JPS61124566A - Production of al-si alloy target plate material for sputtering - Google Patents
Production of al-si alloy target plate material for sputteringInfo
- Publication number
- JPS61124566A JPS61124566A JP24419484A JP24419484A JPS61124566A JP S61124566 A JPS61124566 A JP S61124566A JP 24419484 A JP24419484 A JP 24419484A JP 24419484 A JP24419484 A JP 24419484A JP S61124566 A JPS61124566 A JP S61124566A
- Authority
- JP
- Japan
- Prior art keywords
- plate material
- forging
- longitudinal direction
- cut
- ingot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Forging (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発#4は、微細な晶出Stが半径方向には軸対称に
分布し、かつ厚さ方向には均一に分布し、特に、例えば
トランジスタやIC1さらにLSIなどの#P21+!
体裂直における回路配線などをスパッタリング法により
形成するに際してターゲットとして用いるのに適したA
z−si系会金ターゲット板材の製造法に関するもので
おる。Detailed Description of the Invention [Field of Industrial Application] This invention #4 is characterized in that fine crystallized St is distributed axially symmetrically in the radial direction and uniformly distributed in the thickness direction. #P21+ such as transistors, IC1, and LSI!
A suitable for use as a target when forming circuit wiring directly in the body by sputtering.
The present invention relates to a method for manufacturing a Z-SI metal target plate material.
一般に、Si:0.5〜21を係を含有するAl−Si
糸合金が、上記の半導体装置の回路配線をスパッタリン
グ法により形成するに際して、ターゲツト板材として用
いられていることはよく知られるところである。Generally, Al-Si containing Si: 0.5 to 21
It is well known that thread alloy is used as a target plate material when forming circuit wiring of the above-mentioned semiconductor device by sputtering method.
従来、この樵のスハフタリング用Al−Si系合金ター
ゲット板材は、真空溶解によシ浴裂し次浴湯を角型イン
ゴットに鋳造し、このインゴットに圧jA )Ju工や
鍛造を加えて板材に展伸加工し、これよりターゲツト板
材を切出すことにより製造されている。Conventionally, the Al-Si alloy target plate material for woodcutting is made by vacuum melting, bath cracking, and then casting the bath water into a square ingot, which is then subjected to pressure processing and forging to form a plate material. It is manufactured by stretching and cutting out target plate material.
しかし、この従来方法によって製造されたスパッタリン
グ用Al−Si系合金ターゲット板材においては、鋳造
時に粗大な初晶Siが晶出し、この初晶3iは角型イン
ゴットの中心部に偏析し、この傾向はインゴットが大型
になるほど顕著となり、かつこの初晶Siは熱処理によ
り素地中に完全に固溶させることは不可能であり、しか
もこのような状態のインゴットを長さ方向にそって圧延
あるいは鍛造して板材に展伸加工するものでるるから、
ターゲツト板材の面方向や厚さ方向における51m1分
布が不均一になるのを避けることができず、さらにこの
結果得られたターゲツト板材に熱処理を施しても初晶S
tに比しては細かくなっても析出Stに比しては依然と
して大きい晶出Siミラ溶させることは不可能であるこ
とから、熱処理による5iI11度の不均一解消も不可
能である。However, in the Al-Si alloy target plate material for sputtering manufactured by this conventional method, coarse primary Si crystals crystallize during casting, and this primary crystal 3i segregates in the center of the square ingot, and this tendency This becomes more noticeable as the ingot becomes larger, and it is impossible to completely dissolve this primary Si into the matrix by heat treatment, and furthermore, it is difficult to roll or forge an ingot along its length. Because it is a sheet material that is stretched,
It is impossible to avoid uneven distribution of 51 ml in the plane direction and thickness direction of the target plate material, and furthermore, even if the target plate material obtained as a result is subjected to heat treatment, the primary crystal S
Since it is impossible to mira-dissolve precipitated Si, which is finer than t but still larger than precipitated St, it is also impossible to eliminate the 5iI11 degree non-uniformity by heat treatment.
