JPS6058299B2 - Method for producing Al-Zn-Mg-Cu alloy material with excellent formability - Google Patents

Method for producing Al-Zn-Mg-Cu alloy material with excellent formability

Info

Publication number
JPS6058299B2
JPS6058299B2 JP9811282A JP9811282A JPS6058299B2 JP S6058299 B2 JPS6058299 B2 JP S6058299B2 JP 9811282 A JP9811282 A JP 9811282A JP 9811282 A JP9811282 A JP 9811282A JP S6058299 B2 JPS6058299 B2 JP S6058299B2
Authority
JP
Japan
Prior art keywords
treatment
alloy material
less
heating
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9811282A
Other languages
Japanese (ja)
Other versions
JPS58213850A (en
Inventor
美光 宮木
正和 平野
豊 金田
寿恵男 藤崎
正徳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9811282A priority Critical patent/JPS6058299B2/en
Publication of JPS58213850A publication Critical patent/JPS58213850A/en
Publication of JPS6058299B2 publication Critical patent/JPS6058299B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は成形性の優れたAl−Zn−Mg−Cu系合
金材の製造法に関し、さらに詳しくは、裏方アルミニウ
ム合金として代表的な7075系合金材の成形加工率が
異なつても均一な成形性の優れたAl一Zn−Mg−C
u系合金材の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an Al-Zn-Mg-Cu alloy material with excellent formability. Al-Zn-Mg-C with excellent uniform formability even though different
This invention relates to a method for manufacturing a U-based alloy material.

一般に、7000系の裏方アルミニウム合金は、成形
加工性が劣るため、軟質材にて予備の加工を行ない、続
いて溶体化、焼入処理を行ない、焼入直後の強度が低い
短時間の間に本加工を行なつた後、時効処理を施す(T
6処理)製造工程が採用されている。 しカルながら、
このような製造工程では軟質材で加工率10〜20%の
予備加工を受けた部分はその後の溶体化、廃人工程で著
しく粗大な再結晶組織となり、本加工において肌荒れ、
或いは、微小な割れが発生し、成形加工を不可能にした
り、又は、製品の性能を低下させる大きな問題があつた
In general, 7000 series back aluminum alloys have poor formability, so preliminary processing is performed using a soft material, followed by solution treatment and quenching treatment, and the strength immediately after quenching is low. After the main processing, aging treatment is performed (T
6) manufacturing process is adopted. Although I am calm,
In such a manufacturing process, the part of the soft material that has undergone preliminary processing at a processing rate of 10 to 20% becomes a significantly coarse recrystallized structure during the subsequent solution treatment and scraping process, and during the main processing, the surface becomes rough and rough.
Alternatively, there was a major problem in that minute cracks occurred, making molding impossible or degrading the performance of the product.

本発明は上記に説明したような7000系裏方アルミ
ニウム合金の製造方法の問題点に鑑みなされたものであ
つて、即ち、軟質材の状態でも結晶粒が微細であり、板
材、管材、及ひ、棒材等の軟質材に施される圧延、抽伸
、スエージ加工、冷間鍛造等の冷間加工率の部分でその
後の溶体化、焼入後の再結晶粒が粗大にならない、成形
加工率が異なつても均一な成形性の優れたAl−Zn−
Mg−Cu系合金材の製造法を提供するものである。
The present invention was made in view of the problems of the manufacturing method of 7000 series backside aluminum alloy as explained above, namely, the crystal grains are fine even in the state of soft material, and the In cold processing areas such as rolling, drawing, swaging, and cold forging applied to soft materials such as bars, recrystallized grains do not become coarse after subsequent solution treatment and quenching, and the forming processing rate is reduced. Al-Zn- has excellent uniform formability even though it is different.
The present invention provides a method for manufacturing a Mg-Cu alloy material.

