JPS63238268A - Production of target for sputtering - Google Patents
Production of target for sputteringInfo
- Publication number
- JPS63238268A JPS63238268A JP7148787A JP7148787A JPS63238268A JP S63238268 A JPS63238268 A JP S63238268A JP 7148787 A JP7148787 A JP 7148787A JP 7148787 A JP7148787 A JP 7148787A JP S63238268 A JPS63238268 A JP S63238268A
- Authority
- JP
- Japan
- Prior art keywords
- ingot
- target
- sputtering
- magnetic
- solidification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000004544 sputter deposition Methods 0.000 title abstract description 13
- 239000013078 crystal Substances 0.000 claims abstract description 22
- 238000007711 solidification Methods 0.000 claims abstract description 14
- 230000008023 solidification Effects 0.000 claims abstract description 14
- 238000005242 forging Methods 0.000 claims abstract description 10
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 8
- 239000000956 alloy Substances 0.000 claims abstract description 8
- 238000003825 pressing Methods 0.000 claims abstract 2
- 239000000203 mixture Substances 0.000 claims description 18
- 238000005477 sputtering target Methods 0.000 claims description 7
- 239000010409 thin film Substances 0.000 abstract description 10
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 238000005266 casting Methods 0.000 abstract description 4
- 238000005520 cutting process Methods 0.000 abstract description 4
- 239000000919 ceramic Substances 0.000 abstract description 3
- 230000008018 melting Effects 0.000 abstract description 3
- 238000002844 melting Methods 0.000 abstract description 3
- 229910001004 magnetic alloy Inorganic materials 0.000 abstract 1
- 150000002739 metals Chemical class 0.000 abstract 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 239000001301 oxygen Substances 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 14
- 239000010408 film Substances 0.000 description 12
- 239000012535 impurity Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229910018605 Ni—Zn Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は磁性薄膜製造に用いるスパッタリングに好適な
ターゲットの製造法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a target suitable for sputtering used in manufacturing a magnetic thin film.
薄膜機能性材料は半導体薄膜のみならず、導電体、誘電
体薄膜、磁性膜、超電導膜および光学機能膜として各種
エレクトロニクスおよびデバイス等に多く用いられつつ
ある。とくに近年磁性薄膜は伸びが著るしい。これは高
記録密度化にするための不可欠の技術である。Thin film functional materials are increasingly being used not only as semiconductor thin films but also as conductors, dielectric thin films, magnetic films, superconducting films, and optical functional films in various electronics and devices. In particular, the growth of magnetic thin films has been remarkable in recent years. This is an essential technology for achieving high recording density.
従来磁気ヘッドはNi−Zn系フェライトやM n −
Z n系フェライトを焼結後機械加工して巻き付けて作
られていた。Conventional magnetic heads are made of Ni-Zn ferrite or Mn-
It was made by sintering Zn-based ferrite, then machining it and winding it.
しかし次の様な問題点があった。第1はフェライトを使
用しているため、高周波域で透磁率が低く、読み出し電
圧を高くとることができない。又フェライトの切断・加
工の限界は25〜30μmと思すれるが、この加工限界
寸法によってトラック幅がきまってくる。また記録波長
がコアの厚さと先端のギャプ長さに依存しており、現在
の加工精度からみて、更に短かくすることは困難である
。However, there were the following problems. First, since ferrite is used, the magnetic permeability is low in the high frequency range, and a high read voltage cannot be obtained. Furthermore, the cutting and processing limit of ferrite is thought to be 25 to 30 μm, and the track width is determined by this processing limit dimension. Furthermore, the recording wavelength depends on the core thickness and the gap length at the tip, and it is difficult to make it even shorter considering the current processing accuracy.
記録密度の向上にはトラック幅と記録波長の短縮が必要
である。Improving recording density requires shortening track width and recording wavelength.
以上の様な欠点を補う意味でも今後増々磁性薄膜化が伸
びてくると思われる。In order to compensate for the above-mentioned drawbacks, it is thought that the trend toward thinner magnetic films will increase in the future.
一方これらの磁性薄膜の製造方法としてはスパツタリン
グ法、蒸着法およびメッキ法等があるが膜組成の均一性
9組成制御の容易性、成膜の信頼性が高い等からスパッ
タリング法が優れている。On the other hand, methods for manufacturing these magnetic thin films include sputtering, vapor deposition, and plating, but the sputtering method is superior because of its uniformity of film composition, ease of composition control, and high reliability of film formation.
