JPS6116416B2 - - Google Patents

Info

Publication number
JPS6116416B2
JPS6116416B2 JP57195324A JP19532482A JPS6116416B2 JP S6116416 B2 JPS6116416 B2 JP S6116416B2 JP 57195324 A JP57195324 A JP 57195324A JP 19532482 A JP19532482 A JP 19532482A JP S6116416 B2 JPS6116416 B2 JP S6116416B2
Authority
JP
Japan
Prior art keywords
magnetic properties
alloy
rare earth
metal
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57195324A
Other languages
Japanese (ja)
Other versions
JPS5985844A (en
Inventor
Kimyuki Jinno
Sakae Higano
Mitsuru Nagakura
Hiroshi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP57195324A priority Critical patent/JPS5985844A/en
Publication of JPS5985844A publication Critical patent/JPS5985844A/en
Publication of JPS6116416B2 publication Critical patent/JPS6116416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は急冷磁石合金に関し、さらに詳細には
Nd、Pr、Smの希土類元素のうちの2種以上と、
Fe、Coからなる合金から得られる急冷磁石合金
に関するものである。 従来、希土類元素を含む希土類磁石合金とし
て、SmCo5、SmCo7、Sm2Co17などで代表される
金属化合物磁石が知られている。これらの希土類
磁石は磁気特性が優れているため、現在広く利用
されている。一般に希土類磁石の製造方法は、優
れた磁気特性を得る目的で、溶解−粉砕−プレス
成形−焼結−時効熱処理が必要であり、かつ温度
管理が極めて複雑であること、金属間化合物磁石
であるため脆く、機械加工性が極めて悪いなどの
欠点を有している。 本発明はこの点を改善すべくなされたもので、
その要旨は組成式 R1-X(Fe1-YCoYX (ただし、R希土類元素のNd、Pr、Smの中の2
種以上、0.4≦X≦0.7、0.01≦Y≦0.4)で示され
る急冷磁石合金である。 本発明の急冷磁石合金は、該当組成の溶湯を5
〜30m/secの表面速度を有する回転体の表面に射
出して溶湯から急冷することによつて得られ、従
来の結晶の希土類磁石合金と成分および金相的に
全く異なる。本発明の組成式の範囲から得られる
急冷合金の構造は、X線回折の結果から判断する
と、急冷時の回転体の表面速度が30m/secに近い
場合には、X線的に非晶質構造である。また、5
m/secに近い場合には、結晶、例えば同組成のも
のについてアーク溶解したインゴツトと比較する
と、その回折パターンは類似しているが、ただ回
折ピーク高さがインゴツトのものより著しく小さ
いので、優れた磁気特性を示すものと考えられ
る。 この場合の急冷磁石合金に存在する物質は、希
土類金属R(Nd、Pr、Sm)、R(Fe、Co)2およ
びR2(Fe、Co)17で示されるいずれかの金属間化
合物あるいは金属+金属間化合物の混合物からな
る。したがつて、本発明のうち、優れた磁気特性
を得るには表面速度が5〜30m/secの範囲にあり
しかも希土類金属R(Nd、Pr、Sm)、金属間化
合物R(Fe、Co)2、およびR2(Fe、Co)17の存
在量が、同一組成からなる多結晶の合金の存在量
よりも少なくすることが条件である。このことは
次の試験からあきらかである。すなわち、前記組
成式から得られる合金を高周波溶解あるいはアー
ク溶解法で作製した。この合金は多結晶合金であ
り、粉末X線回折法により物質の同定を行なう
と、希土類(Nd、Pr、Sm)の種類および成分量
により、次の物質の存在が確認された。(1)として
RがNd−Prの場合にはR金属、R2(Fe、
Co)17、(2)としてRがNd−Smの場合には、R金
属、R(Fe、Co)2、R2(Fe、Co)17、(3)として
RがPr−Smの場合には、、R金属、R(Fe、
Co)2、R2(Fe、Co)17、としてRがNd−Pr−Sm
の場合には、R金属、R(Fe、Co)2、R2(Fe、
Co)17で示される単独元素と金属間化合物の混合
物からなる合金として同定された。 これらの合金の磁気特性を室温で試料振動型磁
力計により測定すると、保磁力(1Hc)は〜400
(Oe)程度、印加磁場10K(Oe)時の磁化(σ10
)は、〜42(emu/g)である。この塊状多結晶
合金は、磁気特性の改善の目的により階段昇・降
温あるいは一定温度で、ある時間保持する方法の
組み合わせなどの熱処理方法を実施した場合でも
1Hcおよびσ値の改善は極めて小さく、希土類磁
石として利用することは磁気特性あるいはコスト
面からもほとんど希望がもてない。それを本発明
では急冷処理によつて、磁気特性のすぐれたもの
となし得るのである。 つぎに本発明の特許請求の範囲についてその限
定理由を述べる。 まず組成式R1-X(Fe1-YCoYXでX<0.4の場合
には1HC値が1000(Oe)以下となる。また、X
>0.7の場合には1Hc値が極端に低下すること、お
よび希土類元素の量が著しく多いため、工業製品
としてはコスト高となり不利である。また、遷移
金属の(Fe1-YCoY)でY<0.01の場合には磁化
σ値が低下し、さらに急冷して得られるリボン状
薄帯の形状について良質なものが得にくい欠点が
ある。また、Y>0.4の場合には1HCおよびσ値
が低下し、優れた磁気特性を有する急冷磁石合金
が得られない。 本発明の急冷磁石合金は、一般に非晶質磁性材
料の製造に使用されている金属製の回転体の表面
上に溶湯を射出し、リボン状試料を得る液体急冷
法によつて製造される。液体急冷法とは、構成元
素の原料あるいは合金を石英、酸化物あるいは高
融点金属製のルツボに装入し、これを高周波ある
いは抵抗加熱溶解後、ルツボ下端部に設けられた
溶湯出口部からArガス射出圧0.1〜1Kg/cm2で金
属製の回転体表面に射出急冷し、リボン状の磁石
合金を得るものである。 これら溶解・射出作業は希土類元素の酸化を防
止する目的で、全てArあるいは窒素ガスなどの
不活性ガス雰囲気中で実施しなければならない。
溶湯急冷用の回転体の材質はCu、Feおよびその
Crメツキ、ステンレスなどの耐熱、耐触性の合
金あるいはセラミツク製が利用でき、さらに伝熱
性およびぬれ性などを考慮し、回転体表面に異種
金属あるいはセラミツクの表面処理を有するもの
が良い。回転体の形状はロール、円板などであ
り、又円筒の内面に溶湯を射出するようにしても
よい。 本発明の急冷磁石合金は、高速回転体例えば回
転ロール表面上での冷却速度により得られる磁石
合金の磁気特性が大幅に変化する。優れた磁気特
性を有する磁石合金を得るためには、回転体の表
面速度が5〜30m/secを有する必要がある。この
回転体の表面速度とは例えば回転ロールの場合、
ロールの円周×回転数(r.p.m)で規定されるも
のである。回転ロール表面速度が5〜30m/secで
得られるリボン状磁石合金のリボン厚さは10〜数
百μm程度であるが、回転体の表面速度が30m/s
ecを超えると極端にリボンの厚さが薄くなり良質
な連続した長尺のリボンが得にくくなる。これら
の製造方法から得られる急冷磁石合金は薄帯であ
るから、薄板状の硬質磁性材料の用途には、焼結
磁石を切断して作る方法と比較して製造面での工
程数の大幅な簡略化の他に機械加工および切断の
みで製品化が計れるのでコスト面でも有利であ
る。又、高温での熱処理を必要とせずに磁気特性
を改善することができるのでこの点でも有利であ
る。 以下に本発明の詳細を実施例により説明する。 実施例 1 使用した原料の純度は希土類金属、Feおよび
Coとも99.8%以上である。急冷試料の作製は、
先ずアーク溶解により所定の配合組成の合金イン
ゴツトを作成し、上述した回転ロール法によりロ
ール表面速度11.8m/secの場合で実施した。表1
には希土類元素NdとPrの組成比を変化させた場
合の磁気特性1Hcおよびσ10K他を3種類について
示す。なお試料1〜3の合金インゴツトの磁気特
性は1Hc=〜400(Oe)、σ10K=42(emu/g)、
であつた。
The present invention relates to quenched magnetic alloys, and more particularly to
Two or more of the rare earth elements Nd, Pr, and Sm,