このような5ill11度分布の不均一なAl−Si系
曾金ターゲフト板材を、上記の半導体装置のIg1wI
配腺などの形成に用いると、スパッタリング膜中のSi
分布に影響を与えて半導体特性を不安定にしたり、さら
にスパッタリング操業中に異常アーク放dを篩発して歩
留り低下の原因ともな9、この1ta向は果槓匿が高く
なるほど助長されるものであった。Such a non-uniform Al-Si based solid metal target material with a 5ill11 degree distribution is used as the Ig1wI of the above semiconductor device.
When used to form glands, etc., Si in the sputtered film
It affects the distribution and destabilizes the semiconductor properties, and also causes abnormal arc emissions during sputtering operations, causing a decrease in yield9. there were.
そこで、本発明者等は、上述のような数点から、5iI
7)画成分布が均一なスパッタリング膜上安定して形成
することのできるスパッタリング法Al −S i系合
金ターゲット板材を製造すべく研究を行なった結果、
(a) 鋳造するインゴットを円柱状とし、かつその
最大直径を200震とすると、・インゴットにおけるs
ia度分布が半径方向に軸対称で、長手方向には均一分
布となること。Therefore, the present inventors determined that 5iI
7) Sputtering method that can be stably formed on a sputtering film with a uniform defined distribution As a result of research to manufacture an Al-Si alloy target plate material, we found that (a) the ingot to be cast is cylindrical; And if its maximum diameter is 200 earthquakes, s in the ingot
The ia degree distribution is axially symmetrical in the radial direction and uniform in the longitudinal direction.
由)上記(2)の円柱状インボッ)1−長さ方向に切断
あるいは切削してチップ素材とし、このチップ素材に丁
え込み鍛造を施して板材に成形すると、比較的粗大な初
晶Slが微細化し、かつ前記板材におけるSi一度も面
方向および厚さ方向で均一化すると共に、これをターゲ
ットとして用いた−”ih&にもスパッタリング法中の
Si讃度が均一になること。(2) The above (2) cylindrical ingot) 1-Cut or cut in the length direction to obtain a chip material, and when this chip material is forged and formed into a plate material, relatively coarse primary crystals of Sl are produced. In addition to making the Si in the plate material uniform in the surface direction and thickness direction, the Si content in the sputtering method using this as a target is also made uniform.
(e) 上記Φ)のすえ込み鍛造により成、形された
板材に、さらに引続いて圧延〃l工tmすと、初晶S1
の微細化およびstmyの均一化が一層促進されるよう
になるばかりでなく、厚さ精度が同上し、歩留が一段と
同上するようになること。(e) When the plate material formed and shaped by swaging forging of Φ above is further successively rolled, primary crystal S1
Not only the miniaturization of the thickness and the uniformity of stmy are further promoted, but also the thickness accuracy is improved and the yield is further improved.
(イ) さらに上記(四のすえ込み庫造により成形され
た板材に2ける初晶Siの微細化は、すえ込み鍛造に先
だって、円柱状インゴットに実体鍛造あるいは押出し加
工をmすと一層促進されるようになること。(b) Furthermore, the refinement of the primary Si crystals in the plate material formed by swaging forging (2) above (4) can be further promoted by subjecting the cylindrical ingot to physical forging or extrusion processing prior to swaging forging. to become
以上(a)〜(d)に示される知見を得たのである。The findings shown in (a) to (d) above were obtained.