スパッタリングに使用されるターゲットの要求特性は組
成が均一であること(±0.1 %以下)、結晶粒が
微細であること、不純物が少ないこと等がある。また量
産段階では製造コストの低減が望まれており、その結果
出来るだけ大きいターゲットが必要で、現在では直径2
0μm上の円板が要求されている。The required characteristics of a target used for sputtering include uniform composition (±0.1% or less), fine crystal grains, and few impurities. In addition, at the mass production stage, it is desired to reduce manufacturing costs, and as a result, targets as large as possible are required, and currently targets with a diameter of 2
A disk above 0 μm is required.
上記のスパッタリング用ターゲットの一般的な製造方法
として、所定の形状を有する鋳型に鋳造し、得られた鋳
塊を切削加工等により、所定の形状に仕上げる方法、又
この鋳塊を熱間加工や冷間加工により、板状として所定
形状に切断、研削して仕上げる方法、あるいは得られた
鋳塊を粉砕し粉末にしてプレス成形後焼結して所定の形
状にする粉末冶金法がある(特開昭61−60803
、特開昭61−91336 、特開昭60−96738
)。The above-mentioned sputtering target is generally produced by casting into a mold with a predetermined shape, and finishing the resulting ingot into the predetermined shape by cutting, etc., or by hot working or hot working the ingot. There is a method of cutting and grinding the obtained ingot into a predetermined shape by cold working, or a powder metallurgy method in which the obtained ingot is crushed into powder, press-formed, and then sintered to form a predetermined shape. Kaisho 61-60803
, JP-A-61-91336, JP-A-60-96738
).
上記従来技術ではとくにターゲットの溶解加工法の点に
ついてあまり配慮がされておらず、ターゲットの偏析お
よびターゲットロット間の組成変動に問題があった。In the above-mentioned conventional technology, little consideration was given to the method of melting and processing the target, and there were problems with target segregation and compositional variations between target lots.
直径201以上のターゲットを製造するためにはそれ以
上の大きさの鋳塊を作製する必要がある。In order to manufacture a target with a diameter of 201 mm or more, it is necessary to prepare an ingot of a larger size.
従来方法では材料偏析のため、組成変動が大きく。With conventional methods, compositional fluctuations are large due to material segregation.
スパッタリングターゲットに要求されている±0.1
%の組成変動内におさめることが不可能であった。±0.1 required for sputtering target
It was impossible to keep the composition variation within %.
また一度溶解した材料を粉砕し、その後焼結する方法は
組成変動はおさえられるが、粉砕したものが酸化、ある
いは表面に付着した酸素が、不純物として混入してくる
。その他粉末のふるい分けや、混入した酸素を除去する
ために還元性雰囲気中で焼純を行うなど、製造工程が複
雑でかつ生産性が悪かった。In addition, the method of pulverizing the melted material and then sintering it can suppress compositional fluctuations, but the oxidation of the pulverized material or oxygen adhering to the surface may mix in as impurities. In addition, the manufacturing process was complicated and had poor productivity, such as sieving the powder and sintering in a reducing atmosphere to remove mixed oxygen.
以上のように従来方法で製造されたスパッタリングター
ゲットを用いてスパッタリングした磁性薄膜は磁気特性
にばらつきが多く、高信頼性を要求されるものに使用す
ることはできなかった。As described above, magnetic thin films sputtered using sputtering targets manufactured by the conventional method have many variations in magnetic properties, and cannot be used in applications requiring high reliability.
本発明の目的は組成が均一でかつ結晶粒が微細で不純物
の少ないスパッタリング用ターゲットを一方向凝固法に
鋳造工程を加味することによって製造する方法を提供す
ることにある。An object of the present invention is to provide a method for producing a sputtering target having a uniform composition, fine crystal grains, and few impurities by adding a casting process to a unidirectional solidification method.
直径20CII+以上の大型鋳塊の製造において1組成
変動範囲を±0.1 %以内に入れることは非常に困難
であった。鋳塊が大きくなると凝固界面が不規則となり
、溶質の対流および熱の対流が生じて、偏析が生じると
考えられる。In the production of large ingots with a diameter of 20 CII+ or more, it is extremely difficult to keep the composition variation range within ±0.1%. It is thought that as the ingot becomes larger, the solidification interface becomes irregular, causing solute convection and heat convection, resulting in segregation.