本発明における成形性の優れたAl−Zn−Mg一C
u系合金材の製造法の特徴とするところは、Zn3〜8
%、Mg1〜3%、Cu0.5〜3%を含有し、’Mn
0.05%〜0.80%、Cr0.05〜0.30%、
Zr0.05〜0.30%、T10.01〜0.15%
、V0.01〜0.15%の中から選んだ1種、又は、
2種以上を含有し、残部Alと不純物からなるアルミニ
ウム合金鋳塊を均質化処理後、熱間加工、或いは、さら
に冷間加工を施、した後、10℃/ mln以下の昇温
速度で350〜5000Cに加熱保持し、冷却速度10
℃/Min以上で冷却し、次いで、200〜400゜C
に2肴間以内加熱保持して析出処理をすることにある。
Al-Zn-Mg-C with excellent moldability in the present invention
The manufacturing method of U-based alloy material is characterized by Zn3-8
%, Mg1-3%, Cu0.5-3%, 'Mn
0.05% to 0.80%, Cr0.05 to 0.30%,
Zr0.05~0.30%, T10.01~0.15%
, one type selected from V0.01-0.15%, or
After homogenizing an aluminum alloy ingot containing two or more types and consisting of the remainder Al and impurities, hot working or further cold working is performed, and then the aluminum alloy ingot is heated to 350°C at a heating rate of 10°C/ml or less. Heating and holding at ~5000C, cooling rate 10
Cool at ℃/Min or higher, then 200-400℃
The purpose is to heat and hold the mixture for less than 2 hours to perform a precipitation treatment.

本発明に係る成形性の優れたN−Zn−Mg−Cu系合
金材の製造法は、上記した特許請求の範囲にも説明した
ように、一定割合のZn,,Mg,Cuを必須成分とし
て含有し、かつ、Mn,Cr,Zr,Tl,■の中から
選んだ1種、又は、2種以上を含み、残部Al及び不純
物よりなるアルミニウム合金の鋳塊を、450〜500
℃て温度で4〜24hr1或いは、300〜450℃で
2〜24hr加熱後、450〜500℃て2〜24hr
加熱する均質化処理を行ない、Zn,Mg,Cuを充分
に拡散固溶させてミクロ的偏析を無くし、同時に組織安
定化に効果があるMn,Cr,Zr,Ti,Vを微細均
一に析出させる。次いで、熱間加工を行ない、或いは、
さらに冷間加工を行なつて所要寸法に加工する。この冷
間加工を行なう前に熱間加工材を350〜500℃で軟
化処理を行つて再結晶組織としておくのがよく、その後
、10てC/Min以下の昇温速度で350〜500℃
の温度に加熱し、Mg,Znを固溶させるのに充分な時
間保持した後、10℃/Mjn以上の冷却速度て室温ま
て冷却し、続いて、200〜400゜Cで24時間以内
の時間、加熱保持して析出処理を行いMg,Znの化合
物を均一に析出させるのてある。この析出処理において
、加熱速度150′C/Hr以下、及び、冷却速度15
0゜C/Hr以下で処理を行なうのがよい。このように
、本発明に係る成形性の優れたAl−Zn−Mg−Cu
系合金材の製造法により得られたアルミニウム合金材を
冷間加工すると、マトリツ.クスに均一に析出したZn
,Mg化合物の粒子によつて、冷間加工にて導入された
転位が微細均一なセル組織として分布され、引続いて行
なわれる溶体化、焼入れ処理によつて微細均一に分布さ
れたセル組織を核として再結晶が起るため微細な再結6
晶組織が得られらる。このため、加工率の異なる成形加
工を施した予備加工材てあつても、溶体化、焼入れ処理
後の本成形加工において、割れや肌荒れも発生すること
なく均一な成形加工が可能とになり、加工後の時・効処
理により所望の特性を確保することができるものである
As explained in the above-mentioned claims, the method for manufacturing the N-Zn-Mg-Cu alloy material with excellent formability according to the present invention includes a certain proportion of Zn, Mg, and Cu as essential components. An aluminum alloy ingot containing one or more selected from Mn, Cr, Zr, Tl,
4 to 24 hours at ℃ temperature or 2 to 24 hours at 300 to 450 degrees Celsius, then 2 to 24 hours at 450 to 500 degrees Celsius.
Perform homogenization treatment by heating to sufficiently diffuse and dissolve Zn, Mg, and Cu to eliminate microscopic segregation, and at the same time precipitate finely and uniformly Mn, Cr, Zr, Ti, and V, which are effective in stabilizing the structure. . Then, hot working is performed, or
Further, cold working is performed to obtain the required dimensions. Before performing this cold working, it is best to soften the hot-worked material at 350 to 500°C to form a recrystallized structure, and then heat the material to 350 to 500°C at a heating rate of 10 C/Min or less.
After heating to a temperature of Precipitation treatment is carried out by heating and holding for a certain period of time to uniformly precipitate Mg and Zn compounds. In this precipitation treatment, the heating rate is 150'C/Hr or less, and the cooling rate is 15
It is preferable to carry out the treatment at 0°C/Hr or less. As described above, Al-Zn-Mg-Cu with excellent formability according to the present invention
When the aluminum alloy material obtained by the manufacturing method of the alloy material is cold-worked, it becomes matrices. Zn uniformly deposited on the rice cake
, Dislocations introduced during cold working are distributed as a fine and uniform cell structure by the Mg compound particles, and the subsequent solution treatment and quenching treatment create a fine and uniformly distributed cell structure. Fine recrystallization occurs because recrystallization occurs as nuclei 6
A crystal structure can be obtained. Therefore, even if pre-processed materials have been subjected to forming processes with different processing rates, uniform forming process is possible without cracking or roughening during the main forming process after solution treatment and quenching treatment. Desired characteristics can be ensured by aging and aging treatment after processing.