この発明は、上記知見に基づいてなされたものであって
、
Si : 0.5〜2][蓋%を含有するA6曾金を真
壁溶解した後、直径:200諷以丁の円柱状インゴット
に鋳造し、
ついで、必要に応じて上記円柱状インゴットに、長手方
向に対する加工比で3/2以上の実体鍛造あるいは押出
し加工1に施した後、所定の長さに切断あるいは切削し
てチップ素材とし、
引続いて、このチップ素材に、長手方向に対するすえ込
み鋳造比で1/10−1/2のすえ込み鍛造を施し、さ
らに必要に応じて圧延加工をhして板材とすることによ
って、スパッタリング用Al−Si糸曾蛍ターゲツト板
材を製造する方法に特徴′を有するものでろる。This invention was made based on the above knowledge, and after melting A6 sogan containing Si: 0.5 to 2] [lid%], it was made into a cylindrical ingot with a diameter of 200 pieces. Then, if necessary, the cylindrical ingot is subjected to solid forging or extrusion processing 1 with a processing ratio of 3/2 or more in the longitudinal direction, and then cut or cut to a predetermined length to obtain a chip material. , Subsequently, this chip material is subjected to swaging forging with a swaging casting ratio of 1/10 to 1/2 in the longitudinal direction, and further rolled as necessary to form a plate material, which is then sputtered. The method for producing the Al--Si filament target plate material has some features.
つぎに、この発明の方法に2いて、すえ込み鍛造比およ
び加工比を上記の通りに限定した理由を説明する。Next, the reason why the swaging forging ratio and processing ratio are limited as described above in the method of the present invention will be explained.
(a) すえ込−9−鍛造比
上記の通り、このすえ込み鍛造によって初晶Siが微細
化され、かつターゲツト板材の曲方向および淳さ方向に
2けるSi曖度分布が均一化するようになるが、その比
が、長手方向に対する割合で1/2未満では、すえ込み
鍛造が不十分で所望の微細化および均一化をはかること
ができず、−万、その比が同1/10 を越えると、
加工が敵しすぎて、ターゲツト板材に座屈や割れが発生
するようになるばかりでなく、加工工具との摩擦も大き
くなって高い加工応力を必要とするようになることから
、その比を、長手方向に対する割合で、1/2〜1/1
0と定めた。(a) Swaging-9-Forging Ratio As mentioned above, this swaging forging refines the primary Si crystals and makes the Si ambiguity distribution uniform in both the bending direction and the cutting direction of the target plate material. However, if the ratio is less than 1/2 in the longitudinal direction, swaging forging is insufficient and the desired refinement and uniformity cannot be achieved. When you cross it,
If the machining becomes too difficult, not only will buckling and cracking occur in the target plate material, but also the friction with the machining tool will increase and high machining stress will be required. 1/2 to 1/1 in proportion to the longitudinal direction
It was set as 0.
Φ) 刀l工比
すえ込み鍛造に先だって、実体鍛造あるいは押出し加工
により円柱状インゴブhを長手方向に伸ばしてやると、
ターゲットにおける1出Siがより一層微細化するよう
になるので、この実体鍛造あるいは押出し加工は必要に
応じて適用されるが、その加工比が、長手方向に対する
割合で3/2未満では所望の微細化向上効果が得られな
いことから、その加工比【、長手方向に対する割合で3
72以上と定めた。Φ) If the cylindrical ingob h is stretched in the longitudinal direction by solid forging or extrusion prior to swaging forging,
This solid forging or extrusion processing is applied as necessary because the single-output Si in the target becomes even finer, but if the processing ratio is less than 3/2 in the longitudinal direction, the desired fineness cannot be obtained. Since the effect of improving the thickness cannot be obtained, the machining ratio [, 3 in the ratio to the longitudinal direction]
It is set as 72 or above.
つぎに、この発明の方法を実施例により具体的に説明す
る。Next, the method of the present invention will be specifically explained using examples.
通常の真空溶解炉を用い、圧カニlX10”’torr
以下の真空中で、それぞれ第1表に示される成分組
成をもったAl−Si系付金溶湯を調製し、同じく第1
表に示される寸法の円柱状インゴットに鋳造し、このイ
ンゴットの上下端部全切断除去し、面削、シ、ついでこ
のインゴットに対して選択的に第1表に示される条件で
実体鍛造あるいは押出し〃ロエを施し、引続いて、これ
らのインゴット2輔切りにして同じく第1表に示さルる
寸法のチップ素材全切出し、このチップ素材を用いて、
同じく第1表に示される条件にて、すえ込み鍛造を行な
い、さらに選択的に圧延加工をThLで、いずれも最終
厚さ:12調をMする板材を成形し、前記板材より[径
:200mmのターゲツト板材を切出すことにより本発
明法1〜21をそれぞれ冥ゐした。Using a normal vacuum melting furnace, the pressure crab is 1X10''torr.