したがって偏析をおさえるには凝固界面を水平にすれば
よいことがわかる。そのためには下方からの一方向凝固
が適している。一方向凝固させるためには鋳塊の高さが
50mm以上必要であると言われているが、製品として
使用するターゲットの厚さは10mm前後であり直径の
大きい一方向凝固鋳塊を製造することは非常に不経済で
ある。そのため径を小さくして、高さの高い一方向凝固
鋳塊を製造して、鋳造を行い所定の形状にする方が経済
的に有利となることがわかる。Therefore, it can be seen that segregation can be suppressed by making the solidification interface horizontal. For this purpose, unidirectional solidification from below is suitable. It is said that the height of the ingot needs to be 50mm or more for unidirectional solidification, but the thickness of the target used as a product is around 10mm, so it is necessary to produce a unidirectionally solidified ingot with a large diameter. is extremely uneconomical. Therefore, it can be seen that it is economically advantageous to manufacture a unidirectionally solidified ingot with a small diameter and a high height, and then cast it into a predetermined shape.
しかし一方向凝固鋳塊の鍛造方向を検討した結果、一方
向凝固鋳塊の上下端を除去し、加熱鍛造することにより
、上記割れを発生することなく、所定の形状に鍛造でき
ることが明らかになった。However, as a result of examining the forging direction of a unidirectionally solidified ingot, it became clear that by removing the top and bottom ends of the unidirectionally solidifying ingot and heat-forging it, it could be forged into the desired shape without causing the above cracks. Ta.
上記目的は真空中又は不活性ガス中で溶解したFe、N
i、Coの−っをベースとした合金溶湯を、同一のるつ
ぼ内で脱酸処理後加熱鋳型に鋳込み、下方より一方向凝
固させて、一方向凝固鋳塊を製造し、その上下端を切断
除去後加熱鍛造することにより達成される。The above purpose is to dissolve Fe, N, dissolved in vacuum or inert gas.
A molten alloy based on i, Co is deoxidized in the same crucible, then poured into a heated mold, solidified in one direction from below to produce a one-way solidified ingot, and the upper and lower ends are cut. This is achieved by heat forging after removal.
〔作用〕
所定形状のスパッタリングターゲットは第1図に示す方
法で製造する。第一工程および第二工程で不純物除去を
行う。第三工程は組成均一、第四工程で微細等軸晶を行
わせしめる。第一工程および第二工程での不純物除去で
含有酸素量を30ppmに下げる。これは第2図に示す
ように30ppmを越えると、膜の保磁力が著るしく増
加して、膜の磁気特性を悪化させる。このため溶湯中の
含有酸素置を有効的に除去するために二工程の脱酸処理
を行う。これはC,AQ、Si、Caなど酸素と結びつ
き易い元素を単独又は2種以上組み合わせて添加する。[Operation] A sputtering target of a predetermined shape is manufactured by the method shown in FIG. Impurities are removed in the first and second steps. The third step is to make the composition uniform, and the fourth step is to form fine equiaxed crystals. The amount of oxygen contained is lowered to 30 ppm by removing impurities in the first and second steps. As shown in FIG. 2, if it exceeds 30 ppm, the coercive force of the film increases significantly, deteriorating the magnetic properties of the film. Therefore, a two-step deoxidation treatment is performed to effectively remove the oxygen contained in the molten metal. This is done by adding elements that easily combine with oxygen, such as C, AQ, Si, and Ca, either singly or in combination of two or more.
この添加により溶湯中の酸素は酸化物あるいはガスの形
で9跪・浮上する。添加量は含有酸素量が添加元素と反
応して十分に酸化物等になる量を添加する。この方法に
より合金中の酸素量を確実に30ppm以下にすること
が可能である。This addition causes the oxygen in the molten metal to float to the surface in the form of oxides or gas. The amount of addition is such that the oxygen content reacts with the added element to sufficiently form an oxide or the like. By this method, it is possible to reliably reduce the amount of oxygen in the alloy to 30 ppm or less.