This invention relates to a rapidly solidified magnet alloy obtained from an alloy consisting of Fe and Co. Conventionally, metal compound magnets represented by SmCo 5 , SmCo 7 , Sm 2 Co 17 and the like have been known as rare earth magnet alloys containing rare earth elements. These rare earth magnets have excellent magnetic properties and are currently widely used. In general, the manufacturing method of rare earth magnets requires melting, crushing, press forming, sintering, and aging heat treatment in order to obtain excellent magnetic properties, and temperature control is extremely complicated. Therefore, it has drawbacks such as being brittle and having extremely poor machinability. The present invention was made to improve this point,
The gist is the compositional formula R 1-X ( Fe 1-Y Co Y )
0.4≦X≦0.7, 0.01≦Y≦0.4). The rapidly solidified magnetic alloy of the present invention can be prepared using molten metal of the relevant composition.
It is obtained by rapidly cooling the molten metal by injecting it onto the surface of a rotating body with a surface velocity of ~30 m/sec, and is completely different from conventional crystalline rare earth magnet alloys in terms of composition and metal phase. Judging from the results of X-ray diffraction, the structure of the rapidly solidified alloy obtained from the range of the composition formula of the present invention is X-ray amorphous when the surface speed of the rotating body during rapid cooling is close to 30 m/sec. It is a structure. Also, 5
m/sec, the diffraction pattern is similar when compared to an arc-melted ingot for a crystal of the same composition, but the diffraction peak height is significantly smaller than that of the ingot, making it superior. It is thought that it exhibits magnetic properties. The substance present in the rapidly solidified magnet alloy in this case is any intermetallic compound or metal represented by the rare earth metals R (Nd, Pr, Sm), R (Fe, Co) 2 and R 2 (Fe, Co) 17 . + Consists of a mixture of intermetallic compounds. Therefore, in the present invention, in order to obtain excellent magnetic properties, the surface velocity must be in the range of 5 to 30 m/sec, and rare earth metals R (Nd, Pr, Sm), intermetallic compounds R (Fe, Co) 2 and R 2 (Fe, Co) 17 is required to be smaller than that of a polycrystalline alloy having the same composition. This is clear from the following test. That is, an alloy obtained from the above composition formula was produced by high frequency melting or arc melting. This alloy is a polycrystalline alloy, and when the substances were identified by powder X-ray diffraction, the presence of the following substances was confirmed based on the type and content of rare earth elements (Nd, Pr, Sm). (1) When R is Nd-Pr, R metal, R 2 (Fe,
Co) 17 , (2) when R is Nd-Sm, R metal, R (Fe, Co) 2 , R 2 (Fe, Co) 17 , (3) when R is Pr-Sm is, R metal, R(Fe,
Co) 2 , R 2 (Fe, Co) 17 , where R is Nd-Pr-Sm
In the case of R metal, R (Fe, Co) 2 , R 2 (Fe,
Co) 17 was identified as an alloy consisting of a mixture of a single element and an intermetallic compound. The magnetic properties of these alloys were measured using a specimen vibrating magnetometer at room temperature, and the coercive force ( 1 Hc) was ~400
(Oe), magnetization (σ 10
K ) is ~42 (emu/g). This bulk polycrystalline alloy can be produced even if heat treatment methods such as stepwise heating, cooling, or a combination of methods of holding at a constant temperature for a certain period of time are performed to improve magnetic properties.
1 Improvements in Hc and σ values are extremely small, and there is little hope of using it as a rare earth magnet from the standpoint of magnetic properties or cost. In the present invention, it can be made to have excellent magnetic properties by rapid cooling treatment. Next, the reasons for limiting the scope of the claims of the present invention will be described. First, when the composition formula is R 1-X (Fe 1-Y Co Y ) X and X<0.4, the 1 HC value is 1000 (Oe) or less. Also, X