In the following vacuum, Al-Si based molten metals having the component compositions shown in Table 1 were prepared.
The ingot is cast into a cylindrical ingot with the dimensions shown in the table, the upper and lower ends of this ingot are completely cut and removed, and then the ingot is selectively forged or extruded under the conditions shown in Table 1. [Loe is applied, and subsequently, these ingots are cut into two pieces, and the entire chip material with the dimensions shown in Table 1 is also cut out. Using this chip material,
Similarly, under the conditions shown in Table 1, swage forging was performed, and further rolling was selectively performed at ThL to form a plate material with a final thickness of 12 mm. Methods 1 to 21 of the present invention were carried out by cutting out target plate materials.
また、比較の目的で、上記実施例におけると同一の組成
を有する3種類のAl−5i系会金浴湯を、輻:150
mX岸さ: 50 m X長さ:230+wの寸法をも
った角型インゴットに鋳造した後、上下端部を切断除去
し、面側し、ついでこのインゴットを通常の冷間圧延条
件にて、225mの暢出し圧延後、厚さ:12■の板材
に冷間圧延し、最終的に、この板材から直径:200s
+X厚さ:12調の寸法をもったターゲットを切出すこ
とによって従来法1〜3(fcたし、インゴット組成が
、従来法1は本発明法1〜7に同じ、従来法2は本発明
法8〜14に同じ、さらに従来法3は本発明法15〜2
1に同じでめる)を行なった。In addition, for the purpose of comparison, three types of Al-5i-based gold baths having the same composition as in the above example were used at a concentration of 150
After casting into a rectangular ingot with dimensions of m x bank width: 50 m x length: 230 + w, the upper and lower ends were cut and removed, and the ingot was rolled to 225 m under normal cold rolling conditions. After smooth rolling, it is cold rolled into a plate with a thickness of 12mm, and finally, this plate is rolled into a plate with a diameter of 200s.
+X Thickness: Conventional methods 1 to 3 (fc) were obtained by cutting out targets with dimensions of 12 scales, and the ingot composition was the same as that of conventional methods 1 to 1 to 7 of the present invention, and conventional method 2 was the same as that of the present invention methods 1 to 7. Same as methods 8 to 14, and conventional method 3 to methods 15 to 2 of the present invention
1) was performed.
つぎに、上記不発明法1〜21によって得られたターゲ
ツト板材(以下、本発明ターゲツト板材1〜21という
)および上記従来法l〜3によって得られたターゲツト
板材(以下、従来ターゲット板@1〜3という)につい
て、第1図に一部切欠き斜視図で示されるように、面方
向に関しては、ターゲツト板材の片側表面における几。Next, target plate materials obtained by the above-mentioned uninvented methods 1 to 21 (hereinafter referred to as present invention target plates 1 to 21) and target plate materials obtained by the above conventional methods 1 to 3 (hereinafter referred to as conventional target plates @ 1 to 21) were prepared. 3), as shown in the partially cutaway perspective view in FIG.
方向と、これと90’(1位した几、。方向について、
中心部roと周辺fi6r6.Mびにこれらの等間隔中
間部:r、1irl+以上9個所のSt含有量を測定し
、また厚さ方向に関しては、ターゲツトの中心部と周辺
部の中間点における厚さ方向にそう九等間隔5個所:t
1゜tl+tl+t4+およびt、のSt合有t1!:
それぞれ測定した。これらの測定結果を第2表に示した
。Direction, this and 90' (1st place 几. Regarding the direction,
Center ro and surrounding fi6r6. Measure the St content at 9 points above M and the middle part of these equally spaced areas: r, 1 irl+, and in the thickness direction, measure the St content at 9 evenly spaced 5 points in the thickness direction at the midpoint between the center and the peripheral part of the target. Location: t
1°tl+tl+t4+ and t, St combination t1! :
Each was measured. The results of these measurements are shown in Table 2.