つぎに第三工程の組成均一性について述べる。Next, composition uniformity in the third step will be described.
前記方法で酸素量3Qppm以下になった溶湯を、用意
された加熱鋳型に鍛込み、一方向凝固を行わせる。鋳型
の加熱温度は1200℃以上であればよいが、鋳型高さ
の半分以上が合金の液相線温度以上になっておりかつ凝
固終了まで鋳型の上端が液相線温度以上に加熱されてい
ることが望ましい。The molten metal whose oxygen content has been reduced to 3 Qppm or less by the above method is forged into a prepared heating mold and unidirectionally solidified. The heating temperature of the mold may be 1200°C or higher, but more than half of the height of the mold is above the liquidus temperature of the alloy, and the upper end of the mold is heated above the liquidus temperature until the end of solidification. This is desirable.
その時の鋳型の加熱方法は電気抵抗炉、サセプターを利
用した高周波加熱あるいは発熱鋳型等上記温度以上に加
熱できればどの様な方法を用いてもよい。At this time, any method of heating the mold may be used as long as it can be heated above the above temperature, such as an electric resistance furnace, high frequency heating using a susceptor, or an exothermic mold.
使用鋳型は溶湯と反応せず、酸素の混入がない材料とし
て、セラミック鋳型又はアルミナ鋳型が適している。Ceramic molds or alumina molds are suitable for the molds used, as they do not react with the molten metal and do not contain oxygen.
一方向凝固速度は前記加熱条件下では第3図に示すよう
に150 cs / h以下で引は巣を発生させずに組
成変動幅を±0.1 %以下におさえることができ、健
全な一方向凝固鋳塊を得ることが可能である。Under the above heating conditions, the unidirectional solidification rate is 150 cs/h or less as shown in Figure 3, and the composition fluctuation width can be suppressed to ±0.1% or less without generating cavities. It is possible to obtain directionally solidified ingots.
製造した一方向凝固鋳塊は柱状晶で組成的には非常に均
一であるが、結晶粒が10nmと非常に大きい。結晶粒
の大きい状態でスパッタリングを行うと均一な膜厚にす
ることが難しい。その理由は各結晶粒は面方位が異なる
ためにスパッタ率は異なってくる。その結果結晶粒が大
きいとスパッタされる割合も異なるため、均一な膜厚に
なりにくい。そのため鍛造によって微細な等軸品にした
ターゲットでスパッタを行う必要がある。The produced unidirectionally solidified ingot has columnar crystals and is very uniform in composition, but the crystal grains are very large at 10 nm. If sputtering is performed in a state where crystal grains are large, it is difficult to obtain a uniform film thickness. The reason for this is that each crystal grain has a different plane orientation, so the sputtering rate differs. As a result, if the crystal grains are large, the rate at which they are sputtered differs, making it difficult to achieve a uniform film thickness. Therefore, it is necessary to perform sputtering using a target made into a fine equiaxed product by forging.
微細等軸晶にするために前記一方向凝固鋳塊に鍛造を施
す。鍛造は両端および鋳塊外周部を除去後、再結晶温度
以上で繰返し鍛造を行い、微細等軸晶にする。再結晶温
度以上にすることで再結晶核を発生させて、繰返し加工
で微細等軸晶にすることが出来る。鍛造前の鋳塊が柱状
晶であるのは等軸品では組成が±0.1 %以内におさ
えることが不可能であるためで、組成均一のためには一
方向柱状品は不可欠である。The directionally solidified ingot is forged to form fine equiaxed crystals. For forging, after removing both ends and the outer periphery of the ingot, repeated forging is performed above the recrystallization temperature to form fine equiaxed crystals. By raising the temperature above the recrystallization temperature, recrystallization nuclei are generated, and it is possible to make fine equiaxed crystals by repeated processing. The reason why the ingot before forging has columnar crystals is because it is impossible to keep the composition within ±0.1% with equiaxed products, and unidirectional columnar products are essential for uniform composition.
〔実施例1〕本発明の実施例を第4図に示す。 [Example 1] An example of the present invention is shown in FIG.
前述の方法により、直径3Qcm、厚さ9 nwnのパ
ーマロイターゲットを製造した。A permalloy target with a diameter of 3 Qcm and a thickness of 9 nwn was manufactured by the method described above.