In the case of >0.7, the 1 Hc value is extremely low and the amount of rare earth elements is extremely large, which is disadvantageous as it increases the cost as an industrial product. In addition, when Y < 0.01 for transition metals (Fe 1-Y Co Y ), the magnetization σ value decreases, and the shape of the ribbon-like thin strip obtained by rapid cooling has the drawback that it is difficult to obtain a high-quality ribbon. . Furthermore, when Y>0.4, the 1 HC and σ values decrease, making it impossible to obtain a rapidly solidified magnet alloy with excellent magnetic properties. The quenched magnetic alloy of the present invention is produced by a liquid quenching method in which a molten metal is injected onto the surface of a metal rotating body, which is generally used in the production of amorphous magnetic materials, to obtain a ribbon-shaped sample. In the liquid quenching method, raw materials or alloys of constituent elements are charged into a crucible made of quartz, oxide, or high-melting point metal, melted by high frequency or resistance heating, and then Ar A ribbon-shaped magnetic alloy is obtained by injecting and rapidly cooling the surface of a metal rotating body at a gas injection pressure of 0.1 to 1 Kg/cm 2 . These melting and injection operations must all be carried out in an inert gas atmosphere such as Ar or nitrogen gas in order to prevent oxidation of the rare earth elements.
The material of the rotating body for quenching molten metal is Cu, Fe, and their like.
Heat-resistant and contact-resistant alloys such as Cr plating and stainless steel, or ceramics can be used. Furthermore, in consideration of heat conductivity and wettability, it is preferable to have a surface treatment of a different metal or ceramic on the surface of the rotating body. The shape of the rotating body is a roll, a disk, etc., and the molten metal may be injected into the inner surface of a cylinder. In the rapidly solidified magnet alloy of the present invention, the magnetic properties of the obtained magnet alloy vary significantly depending on the cooling rate on the surface of a high-speed rotating body, such as a rotating roll. In order to obtain a magnet alloy with excellent magnetic properties, the rotating body needs to have a surface speed of 5 to 30 m/sec. The surface speed of this rotating body is, for example, in the case of a rotating roll.
It is defined by the circumference of the roll x the number of revolutions (rpm). The ribbon thickness of the ribbon-shaped magnet alloy obtained when the surface speed of the rotating roll is 5 to 30 m/sec is about 10 to several hundred μm, but when the surface speed of the rotating body is 30 m/s
If it exceeds ec, the thickness of the ribbon becomes extremely thin and it becomes difficult to obtain a continuous long ribbon of good quality. Since the quenched magnet alloy obtained by these manufacturing methods is a thin ribbon, the number of manufacturing steps is significantly greater than the method of cutting sintered magnets for use with thin plate-shaped hard magnetic materials. In addition to simplification, it is also advantageous in terms of cost because it can be manufactured by only machining and cutting. It is also advantageous in that it can improve magnetic properties without requiring heat treatment at high temperatures. The details of the present invention will be explained below using examples. Example 1 The purity of the raw materials used is rare earth metal, Fe and
Co is also 99.8% or more. Preparation of quenched samples is as follows:
First, an alloy ingot having a predetermined composition was prepared by arc melting, and the melting was carried out using the above-mentioned rotating roll method at a roll surface speed of 11.8 m/sec. Table 1
shows the magnetic properties 1 Hc, σ 10K , and other three types when the composition ratio of the rare earth elements Nd and Pr is changed. The magnetic properties of the alloy ingots of samples 1 to 3 are 1 Hc = ~400 (Oe), σ 10K = 42 (emu/g),
It was hot.