71jI&2表に示される結果から、本発明ターゲツト
板材1〜21は、いずれもSi酸度が面方向および厚さ
方向でほぼ均一でろるのに対して、従来ターゲツト板材
1〜3においては、一方図および厚さ方向ともsin度
が不均一であることが明らかでめる。From the results shown in Table 71jI & 2, the Si acidity of the target plates 1 to 21 of the present invention is almost uniform in the surface direction and the thickness direction, whereas in the conventional target plates 1 to 3, the Si acidity is uniform in the planar direction and the thickness direction. It is clearly seen that the sin degree is non-uniform in both the thickness direction.
つぎに、上記本発明ターゲツト板材1〜21および従来
ターゲツト板材1〜3を用いて、真空度:3X10″t
orr 。Next, using the target plates 1 to 21 of the present invention and the conventional target plates 1 to 3, vacuum degree: 3 x 10''t
orr.
電圧:250V、 ′1流 : 5 A。Voltage: 250V, '1st class: 5 A.
の条件でスパッタリングを行ない、Siからなる基体の
表面に、直径: 200 m X厚さ: 1 pm の
薄膜を形成し、この薄膜における中心部と鳩辺部。Sputtering was performed under the following conditions to form a thin film with a diameter of 200 m and a thickness of 1 pm on the surface of a substrate made of Si.
さらにこれらの中間部におけるSt含有量を測定した。Furthermore, the St content in these intermediate parts was measured.
この測定結果を第3表に合せて示した。The measurement results are also shown in Table 3.
ig3表に示されるように、本発明ターゲツト板材1〜
21を用いた場合、いずれもSi酸度が均一なスパッタ
リング薄at形成することができるのに対して、従来タ
ーゲツト板材1〜3の場合には薄膜におけるSi酸度が
不均一であることがわかる。As shown in Table ig3, the target plate materials 1 to 1 of the present invention
It can be seen that when using No. 21, a thin film with uniform Si acidity can be formed by sputtering, whereas in the case of conventional target plates 1 to 3, the Si acidity in the thin film is non-uniform.
上述のように、この発明の方法によれば、微細な晶出S
tが面方向および厚さ方向に均一に分布したAl−Si
系合金ターゲフト板材を襄造することができ、しかもこ
のターゲツト板材を用いれば、Si酸度の均一なスパッ
タリング薄膜を安定的に形成することができるなど工業
上有用な効果が得られるのである。As mentioned above, according to the method of the present invention, fine crystallization of S
Al-Si with uniform distribution of t in the surface direction and thickness direction
It is possible to fabricate a target soft plate material made of the alloy, and by using this target plate material, industrially useful effects such as the ability to stably form a sputtered thin film with a uniform Si acidity can be obtained.
第 3 表Table 3
累1図はターゲツト板材の一部切欠き斜視図にしてSi
含有量測定点を示す図である。Figure 1 is a partially cutaway perspective view of the target plate material.
It is a diagram showing content measurement points.
Claims (4)
空溶解した後、直径:200mm以下の円柱状インゴッ
トに鋳造し、 ついで、この円柱状インゴットを所定の長さに切断ある
いは切削してチップ素材とし、 引続いて、このチップ素材に、長手方向に対するすえ込
み鍛造比で1/10〜1/2のすえ込み鍛造を施して板
材に成形することを特徴とするスパッタリング用Al−
Si系合金ターゲット板材の製造法。(1) After vacuum melting an Al alloy containing 0.5 to 2% by weight of Si, it is cast into a cylindrical ingot with a diameter of 200 mm or less, and then this cylindrical ingot is cut or cut into a predetermined length. A chip material is obtained by forming the chip material into a plate material by subjecting the chip material to swaging forging at a swaging forging ratio of 1/10 to 1/2 in the longitudinal direction to form a plate material.