純Ni約7.6 kgと純Fe約1.6 lcgをアル
ミするつぼに装項し、 10””Torrの真空中で高
周波溶解した。脱酸後加熱されたセラミック鋳型に注湯
後、直ちに鋳型を20■/hの速度で下方に引き出し、
一方向凝固鋳塊を製造した。その後熱間鍛造を施し、機
械加後ターゲットに仕上げた。Approximately 7.6 kg of pure Ni and approximately 1.6 lcg of pure Fe were placed in an aluminum crucible and subjected to high frequency melting in a vacuum of 10'' Torr. Immediately after pouring the metal into the deoxidized and heated ceramic mold, the mold was pulled downward at a rate of 20 cm/h.
A directionally solidified ingot was produced. It was then hot forged and finished into a machined target.
実施例品の組成変動は±0.08.wt%以下で、その
時の酸素量は8〜10ppmであった。結晶粒の大きさ
は0.1〜0.5mであった。従来品との比較を第1表
に示す。The composition variation of the example product was ±0.08. The amount of oxygen at that time was 8 to 10 ppm at less than wt%. The size of the crystal grains was 0.1 to 0.5 m. Table 1 shows a comparison with conventional products.
第 1 表
〔実施例2〕本開発品ターゲットでスパッタした後のタ
ーゲット表面を示す。開発品1は結晶粒が非常に微細で
ある。これに比して従来品のターゲットスパッタ面は5
〜10nm程度でスパッタ前とほぼ同等の大きさである
。このスパッタされた面から、出来た薄膜は前述の様に
開発品ターゲットを使用した方が、均一膜になっている
ことが予想される。Table 1 [Example 2] Shows the target surface after sputtering with the developed target. Developed product 1 has very fine crystal grains. In comparison, the target sputtering surface of the conventional product is 5
~10 nm, which is approximately the same size as before sputtering. From this sputtered surface, it is expected that the resulting thin film will be more uniform if the developed target is used as described above.
〔実施例3] Co−Ni−Fe合金で前記開発方法を
適用し、直径30口、厚さ9mのターゲラ1〜を製造し
た。製造条件は実施例1と同様である。[Example 3] Applying the developed method to a Co-Ni-Fe alloy, Targera 1~ with a diameter of 30 holes and a thickness of 9 m was manufactured. The manufacturing conditions are the same as in Example 1.
製造したターゲットの酸素量は6PPm*組成変動範囲
は±0.1 wt%、結晶粒の大きさは0.5m前後
と均一なものが出来た。The manufactured target had a uniform oxygen content of 6PPm*composition variation range of ±0.1 wt%, and a uniform crystal grain size of around 0.5 m.
〔実施例4〕本発明方法で製造したパーマロイターゲラ
1〜スパツタ材は従来品に比べてTotal不純物を著
るしく下げることが出来たとくに○・CIS、Coにお
いては顕著である。[Example 4] Permalite Gera 1 to Sputter materials produced by the method of the present invention were able to significantly reduce total impurities compared to conventional products, especially in ○・CIS and Co.
第 2 表
単位ppm
〔発明の効果〕
本発明によれば±0.1 %組成内に入れることができ
かつ不純物が少なく、微細等軸晶のスパッタリング用タ
ーゲットを製造することができるので優れた特性をもつ
磁性膜を作ることが可能になる。Table 2 Unit: ppm [Effects of the Invention] According to the present invention, it is possible to produce a fine equiaxed crystal sputtering target with less impurities and a composition within ±0.1%, which has excellent properties. It becomes possible to create a magnetic film with
第1図はターゲットの製造工程を示す図、第2図はター
ゲット中の酸素量とターゲットを用いてスパッタリング
して製造した磁性膜の保磁力との関係を示すグラフ、第
3図は組成変動幅と凝固速度の関係を示すグラフ、第4
図は本発明により製造したターゲットと従来品ターゲッ
トの組成変動の比較を示すグラフである。
烹2−図
フーτニット宇の酸素量(PPm)
帛3図
ン@ [R度 (CTn7h )
(中;()Figure 1 is a diagram showing the manufacturing process of the target, Figure 2 is a graph showing the relationship between the amount of oxygen in the target and the coercive force of the magnetic film manufactured by sputtering using the target, and Figure 3 is the width of composition variation. Graph showing the relationship between and solidification rate, 4th
The figure is a graph showing a comparison of compositional fluctuations between a target manufactured according to the present invention and a conventional target. Oxygen amount (PPm) in Figure 2 - Figure 3 (CTn7h) (Medium; ()
Claims (1)
下方から上方へ向けて、一方向凝固させかつ凝固速度を
制御し、凝固方向に対して横断面の組成変動を±0.1
%以内におさめた鋳塊を得ること、その後前記鋳塊に対
して凝固方向から加圧する鍛造を施して柱状晶を破壊し
て、微細等軸晶にすること、の各工程を順次含むことを
特徴とする、スパッタリング用ターゲットの製造法。1. A molten alloy based on one of Fe, Ni, and Co is unidirectionally solidified from the bottom to the top, and the solidification rate is controlled, so that the composition variation in the cross section with respect to the solidification direction is ±0.1.