本発明に係る成形の優れたN−Zn−Mg−Cu系合金
材の製造法について詳細に説明する。
A method for manufacturing an N-Zn-Mg-Cu alloy material with excellent moldability according to the present invention will be explained in detail.

先づ、使用するアルミニウム合金の含有成分、成分割合
について説明する。
First, the components and proportions of the aluminum alloy used will be explained.

Znは含有量が3%未満ではT6処理成形加工材の強度
が低下し、また、過剰に含有されると不溶性化合物が多
くなり靭性が劣化する上、応力腐蝕割れを生じる恐れが
あるので8%を越えてはならない。
If the Zn content is less than 3%, the strength of the T6-treated molded material will decrease, and if it is contained in excess, insoluble compounds will increase and the toughness will deteriorate, and stress corrosion cracking may occur, so the Zn content is 8%. Must not exceed.

よつて、Zn含有量は3〜8%とする。Mgは含有量を
1%を越えて含有させZnと同様にT6処理成形加工材
の強度を向上させることに・あるが、過剰に含有させる
と冷間加工性を悪くし、靭性を劣化させるので3%を越
えて含有させてはならない。よつて、Mg含有量は1〜
3%とする。Cuは含有量が0.5%未満ではT6処理
成形加工材の強度が低下し、また、3%を越えて含有さ
れると不溶性化合物が多くなり靭性が劣化する。
Therefore, the Zn content is set to 3 to 8%. Mg is included in a content exceeding 1% to improve the strength of T6-treated molded materials in the same way as Zn, but excessive content impairs cold workability and deteriorates toughness. The content must not exceed 3%. Therefore, the Mg content is 1~
3%. If the Cu content is less than 0.5%, the strength of the T6-treated molded material will decrease, and if the content exceeds 3%, the amount of insoluble compounds will increase and the toughness will deteriorate.

よつて、Cu含有量は0.5〜3%とする。Mn,Cr
,Zr,Ti,■は組織を安定化する元素であり、Mn
O.O4%未満、CrO.O5%未満、ZrO.O5%
未満、TlO.Ol%、■0.01%未満ではこの効果
がなく、また、MnO.8%、CrO.3%、ZrO.
3%、TlO.l5%、VO.l5%を越えて含有させ
ると効果が飽和し、かつ、巨大晶出物を晶出する。
Therefore, the Cu content is set to 0.5 to 3%. Mn, Cr
, Zr, Ti, ■ are elements that stabilize the structure, and Mn
O. O less than 4%, CrO. O less than 5%, ZrO. O5%
Less than TlO. If MnO.O.O. 8%, CrO. 3%, ZrO.
3%, TlO. l5%, VO. If the content exceeds 15%, the effect will be saturated and giant crystallized substances will be crystallized.