A method for manufacturing a Si-based alloy target plate material.
空溶解した後、直径:200mm以下の円柱状インゴッ
トに鋳造し、 ついで、この円柱状インゴットに、長手方向に対する加
工比で3/2以上の実体鍛造あるいは押出し加工を施し
た後、所定の長さに切断あるいは切削してチップ素材と
し、 引続いて、このチップ素材に、長手方向に対するすえ込
み鍛造比で1/10〜1/2のすえ込み鍛造を施して板
材に成形することを特徴とするスパッタリング用板状A
l−Si系合金ターゲット板材の製造法。(2) After vacuum melting an Al alloy containing 0.5 to 2% by weight of Si, it is cast into a cylindrical ingot with a diameter of 200 mm or less, and then this cylindrical ingot is processed at a processing ratio of 3 in the longitudinal direction. After performing solid forging or extrusion processing of /2 or more, cut or cut to a predetermined length to obtain a chip material, and then apply a swag forging ratio of 1/10 to 1 in the longitudinal direction to this chip material. Plate-shaped material A for sputtering, characterized in that it is formed into a plate material through swaging forging of /2.
A method for manufacturing l-Si alloy target plate material.
空溶解した後、直径:200mm以下の円柱状インゴッ
トに鋳造し、 ついで、この円柱状インゴットを所定の長さに切断ある
いは切削してチップ素材とし、 引続いて、このチップ素材に、長手方向に対するすえ込
み鍛造比で1/10〜1/2のすえ込み鍛造を施し、さ
らに圧延加工を施して板材に成形することを特徴とする
スパッタリング用Al−Si系合金ターゲット板材の製
造法。(3) After vacuum melting an Al alloy containing 0.5 to 2% by weight of Si, it is cast into a cylindrical ingot with a diameter of 200 mm or less, and then this cylindrical ingot is cut or cut into a predetermined length. This chip material is then subjected to swaging forging with a swaging forging ratio of 1/10 to 1/2 in the longitudinal direction, and is further rolled to be formed into a plate material. A method for manufacturing an Al-Si alloy target plate material for sputtering.
空溶解した後、直径:200mm以下の円柱状インゴッ
トに鋳造し、 ついで、この円柱状インゴットに、長手方向に対する加
工比で3/2以上の実体鍛造あるいは押出し加工を施し
た後、所定の長さに切断あるいは切削してチップ素材と
し、 引続いて、このチップ素材に、長手方向に対するすえ込
み鍛造比で1/10〜1/2のすえ込み鍛造を施し、さ
らに圧延加工を施して板材に成形することを特徴とする
スパッタリング用Al−Si系合金ターゲット板材の製
造法。(4) After vacuum melting an Al alloy containing 0.5 to 2% by weight of Si, it is cast into a cylindrical ingot with a diameter of 200 mm or less, and then this cylindrical ingot is processed at a processing ratio of 3 in the longitudinal direction. After performing solid forging or extrusion processing of /2 or more, cut or cut to a predetermined length to obtain a chip material, and then apply a swag forging ratio of 1/10 to 1 in the longitudinal direction to this chip material. 1. A method for producing an Al-Si alloy target plate material for sputtering, characterized by performing swaging forging of /2 and further rolling to form a plate material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24419484A JPS61124566A (en) | 1984-11-19 | 1984-11-19 | Production of al-si alloy target plate material for sputtering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24419484A JPS61124566A (en) | 1984-11-19 | 1984-11-19 | Production of al-si alloy target plate material for sputtering |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61124566A true JPS61124566A (en) | 1986-06-12 |
JPS6348946B2 JPS6348946B2 (en) | 1988-10-03 |
Family
ID=17115170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24419484A Granted JPS61124566A (en) | 1984-11-19 | 1984-11-19 | Production of al-si alloy target plate material for sputtering |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61124566A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62297464A (en) * | 1986-06-16 | 1987-12-24 | Seiko Epson Corp | Production of target for sputtering |