【表】 実施例 2 表2はR1-X(Fe1-YCoYX〔但し0.4≦X≦
0.7、0.01≦Y≦0.4〕で示される組成式において
Y=0.2の場合にX値を変化させて得られる急冷
試料の組成および磁気特性を示す。ロール表面速
度は11.8m/secで行なつた。表2から希土類元素
の組み合せと磁気特性の関係は、希土類元素とし
てNdが富み、希土類と(Fe0.8Co0.2)の比である
値がX=0.6の場合が磁気特性が良好であつた。
ちなみに(Nd0.8P0.20.4(Fe0.8Co0.20.5で示され
る試料1は、1Hc=7200(Oe)、σ10K=56(em
u/g)であつた。試料4〜12の合金インゴツト
の磁気特性は、1Hc=〜400(Oe)、σ10K=40(e
mu/g)であつた。
[Table] Example 2 Table 2 shows R 1-X (Fe 1-Y Co Y ) X [However, 0.4≦X≦
0.7, 0.01≦Y≦0.4] The composition and magnetic properties of rapidly cooled samples obtained by changing the X value when Y=0.2 are shown. The roll surface speed was 11.8 m/sec. From Table 2, the relationship between the combination of rare earth elements and magnetic properties is that magnetic properties are good when Nd is rich as a rare earth element and the ratio of rare earth to (Fe 0.8 Co 0.2 ) is X = 0.6. It was hot.
By the way, sample 1, which is expressed as (Nd 0.8 P 0.2 ) 0.4 (Fe 0.8 Co 0.2 ) 0.5 , has 1 Hc = 7200 ( Oe), σ 10K = 56 (em
u/g). The magnetic properties of the alloy ingots of samples 4 to 12 are as follows: 1 Hc = ~400 (Oe), σ 10K = 40 (e
mu/g).