よつて、Mn含有量0.05〜0.8%、Cr含有量は
0.05〜0.3%、Zr含有量は0.05〜0.3%
、T1含有量は0.01〜0.15%とする。その他、
不純物としては、FeO.5%以下、SlO.4%以下
の含有は許容される。
Therefore, the Mn content is 0.05 to 0.8%, the Cr content is 0.05 to 0.3%, and the Zr content is 0.05 to 0.3%.
, T1 content is 0.01 to 0.15%. others,
As impurities, FeO. 5% or less, SlO. A content of 4% or less is permissible.

次に、熱処理について説明する。Next, heat treatment will be explained.

鋳塊の均熱処理は、Cu,Mg,Znの固溶、及び、M
n,Cr,Zr,Tlの析出を目的とするものであり、
均質化処理温度が450℃未満では効果が充分てなく、
500゜Cを越えると局部溶解が発生する。
The soaking treatment of the ingot produces a solid solution of Cu, Mg, and Zn, and
The purpose is to precipitate n, Cr, Zr, Tl,
If the homogenization temperature is less than 450°C, the effect will not be sufficient;
Local dissolution occurs when the temperature exceeds 500°C.

加熱時間は4時間以上を必要とするが2S間以上かけて
も効果はない。この場合、加熱速度は100゜C/Hr
以下とする。二段で行なう場合は、加熱速度の制限は特
になく、一段目ではMn,Cr,Zr,Tl,■の析出
核の生成を促進させること、及び、二段目加熱での局部
溶融防止が目的で、その最適な温度範囲は300〜45
0゜Cである。
The heating time requires 4 hours or more, but heating for 2S or more has no effect. In this case, the heating rate is 100°C/Hr.
The following shall apply. When heating in two stages, there is no particular restriction on the heating rate; the purpose of the first stage is to promote the formation of precipitation nuclei of Mn, Cr, Zr, Tl, and ■, and to prevent local melting in the second stage. So, the optimal temperature range is 300-45
It is 0°C.

保持時間は何れの場合でも、2〜24hrであり、下限
より短かい場合は効果が小さく上限より長い場合では効
果が飽和する。熱間加工後に軟化処理する場合は、35
0′C未満ては軟化が充分てなく、後工程の冷間加工に
より割れが発生する可能性があり、500゜Cを越える
と局部溶解か発生する。保持時間は500℃近くの高温
では数分間でもよいが、400℃位の低温では数時間を
要する。次いで、この均熱処理後の熱間加工、或いは、
さらに、冷間加工後の2段の熱処理について説明する。
The holding time is 2 to 24 hr in any case, and when it is shorter than the lower limit, the effect is small, and when it is longer than the upper limit, the effect is saturated. If softening treatment is performed after hot working, 35
If the temperature is less than 0'C, the softening will not be sufficient and cracks may occur during cold working in the subsequent process, and if it exceeds 500C, local melting may occur. The holding time may be several minutes at a high temperature of about 500°C, but several hours is required at a low temperature of about 400°C. Next, hot processing after this soaking treatment, or
Furthermore, two-stage heat treatment after cold working will be explained.

1段目の熱処理は、軟化処理、及び、Zn,Mgを固溶
することにあるが、350℃より低い温度では充分軟化
されず、500℃を越えると局部溶解が発生する。
The first heat treatment is a softening treatment and solid solution of Zn and Mg, but sufficient softening is not achieved at temperatures lower than 350°C, and local dissolution occurs at temperatures exceeding 500°C.