% or less, and then forging the ingot by applying pressure from the direction of solidification to destroy columnar crystals and make fine equiaxed crystals. Features: A manufacturing method for sputtering targets.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7148787A JPS63238268A (en) | 1987-03-27 | 1987-03-27 | Production of target for sputtering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7148787A JPS63238268A (en) | 1987-03-27 | 1987-03-27 | Production of target for sputtering |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63238268A true JPS63238268A (en) | 1988-10-04 |
Family
ID=13462062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7148787A Pending JPS63238268A (en) | 1987-03-27 | 1987-03-27 | Production of target for sputtering |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63238268A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5810983A (en) * | 1995-03-14 | 1998-09-22 | Japan Energy Corporation | High purity cobalt sputtering targets |
WO2002086184A1 (en) * | 2001-04-16 | 2002-10-31 | Nikko Materials Company, Limited | Manganese alloy sputtering target and method for producing the same |
EP1811050A2 (en) * | 2006-01-23 | 2007-07-25 | Heraeus, Inc. | Magnetic sputter targets manufactured using directional solidification |
JP2007291522A (en) * | 2001-04-16 | 2007-11-08 | Nikko Kinzoku Kk | Manganese alloy sputtering target |
JP2008101277A (en) * | 2008-01-15 | 2008-05-01 | Mitsubishi Materials Corp | Target for sputtering and its production method |
EP1923480A2 (en) * | 2005-07-22 | 2008-05-21 | Heraeus, Inc. | Enhanced sputter target manufacturing method |
TWI427169B (en) * | 2005-08-19 | 2014-02-21 | Mitsubishi Materials Corp | Manganese-containing copper alloy sputtering target with less particles |
JP2016065290A (en) * | 2014-09-25 | 2016-04-28 | 三菱マテリアル株式会社 | Ag alloy sputtering target |
CN107075668A (en) * | 2015-05-14 | 2017-08-18 | 美题隆公司 | Sputtering target |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60244013A (en) * | 1984-05-17 | 1985-12-03 | Sony Corp | Manufacture of magnetic material |
JPS61124566A (en) * | 1984-11-19 | 1986-06-12 | Mitsubishi Metal Corp | Production of al-si alloy target plate material for sputtering |
-
1987
- 1987-03-27 JP JP7148787A patent/JPS63238268A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60244013A (en) * | 1984-05-17 | 1985-12-03 | Sony Corp | Manufacture of magnetic material |
JPS61124566A (en) * | 1984-11-19 | 1986-06-12 | Mitsubishi Metal Corp | Production of al-si alloy target plate material for sputtering |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5810983A (en) * | 1995-03-14 | 1998-09-22 | Japan Energy Corporation | High purity cobalt sputtering targets |
US7713364B2 (en) | 2001-04-16 | 2010-05-11 | Nippon Mining & Metals Co., Ltd. | Manganese alloy sputtering target and method for producing the same |
WO2002086184A1 (en) * | 2001-04-16 | 2002-10-31 | Nikko Materials Company, Limited | Manganese alloy sputtering target and method for producing the same |
EP1568796A1 (en) * | 2001-04-16 | 2005-08-31 | Nikko Materials Co., Ltd. | Manganese alloy sputtering target |
EP1380668A1 (en) * | 2001-04-16 | 2004-01-14 | Nikko Materials Company, Limited | Manganese alloy sputtering target and method for producing the same |
JP2007291522A (en) * | 2001-04-16 | 2007-11-08 | Nikko Kinzoku Kk | Manganese alloy sputtering target |
JP4685059B2 (en) * | 2001-04-16 | 2011-05-18 | Jx日鉱日石金属株式会社 | Manganese alloy sputtering target |