【表】 実施例 3 表3はR1-X(Fe1-YCoYX〔但し0.4≦X≦
0.7、0.01≦Y≦0.4〕で示される組成式において
X=0.6の場合にY値を変化させたときに得られ
る合金の急冷試料の組成式および磁気特性を示
す。ロール表面速度は11.8m/secで実施した。 表3からFeとCoの組成比と磁気特性の関係
は、Y=0.2付近の試料1で示される組成が磁気
特性の面で優れていることが判つた。
[Table] Example 3 Table 3 shows R 1-X (Fe 1-Y Co Y ) X [However, 0.4≦X≦
0.7, 0.01≦Y≦0.4], the composition formula and magnetic properties of a rapidly solidified alloy obtained when the Y value is changed when X=0.6 are shown. The roll surface speed was 11.8 m/sec. From Table 3, regarding the relationship between the composition ratio of Fe and Co and magnetic properties, it was found that the composition shown in sample 1, where Y=0.2, was superior in terms of magnetic properties.

【表】 実施例 4 表4は(Nd0.8Pr0.20.4(Fe0.8Co0.20.6で示さ
れる合金の回転ロールの表面速度を変化させた場
合に得られる急冷試料の表面速度と磁気特性の関
係を示す。
[Table] Example 4 Table 4 shows the case where the surface speed of the rotating roll of the alloy represented by ( Nd 0.8 Pr 0.2 ) 0.4 ( Fe 0.8 Co 0.2 ) 0.6 was changed . The relationship between the surface velocity and magnetic properties of the rapidly cooled sample obtained in this figure is shown.

【表】 表4から急冷試料の磁気特性は、回転ロールの
表面速度依存性が大きいことが判つた。これは、
(Nd0.8Pr0.20.4(Fe0.8Co0.20.6の合金インゴツト
の磁気特性が1Hc=350(Oe)、σ10K=41(emu/
g)であるので、溶湯から急速に冷却する際のロ
ール表面を制御すれば優れた磁気特性を有する試
料が得られるということが判つた。また、表面速
度としては5〜30m/secの範囲が磁気特性の面か
ら検討すると必要である。 以上のように本発明によれば、多結晶のものの
1Hcが〜400(Oe)である合金に対して1Hcが最
高7200(Oe)の値を有する急冷磁石合金を製造
することが可能である。
[Table] From Table 4, it was found that the magnetic properties of the rapidly cooled samples were largely dependent on the surface speed of the rotating roll. this is,
The magnetic properties of an alloy ingot of (Nd 0.8 Pr 0.2 ) 0.4 (Fe 0.8 Co 0.2 ) 0.6 are 1 Hc = 350 ( Oe ), σ 10K = 41 (emu/
g), it was found that a sample with excellent magnetic properties could be obtained by controlling the roll surface during rapid cooling from the molten metal. Further, considering the surface velocity from the viewpoint of magnetic properties, a range of 5 to 30 m/sec is required. As described above, according to the present invention, polycrystalline
It is possible to produce quenched magnet alloys with values of 1 Hc up to 7200 (Oe) for alloys with 1 Hc ~400 (Oe).