加熱保持時間は500′C近くの高温では数分でもよい
が、400゜C以下の低温では数時間を要する。そして
、加熱速度は10℃/Minより速いと微細組織になる
が、成形加工後の再結晶粒が粗大粒となるのである。ま
た、冷却速度は10゜C/Min以上としないZn,M
gを充分固溶することができないのである。次に2段目
の熱処理は200℃未満の温度では強度が高くなり成形
加工性が劣化し、また、400℃を越えるとMg,Zn
が溶体化されるため微細化効果が失なわれ、そして、加
熱保持時間は400℃近くの高温側では数分間でもよい
が、200′C近くの低温側ではMg,Zn化合物の析
出のため長い保持時間が必要であるが、2@間まで保持
すれば充分である。
The heating and holding time may be several minutes at high temperatures near 500'C, but several hours are required at low temperatures below 400°C. If the heating rate is faster than 10° C./Min, a fine structure will be formed, but the recrystallized grains after forming will become coarse grains. In addition, the cooling rate should not exceed 10°C/Min.
g cannot be sufficiently dissolved in solid solution. Next, in the second stage of heat treatment, if the temperature is less than 200°C, the strength will increase and the moldability will deteriorate, and if it exceeds 400°C, Mg, Zn
The micronization effect is lost because the particles are dissolved, and the heating holding time may be several minutes at high temperatures near 400°C, but it takes a long time at low temperatures near 200'C due to the precipitation of Mg and Zn compounds. Although a holding time is required, holding it for up to 2@ is sufficient.

本発明に係る成形性の優れたN−Zn−Mg−Cu系合
金材の製造法の実施例を比較例と共に説明する。
Examples of the method for producing an N-Zn-Mg-Cu alloy material with excellent formability according to the present invention will be described together with comparative examples.

実施例 第1表に示す70758金相当の含有成分、成分割合の
鋳塊を通常の溶製法により鋳造し、この鋳塊を450℃
で2Sf間均熱処理を行ない、450℃から300℃の
間て熱間圧延し、8TmIntの板を製造し、続いて、
460℃で2柵間の軟化処理を行なつた後、冷間圧延に
より厚さ3Tn1!&tの板材とした。
Example An ingot having the ingredients and proportions equivalent to 70758 gold shown in Table 1 was cast by a normal melting method, and the ingot was heated at 450°C.
Soaking treatment was carried out for 2Sf, hot rolling was carried out between 450°C and 300°C to produce a plate of 8TmInt, and then,
After softening between the two rails at 460℃, it is cold rolled to a thickness of 3Tn1! &t plate material.

この板材を用いて第2表に示す熱処理を施した。第2表
においてNO.l〜NO,6は本発明に係る成形性の優
れたN−Zn−Mg−Cu系合金の製造法によるもので
、NO.7〜NO.l4は比較例で、NO.l5は従来
のもの(O材)である。これらの各供試材をさらに、3
0%(板厚2.1wn)、20%(板厚2.4Tfn)
で冷間圧延し、冷間圧延”しないものを含めて、溶体化
焼入れ処理し(480℃×30rr1in水焼入れ)、
直ちに900曲げ加工(L方向4Tf0nR900曲げ
)を行ない、さらに時効処理(120℃×2411r)
を行なつた。
This plate material was subjected to the heat treatment shown in Table 2. In Table 2, No. Nos. 1 to 6 are produced by the method of manufacturing an N-Zn-Mg-Cu alloy with excellent formability according to the present invention; 7~NO. 14 is a comparative example, and NO. 15 is a conventional one (O material). Each of these test materials was further divided into 3
0% (plate thickness 2.1wn), 20% (plate thickness 2.4Tfn)
cold rolled, and solution quenched (480°C
Immediately performed 900 bending (L direction 4Tf0nR 900 bend), and further aging treatment (120°C x 2411r)
I did this.

第2表に示した熱処理条件の各供試材の機械的・性質と
、さらに冷間圧延して溶体化焼入れ処理した供試材の再
結晶粒度、900曲げ加工性、さらに、時効処理したT
6処理供試材の機械的性質を第3表に示す。
The mechanical properties of each test material under the heat treatment conditions shown in Table 2, the recrystallized grain size, 900 bending workability, and the aging-treated T
Table 3 shows the mechanical properties of the 6-treated specimens.