EP1380668A4 (en) * | 2001-04-16 | 2004-08-18 | Nikko Materials Co Ltd | Manganese alloy sputtering target and method for producing the same |
US7229510B2 (en) | 2001-04-16 | 2007-06-12 | Nippon Mining & Metals, Co., Ltd. | Manganese alloy sputtering target and method for producing the same |
EP1923480A2 (en) * | 2005-07-22 | 2008-05-21 | Heraeus, Inc. | Enhanced sputter target manufacturing method |
EP1923480A3 (en) * | 2005-07-22 | 2008-06-18 | Heraeus, Inc. | Enhanced sputter target manufacturing method |
TWI427169B (en) * | 2005-08-19 | 2014-02-21 | Mitsubishi Materials Corp | Manganese-containing copper alloy sputtering target with less particles |
US9028658B2 (en) * | 2005-08-19 | 2015-05-12 | Mitsubishi Materials Corporation | Mn-containing copper alloy sputtering target generating few particles |
EP1811050A3 (en) * | 2006-01-23 | 2009-02-18 | Heraeus, Inc. | Magnetic sputter targets manufactured using directional solidification |
EP1811050A2 (en) * | 2006-01-23 | 2007-07-25 | Heraeus, Inc. | Magnetic sputter targets manufactured using directional solidification |
JP2008101277A (en) * | 2008-01-15 | 2008-05-01 | Mitsubishi Materials Corp | Target for sputtering and its production method |
JP2016065290A (en) * | 2014-09-25 | 2016-04-28 | 三菱マテリアル株式会社 | Ag alloy sputtering target |
CN107075668A (en) * | 2015-05-14 | 2017-08-18 | 美题隆公司 | Sputtering target |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8430978B2 (en) | Sputtering target and method for production thereof | |
JP6483803B2 (en) | Magnetic material sputtering target and manufacturing method thereof | |
JP2639609B2 (en) | Alloy ingot for permanent magnet and method for producing the same | |
WO2014077110A1 (en) | Cu-Ga ALLOY SPUTTERING TARGET, AND METHOD FOR PRODUCING SAME | |
JPS63238268A (en) | Production of target for sputtering | |
JP3505261B2 (en) | Sm-Co permanent magnet material, permanent magnet and method for producing the same | |
JP3628575B2 (en) | Ni-P alloy sputtering target and method for producing the same | |
JP3525439B2 (en) | Target member and method of manufacturing the same | |
JP2001107226A (en) | Co SERIES TARGET AND ITS PRODUCTION METHOD | |
JPH0586456A (en) | Target for sputtering | |
JP2002356717A (en) | Method for producing alloy for rare earth bond magnet, and rare earth bond magnet composition | |
JP3299630B2 (en) | Manufacturing method of permanent magnet | |
JP2597380B2 (en) | Method for producing rare earth metal-transition metal target alloy powder and method for producing rare earth metal-transition metal target | |
JPS5947018B2 (en) | Magnetic alloy for magnetic recording and playback heads and its manufacturing method | |
JP2002226970A (en) | Co TARGET AND PRODUCTION METHOD THEREFOR | |
WO2024124617A1 (en) | Cofeb target material and preparation method therefor | |
JPS63115304A (en) | High-performance rare-earth cast magnet | |
JP2894695B2 (en) | Rare earth metal-iron group metal target and method for producing the same | |
JP3455552B2 (en) | Method for producing rare earth metal-iron binary alloy ingot for permanent magnet | |
JP3367069B2 (en) | Manufacturing method of giant magnetostrictive alloy rod | |
JP3726888B2 (en) | Rare earth alloy and manufacturing method thereof, and manufacturing method of rare earth sintered magnet | |
JPH0770745A (en) | Production of target for rare earth magnetic film | |
JP3548568B2 (en) | Method for producing rare earth metal-iron based permanent magnet alloy containing nitrogen atom | |
JPS5929084B2 (en) | Manufacturing method of permanent magnet alloy | |
JPS6116416B2 (en) |