JPH03294460A - Solution treatment for precipitation hardening copper alloy - Google Patents
Solution treatment for precipitation hardening copper alloyInfo
- Publication number
- JPH03294460A JPH03294460A JP9630090A JP9630090A JPH03294460A JP H03294460 A JPH03294460 A JP H03294460A JP 9630090 A JP9630090 A JP 9630090A JP 9630090 A JP9630090 A JP 9630090A JP H03294460 A JPH03294460 A JP H03294460A
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- solution treatment
- precipitation hardening
- precipitation
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 108
- 238000004881 precipitation hardening Methods 0.000 title claims abstract description 88
- 239000000243 solution Substances 0.000 claims abstract description 113
- 238000001816 cooling Methods 0.000 claims abstract description 64
- 239000010949 copper Substances 0.000 claims abstract description 25
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000006104 solid solution Substances 0.000 claims abstract description 14
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 11
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 10
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 238000003483 aging Methods 0.000 abstract description 11
- 238000001556 precipitation Methods 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 13
- 239000011159 matrix material Substances 0.000 description 9
- 239000011148 porous material Substances 0.000 description 9
- 238000005728 strengthening Methods 0.000 description 6
- 229910017945 Cu—Ti Inorganic materials 0.000 description 4
- 229910004688 Ti-V Inorganic materials 0.000 description 3
- 229910010968 Ti—V Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、Cu−Ti系、Cu−Ti−V系、およびC
u−T i −V−Z r系の析出硬化型銅合金の溶体
化処理方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Fields] The present invention relates to Cu-Ti system, Cu-Ti-V system, and C
The present invention relates to a solution treatment method for a u-T i -V-Z r-based precipitation hardening copper alloy.
[従来の技術]
析出硬化型銅合金の時効硬化を充分に行うには、溶体化
処理によって析出に寄与する成分の固溶・均質化を行っ
た後に時効硬化処理を行う必要がある。このような時効
硬化処理の結果、析出相を銅器相中に微細に分布させる
ことができる。[Prior Art] In order to sufficiently age harden a precipitation hardening type copper alloy, it is necessary to perform the age hardening treatment after solid solution and homogenization of components contributing to precipitation by solution treatment. As a result of such age hardening treatment, the precipitated phase can be finely distributed in the copperware phase.
しかし、溶体化処理で析出硬化型銅合金の冷却が遅いと
、銅合金母相中に析出硬化にあまり寄与しない析出相が
析出する。これは、溶体化処理時に析出硬化型銅合金母
相中に導入された空孔が、その析出を促進するからであ
る。析出硬化にあまり寄与しない析出相が析出した析出
硬化型銅合金は、時効硬化処理を行っても充分に強化で
きない。However, if cooling of the precipitation-hardening copper alloy during solution treatment is slow, a precipitate phase that does not significantly contribute to precipitation hardening will precipitate in the copper alloy matrix. This is because the pores introduced into the precipitation hardening copper alloy matrix during solution treatment promote the precipitation. Precipitation hardening copper alloys in which precipitated phases that do not significantly contribute to precipitation hardening cannot be sufficiently strengthened even if subjected to age hardening treatment.
そこで、従来の析出硬化型銅合金の溶体化処理方法は、
溶体化処理の際に析出硬化型銅合金を1000℃/分程
度の冷却速度で急冷していた。Therefore, the conventional solution treatment method for precipitation hardening copper alloys is as follows:
During the solution treatment, the precipitation hardening copper alloy was rapidly cooled at a cooling rate of about 1000° C./min.
なお、母相の単相化する温度まで加熱した押出加工前の
ビレット溶体化処理、熱間圧延前のケーク溶体化処理等
も溶体化処理の範鴫に包含される。Note that billet solution treatment before extrusion in which the mother phase is heated to a temperature at which it becomes a single phase, cake solution treatment before hot rolling, etc. are also included in the scope of solution treatment.
[発明が解決しようとする課題]
しかしながら、溶体化処理で析出硬化型銅合金を効率よ
く急冷するには、急冷処理の可能な溶体化処理設備が必
要である。このような溶体化処理設備は、大型であり、
設備価格も高い。しかも、従来の場合には、材料の熱容
量を小さくしなければならず、工業的な処理方法として
適さない問題があった。[Problems to be Solved by the Invention] However, in order to efficiently quench precipitation hardening copper alloys by solution treatment, solution treatment equipment capable of quenching is required. Such solution treatment equipment is large and
Equipment prices are also high. Moreover, in the conventional case, the heat capacity of the material had to be reduced, which caused the problem that it was not suitable as an industrial treatment method.