Claims (1)

【特許請求の範囲】 1 組成式 R1-X(Fe1-YCoYX (ただし、Rは希土類元素のNd、Pr、Smの中の
2種以上、0.4≦X≦0.7、0.01≦Y≦0.4)で示さ
れる急冷磁石合金。
[Claims] 1 Compositional formula R 1-X ( Fe 1-Y Co Y ) Rapidly solidified magnetic alloy represented by Y≦0.4).
JP57195324A 1982-11-09 1982-11-09 Rapidly cooled magnet alloy Granted JPS5985844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57195324A JPS5985844A (en) 1982-11-09 1982-11-09 Rapidly cooled magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195324A JPS5985844A (en) 1982-11-09 1982-11-09 Rapidly cooled magnet alloy

Publications (2)

Publication Number Publication Date
JPS5985844A JPS5985844A (en) 1984-05-17
JPS6116416B2 true JPS6116416B2 (en) 1986-04-30

Family

ID=16339267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195324A Granted JPS5985844A (en) 1982-11-09 1982-11-09 Rapidly cooled magnet alloy

Country Status (1)

Country Link
JP (1) JPS5985844A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011143455A (en) * 2010-01-15 2011-07-28 Toyota Motor Corp Method and device of manufacturing magnet material
CN103691932B (en) * 2013-12-19 2015-11-18 南京信息工程大学 A kind of low-loss nano-amorphous alloy powder body material and preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629639A (en) * 1979-08-17 1981-03-25 Seiko Instr & Electronics Ltd Amorphous rare earth magnets and producing thereof
JPS57141901A (en) * 1981-02-26 1982-09-02 Mitsubishi Steel Mfg Co Ltd Permanent magnet powder
JPS57210934A (en) * 1981-06-16 1982-12-24 Gen Motors Corp Highly magnetic rare earth-transition metal magnet
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629639A (en) * 1979-08-17 1981-03-25 Seiko Instr & Electronics Ltd Amorphous rare earth magnets and producing thereof
JPS57141901A (en) * 1981-02-26 1982-09-02 Mitsubishi Steel Mfg Co Ltd Permanent magnet powder
JPS57210934A (en) * 1981-06-16 1982-12-24 Gen Motors Corp Highly magnetic rare earth-transition metal magnet
JPS5964739A (en) * 1982-09-03 1984-04-12 ゼネラルモーターズコーポレーション High energy rare earth metal-transition metal magnetic alloy

Also Published As

Publication number Publication date
JPS5985844A (en) 1984-05-17

Similar Documents

Publication Publication Date Title
US4065330A (en) Wear-resistant high-permeability alloy
US6280536B1 (en) Fe based hard magnetic alloy having super-cooled liquid region
JPS6123848B2 (en)
US4400208A (en) Process for the production of iron, phosphorus, carbon and chromium based amorphous metal alloys, and the alloys obtained
JPH05222488A (en) Alloy ingot for permanent magnet and its manufacture
JPS625972B2 (en)
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JP4238999B2 (en) Manufacturing method of rare earth sintered magnet
JP2625163B2 (en) Manufacturing method of permanent magnet powder
JPS6116416B2 (en)
JPS63238268A (en) Production of target for sputtering
JP3534218B2 (en) Method for producing Fe-based soft magnetic metallic glass sintered body
JPS6116417B2 (en)
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS6037179B2 (en) amorphous magnetic alloy
JPH0255494B2 (en)
JP2002226970A (en) Co TARGET AND PRODUCTION METHOD THEREFOR
JPH0649912B2 (en) Quenched magnet alloy and method for producing the same
JPS63115304A (en) High-performance rare-earth cast magnet
EP0540054A1 (en) High-strength and high-toughness aluminum-based alloy
JPS6218619B2 (en)
US4134756A (en) Permanent magnet alloys
KR810002071B1 (en) Permanent magnet alloys
JP2818718B2 (en) Permanent magnet powder
JP2002057021A (en) Soft magnetic material and magnetic core