第3表から明らかなように、冷間圧延材の本発明に係る
成形性の優れたに−Zn−Mg−Cu系合金材の製造法
によれば、後の冷間成形加工工程で加工率が異なつても
、曲げ加工でも、肌荒れ、及び、割れが発生しない。
As is clear from Table 3, according to the method for producing a cold-rolled material having excellent formability according to the present invention, the processing rate is reduced in the subsequent cold-forming process. No roughness or cracks will occur during bending even if the surface is different.

30%までの加工率で冷間圧延して溶体化焼入れ処理し
た供試材の再結晶粒度は20μ以下、30%加工率で1
0μ以下となり、加工率を高めると微細になつている。
The recrystallized grain size of the specimen cold-rolled and solution-quenched at a working rate of up to 30% is 20μ or less, and 1 at a working rate of 30%.
It becomes 0 μ or less, and becomes finer as the processing rate is increased.

この観点から、供試材NO.9,l2,l3は同様のこ
とがいえるが、曲げ加工で割れが発生している。これは
第2段の熱処理において急速加熱,抵温加熱や冷却速度
を高くしたため、強度が高くなり、加工性が劣化したこ
とに外ならない。他の試料材板NO.7,8,lO,l
l,l4は、加工率によつて再結晶粒度が30μ以上に
なり、曲げ加工で肌荒れ、及び、割れを発生している。
From this point of view, sample material No. The same thing can be said about 9, l2, and l3, but cracks occurred during bending. This is because the rapid heating, low-temperature heating, and cooling rate were increased in the second heat treatment, resulting in increased strength and deteriorated workability. Other sample material plate NO. 7,8,lO,l
In samples 1 and 14, the recrystallized grain size became 30μ or more depending on the processing rate, and roughness and cracking occurred during bending.

以上説明したように、本発明に係る成形性の優れたN−
Zn−Mg−Cu系合金材の製造法は上記の構成を有し
ているものであるさら、A1−Zn−Mg一Cu系合金
材の冷間成形加工素材を2段熱処理することにより、冷
間成形加工において、加工率が異なつても均一に成形加
工することが可能となる優れた製造法てある。
As explained above, N-
The manufacturing method for the Zn-Mg-Cu alloy material has the above-mentioned structure.Furthermore, the method for manufacturing the Zn-Mg-Cu alloy material is performed by subjecting the cold-formed material of the A1-Zn-Mg-Cu alloy material to two-step heat treatment. In inter-forming processing, there is an excellent manufacturing method that allows uniform forming processing even if the processing rate is different.

Claims (1)

【特許請求の範囲】[Claims] 1 Zn3〜8%、Mg1〜3%、Cu0.5〜3%を
含有し、Mn0.05%〜0.80%、Cr0.05〜
0.30%、Zr0.05〜0.30%、Ti0.01
〜0.15%、V0.01〜0.15%の中から選んだ
1種、又は、2種以上を含有し、残部Alと不純物から
なるアルミニウム合金鋳塊を均質化処理後、熱間加工、
或いは、さらに冷間加工を施した後、10℃/min以
下の昇温速度で350〜500℃に加熱保持し、冷却速
度10℃/min以上で冷却し、次いで、200〜40
0℃に24時間以内加熱保持して析出処理を行なうこと
を特徴とする成形加工率が異なつても均一な成形性を有
するAl−Zn−Mg−Cu系合金材の製造法。
1 Contains 3~8% Zn, 1~3% Mg, 0.5~3% Cu, 0.05%~0.80% Mn, 0.05~Cr
0.30%, Zr0.05-0.30%, Ti0.01
~0.15%, V0.01~0.15%, or two or more selected from the group consisting of aluminum and impurities with the remainder being homogenized and then hot worked. ,
Alternatively, after further cold working, the temperature is maintained at 350 to 500°C at a temperature increase rate of 10°C/min or less, cooled at a cooling rate of 10°C/min or more, and then heated to 200 to 400°C.
1. A method for producing an Al-Zn-Mg-Cu alloy material having uniform formability even at different forming rates, the method comprising performing precipitation treatment by heating and holding at 0°C for within 24 hours.
JP9811282A 1982-06-08 1982-06-08 Method for producing Al-Zn-Mg-Cu alloy material with excellent formability Expired JPS6058299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9811282A JPS6058299B2 (en) 1982-06-08 1982-06-08 Method for producing Al-Zn-Mg-Cu alloy material with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9811282A JPS6058299B2 (en) 1982-06-08 1982-06-08 Method for producing Al-Zn-Mg-Cu alloy material with excellent formability