本発明は、かかる事情を鑑みてなされたものであり、簡
易な設備で実施可能であり、しかも、最終の冷却工程中
に析出硬化に寄与しない析出相が析出するのを防止でき
る析出硬化型銅合金の溶体化処理方法を提供するもので
ある。The present invention has been made in view of the above circumstances, and is a precipitation hardening type copper that can be implemented with simple equipment and that can prevent precipitated phases that do not contribute to precipitation hardening from precipitating during the final cooling process. The present invention provides a method for solution treatment of alloys.
[課題を解決するための手段]
本発明は、Cuを主成分とし、析出硬化成分として0.
1〜3.5重量%のTiを含有する析出硬化型銅合金を
900〜1000℃の温度で10分以上加熱してCuに
Tiを固溶させる第1溶体化処理工程と、該第1溶体化
処理後の銅合金を所定の温度まで冷却する第1冷却工程
と、該第1冷却工程、後の銅合金に前記第1溶体化処理
の際の温度よりも低い温度で、かつ、800〜900℃
の温度で5分以上の加熱を施してCuにTiを固溶させ
る第2溶体化処理工程と、該第2溶体化処理後の銅合金
を5℃/分以上の冷却速度で冷却する第2冷却工程とを
具備することを特徴とする析出硬化型銅合金の溶体化処
理方法である。[Means for Solving the Problems] The present invention contains Cu as a main component and 0.00% as a precipitation hardening component.
A first solution treatment step of heating a precipitation-hardening copper alloy containing 1 to 3.5% by weight of Ti at a temperature of 900 to 1000° C. for 10 minutes or more to solidly dissolve Ti in Cu, and the first solution a first cooling step in which the copper alloy after the heat treatment is cooled to a predetermined temperature, and the copper alloy after the first cooling step is heated at a temperature lower than the temperature during the first solution heat treatment, and 900℃
a second solution treatment step in which Ti is dissolved in Cu by heating at a temperature of 5 minutes or more, and a second solution treatment step in which the copper alloy after the second solution treatment is cooled at a cooling rate of 5° C./min or more. 1 is a method for solution treatment of a precipitation hardening copper alloy, the method comprising a cooling step;
また、本発明は、Cuを主成分とし、析出硬化成分とし
て0.1〜3.5重量%のTiおよび0.1〜3.5重
量%のVを含有する析出硬化型銅合金を900〜100
0℃の温度で10分以上加熱してCuにTiおよびVを
固溶さビる第1溶体化処理工程と、該第1溶体化処理後
の銅合金を所定の温度まで冷却する第1冷却工程と、該
第1冷却工程後の銅合金に前記第1溶体化処理の際の温
度よりも低い温度で、かつ、800〜9000Cの温度
で5分以上の加熱を施してCuにTiおよびVを固溶さ
せる第2溶体化処理工程と、該第2溶体化処理後の銅合
金を5℃/分以上の冷却速度で冷却する第2冷却工程と
を具備することを特徴ビあン
とする析出硬化型銅合金の溶体化処理方法Vまた、本発
明は、Cuを主成分とし、析出硬化成分として0.1〜
3.5重量%のTi、0.1〜3.5重量%のV、およ
び0.05〜4,0重量%のZrを含有する析出硬化型
銅合金を900〜1000℃の温度で10分以上加熱し
てCuにTi、V、およびZrを固溶させる第1溶体化
処理工程と、該第1溶体化処理後の銅合金を所定の温度
まで冷却する第1冷却工程と、該第1冷却工程後の銅合
金に前記第1溶体化処理の際の温度よりも低い温度で、
かつ、800〜900℃の温度で5分以上の加熱を施し
てCuにTi%V1およびZrを固溶させる第2溶体化
処理工程と、該第2溶体化処理後の銅合金を5℃/分以
上の冷却速度で冷却する第2冷却工程とを具備すること
を特徴とする析出硬化型銅合金の溶体化処理方法である
。Further, the present invention provides precipitation hardening copper alloys containing Cu as a main component and 0.1 to 3.5% by weight of Ti and 0.1 to 3.5% by weight of V as precipitation hardening components. 100
A first solution treatment step in which Ti and V are dissolved in Cu by heating at a temperature of 0° C. for 10 minutes or more, and a first cooling step in which the copper alloy after the first solution treatment is cooled to a predetermined temperature. step, and heating the copper alloy after the first cooling step at a temperature lower than the temperature during the first solution treatment and at a temperature of 800 to 9000 C for 5 minutes or more to add Ti and V to Cu. A characteristic feature of the invention is that it comprises a second solution treatment step in which the copper alloy is dissolved in solid solution, and a second cooling step in which the copper alloy after the second solution treatment is cooled at a cooling rate of 5° C./min or more. Solution treatment method for precipitation hardening copper alloy
A precipitation hardening copper alloy containing 3.5 wt% Ti, 0.1-3.5 wt% V, and 0.05-4.0 wt% Zr was heated at a temperature of 900-1000°C for 10 minutes. a first solution treatment step in which Ti, V, and Zr are dissolved in Cu by heating as described above; a first cooling step in which the copper alloy after the first solution treatment is cooled to a predetermined temperature; At a temperature lower than the temperature during the first solution treatment on the copper alloy after the cooling step,
and a second solution treatment step in which Ti%V1 and Zr are dissolved in Cu by heating at a temperature of 800 to 900°C for 5 minutes or more, and the copper alloy after the second solution treatment is heated at 5°C/ This is a solution treatment method for a precipitation hardening copper alloy, characterized by comprising a second cooling step of cooling at a cooling rate of 1 minute or more.