JPS6333563A (en) * | 1986-07-25 | 1988-02-13 | Tanaka Kikinzoku Kogyo Kk | Production of pt-ni alloy for sputtering |
JPS63238268A (en) * | 1987-03-27 | 1988-10-04 | Hitachi Ltd | Production of target for sputtering |
FR2664618A1 (en) * | 1990-07-10 | 1992-01-17 | Pechiney Aluminium | PROCESS FOR MANUFACTURING CATHODES FOR HIGHLY PURITY ALUMINUM CATHODIC SPRAY |
JPH10330927A (en) * | 1997-06-05 | 1998-12-15 | Riyouka Massey Kk | Sputtering target material made of aluminum alloy |
US5906717A (en) * | 1994-04-28 | 1999-05-25 | Sumitomo Chemical Company, Limited | Sputtering target of single crystal aluminum alloy |
WO2002086184A1 (en) * | 2001-04-16 | 2002-10-31 | Nikko Materials Company, Limited | Manganese alloy sputtering target and method for producing the same |
WO2004027109A1 (en) * | 2002-09-20 | 2004-04-01 | Nikko Materials Co., Ltd. | Tantalum sputtering target and method for preparation thereof |
EP1447458A2 (en) * | 2002-11-14 | 2004-08-18 | W.C. Heraeus GmbH & Co. KG | process for producing a Si-based alloy sputtering target, sputtering target and its application |
JP2007291522A (en) * | 2001-04-16 | 2007-11-08 | Nikko Kinzoku Kk | Manganese alloy sputtering target |
US8349249B2 (en) | 2003-02-10 | 2013-01-08 | Heraeus Precious Metals Gmbh & Co. Kg | Metal alloy for medical devices and implants |
CN104451566A (en) * | 2014-12-17 | 2015-03-25 | 重庆大学 | Preparation method of high-purity aluminum-silicon target material |
CN113897566A (en) * | 2021-09-27 | 2022-01-07 | 宁波江丰电子材料股份有限公司 | Preparation method of high-purity aluminum target material |
-
1984
- 1984-11-19 JP JP24419484A patent/JPS61124566A/en active Granted
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62297464A (en) * | 1986-06-16 | 1987-12-24 | Seiko Epson Corp | Production of target for sputtering |
JPS6333563A (en) * | 1986-07-25 | 1988-02-13 | Tanaka Kikinzoku Kogyo Kk | Production of pt-ni alloy for sputtering |
JPS63238268A (en) * | 1987-03-27 | 1988-10-04 | Hitachi Ltd | Production of target for sputtering |
FR2664618A1 (en) * | 1990-07-10 | 1992-01-17 | Pechiney Aluminium | PROCESS FOR MANUFACTURING CATHODES FOR HIGHLY PURITY ALUMINUM CATHODIC SPRAY |
US5906717A (en) * | 1994-04-28 | 1999-05-25 | Sumitomo Chemical Company, Limited | Sputtering target of single crystal aluminum alloy |
US5988262A (en) * | 1994-04-28 | 1999-11-23 | Sumitomo Chemical Company, Limited | Sputtering target of single crystal aluminum alloy and method for producing the same |
JPH10330927A (en) * | 1997-06-05 | 1998-12-15 | Riyouka Massey Kk | Sputtering target material made of aluminum alloy |
JP4685059B2 (en) * | 2001-04-16 | 2011-05-18 | Jx日鉱日石金属株式会社 | Manganese alloy sputtering target |
US7229510B2 (en) | 2001-04-16 | 2007-06-12 | Nippon Mining & Metals, Co., Ltd. | Manganese alloy sputtering target and method for producing the same |
JP2007291522A (en) * | 2001-04-16 | 2007-11-08 | Nikko Kinzoku Kk | Manganese alloy sputtering target |
US7713364B2 (en) | 2001-04-16 | 2010-05-11 | Nippon Mining & Metals Co., Ltd. | Manganese alloy sputtering target and method for producing the same |
WO2002086184A1 (en) * | 2001-04-16 | 2002-10-31 | Nikko Materials Company, Limited | Manganese alloy sputtering target and method for producing the same |