Publications (2)

Publication Number Publication Date
JPS58213850A JPS58213850A (en) 1983-12-12
JPS6058299B2 true JPS6058299B2 (en) 1985-12-19

Family

ID=14211234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9811282A Expired JPS6058299B2 (en) 1982-06-08 1982-06-08 Method for producing Al-Zn-Mg-Cu alloy material with excellent formability

Country Status (1)

Country Link
JP (1) JPS6058299B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2601967B1 (en) * 1986-07-24 1992-04-03 Cerzat Ste Metallurg AL-BASED ALLOY FOR HOLLOW BODIES UNDER PRESSURE.
JPS63114949A (en) * 1986-11-04 1988-05-19 Nippon Light Metal Co Ltd Manufacture of high strength aluminum alloy material having superior weldability
JPS63157890A (en) * 1986-12-22 1988-06-30 Nippon Mining Co Ltd Method for continuously annealing and pickling copper or copper alloy
FR2645546B1 (en) * 1989-04-05 1994-03-25 Pechiney Recherche HIGH MODULATED AL MECHANICAL ALLOY WITH HIGH MECHANICAL RESISTANCE AND METHOD FOR OBTAINING SAME
GB9012810D0 (en) * 1990-06-08 1990-08-01 British Petroleum Co Plc Method of treatment of metal matrix composites
JPH0794700B2 (en) * 1991-02-12 1995-10-11 住友軽金属工業株式会社 Method for manufacturing high strength aluminum alloy extruded material
CN109022963B (en) * 2018-08-09 2020-10-02 中南大学 Method for improving heat strength of 7000 series high-strength aluminum alloy petroleum drilling pipe material

Also Published As

Publication number Publication date
JPS58213850A (en) 1983-12-12

Similar Documents

Publication Publication Date Title
EP0610006A1 (en) Superplastic aluminum alloy and process for producing same
JPH0569898B2 (en)
JPS623225B2 (en)
JPS6058299B2 (en) Method for producing Al-Zn-Mg-Cu alloy material with excellent formability
JPS60258454A (en) Manufacture of aluminum alloy rigid plate for molding
JPS6058298B2 (en) Method for producing Al-Zn-Mg-Cu alloy material with uniform formability
JPH03120332A (en) Aluminum foil and its manufacture
JPH0257655A (en) Foamable aluminum alloy having excellent surface treating characteristics and its manufacture
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPS63169353A (en) Aluminum alloy for forming and its production
JPS60238460A (en) Manufacture of superplastic aluminum alloy
JPH03294459A (en) Solution treatment for precipitation hardening copper alloy
JPH0588302B2 (en)
JPH03294458A (en) Solution treatment for precipitation hardening copper alloy
JPS62170462A (en) Manufacture of superplastic aluminum alloy material
JPH0756068B2 (en) Manufacturing method of aluminum hard plate with small ear ratio and excellent strength and ductility
JPS6157384B2 (en)
JPH0256416B2 (en)
JPS60238461A (en) Manufacture of superplastic aluminum alloy
JPH0222447A (en) Manufacture of alpha-type titanium alloy having excellent cold workability
JPS6286150A (en) Manufacture of superplastic aluminum alloy
JPS63206457A (en) Working and heat treatment of alpha+beta type titanium alloy
JPS62182256A (en) Manufacture of aluminum alloy superior in formability
JPH02247364A (en) Production of aluminum alloy stock for forming
JPH03294460A (en) Solution treatment for precipitation hardening copper alloy