A (en) Rapidly cooled magnet alloy
JPS6212296B2 (en)
JPH02107762A (en) Alloy target for magneto-optical recording
KR900007666B1 (en) Amorphous alloy for use in magnetic heads
JP3534218B2 (en) Method for producing Fe-based soft magnetic metallic glass sintered body
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
US6524399B1 (en) Magnetic material
JPH0255494B2 (en)
JPS5985845A (en) Rapidly cooled magnet alloy
JPS6386502A (en) Rare earth magnet and manufacture thereof
JP2002226970A (en) Co TARGET AND PRODUCTION METHOD THEREFOR
JPS63115304A (en) High-performance rare-earth cast magnet
JPS6218619B2 (en)
JPH0649912B2 (en) Quenched magnet alloy and method for producing the same
JPS6115936A (en) Rare earth element-base permanent magnet
JPH0123923B2 (en)