WO2004027109A1 (en) * | 2002-09-20 | 2004-04-01 | Nikko Materials Co., Ltd. | Tantalum sputtering target and method for preparation thereof |
JP2004107758A (en) * | 2002-09-20 | 2004-04-08 | Nikko Materials Co Ltd | Tantalum sputtering target and its production method |
EP1447458A2 (en) * | 2002-11-14 | 2004-08-18 | W.C. Heraeus GmbH & Co. KG | process for producing a Si-based alloy sputtering target, sputtering target and its application |
EP1447458A3 (en) * | 2002-11-14 | 2004-08-25 | W.C. Heraeus GmbH & Co. KG | process for producing a Si-based alloy sputtering target, sputtering target and its application |
US8349249B2 (en) | 2003-02-10 | 2013-01-08 | Heraeus Precious Metals Gmbh & Co. Kg | Metal alloy for medical devices and implants |
US8403980B2 (en) | 2003-02-10 | 2013-03-26 | Heraeus Materials Technology Gmbh & Co. Kg | Metal alloy for medical devices and implants |
CN104451566A (en) * | 2014-12-17 | 2015-03-25 | 重庆大学 | Preparation method of high-purity aluminum-silicon target material |
CN113897566A (en) * | 2021-09-27 | 2022-01-07 | 宁波江丰电子材料股份有限公司 | Preparation method of high-purity aluminum target material |
Also Published As
Publication number | Publication date |
---|---|
JPS6348946B2 (en) | 1988-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7767043B2 (en) | Copper sputtering targets and methods of forming copper sputtering targets | |
JPS61124566A (en) | Production of al-si alloy target plate material for sputtering | |
US4842706A (en) | Sputtering target | |
KR100760156B1 (en) | Tantalum sputtering target | |
US20040072009A1 (en) | Copper sputtering targets and methods of forming copper sputtering targets | |
US20070102288A1 (en) | Tantalum sputtering target and method of manufacturing same | |
JP2007302996A (en) | Ta SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME | |
KR20050057382A (en) | Tantalum sputtering target and method for preparation thereof | |
JP2003500546A (en) | Copper sputter target assembly and method of manufacturing the same | |
WO2008069049A1 (en) | Magnesium alloy material and process for production thereof | |
JP7426936B2 (en) | Method for forming copper alloy sputtering target with refined shape and microstructure | |
JP2984778B2 (en) | Forging method of high purity titanium material | |
TWI798304B (en) | Gold sputtering target material and manufacturing method thereof | |
TWI752035B (en) | Gold Sputtering Target | |
JP2007521140A (en) | High integrity sputtering target material and method for producing it in large quantities | |
KR920004707B1 (en) | METHOD OF PRODUCING Fe-Ni SERIES ALLOYS HAVING IMPROVED EFFECT FOR RESTRAINING STREAKS DURING ETCHING | |
KR101188339B1 (en) | SPUTTERING TARGET Ta SHEET AND MANUFACTURING METHOD OF THE SAME | |
JP3867569B2 (en) | Aluminum foil for containers and manufacturing method thereof | |
JPH09272938A (en) | Aluminum foil and its production | |
KR101374281B1 (en) | SPUTTERING TARGET Ta SHEET AND MANUFACTURING METHOD OF THE SAME | |
JP2004052008A (en) | Titanium-copper alloy and manufacturing method therefor | |
JPH04235261A (en) | Manufacture of co-base alloy stock | |
JPH04254559A (en) | Production of extremely fine wire | |
JPH10110226A (en) | Production of copper or copper alloy | |
JPS63190148A (en) | Manufacture of structural al-zn-mg alloy extruded material |