[作用]
本発明の析出硬化型銅合金の溶体化処理方法によれば、
まず、第1溶体化処理により、析出硬化に寄与する成分
が固溶化する。次に、これを所定温度まで冷却する。次
いで、冷却後の銅合金に第2溶体化処理を所定時間施す
。この第2溶体化処理の際に第1溶体化処理で析出硬化
型銅合金母相中に導入された空孔の濃度が減少する。こ
れにより、析出硬化型銅合金を急冷することなく、シか
も、最終の冷却工程で析出硬化に寄与しない析出相が析
出するのを抑えることができる。この結果、均質な過飽
和固溶体を得ることができ、時効処理の際に析出硬化に
寄与する成分を充分に析出させて、析出硬化型銅合金を
充分に強化できる。[Function] According to the solution treatment method for precipitation hardening copper alloy of the present invention,
First, by the first solution treatment, components contributing to precipitation hardening are converted into a solid solution. Next, this is cooled to a predetermined temperature. Next, the copper alloy after cooling is subjected to a second solution treatment for a predetermined period of time. During this second solution treatment, the concentration of pores introduced into the precipitation hardening copper alloy matrix in the first solution treatment decreases. Thereby, it is possible to suppress precipitation of a precipitated phase that does not contribute to precipitation hardening in the final cooling step, without rapidly cooling the precipitation hardening copper alloy. As a result, a homogeneous supersaturated solid solution can be obtained, and components contributing to precipitation hardening can be sufficiently precipitated during aging treatment, thereby sufficiently strengthening the precipitation hardening type copper alloy.
[実施例]
以下、本発明の析出硬化型銅合金の溶体化処理方法をそ
の工程順に説明する。[Example] Hereinafter, the solution treatment method for a precipitation hardening copper alloy of the present invention will be explained in the order of its steps.
強化する析出硬化型銅合金は、Cu−Ti系、Cu−T
i−V系、およびCu−Ti −V−Zr系のものであ
る。Precipitation hardening copper alloys to be strengthened include Cu-Ti system, Cu-T
They are i-V type and Cu-Ti-V-Zr type.
Cu−Ti系の析出硬化型銅合金は、Cuを主成分とし
、0.1〜3,5重量%のTi1不可避不純物及び必要
に応じて固溶強化成分を含有するものである。Tiの含
有量が0.1重量%未満であると、充分に強化された析
出硬化型銅合金が得られない。また、Tiの含有量が3
65重量%を超えると、析出硬化型銅合金が溶体化処理
の際に過剰のTiを固溶化し、析出硬化型銅合金結晶に
歪みを発生させる。この歪みによって、析出硬化型銅合
金結晶に格子欠陥ができる。その結果、優れた特性を有
する析出硬化型銅合金を得ることができない。The Cu-Ti precipitation hardening type copper alloy has Cu as a main component, and contains 0.1 to 3.5% by weight of Ti1 inevitable impurity and, if necessary, a solid solution strengthening component. If the Ti content is less than 0.1% by weight, a sufficiently strengthened precipitation hardening copper alloy cannot be obtained. In addition, the Ti content is 3
If it exceeds 65% by weight, excessive Ti will be dissolved in the precipitation hardening copper alloy during solution treatment, causing distortion in the precipitation hardening copper alloy crystals. This distortion creates lattice defects in the precipitation-hardened copper alloy crystal. As a result, a precipitation hardening copper alloy with excellent properties cannot be obtained.
また、Cu−Ti−V系の析出硬化型銅合金は、Cuを
主成分とし、0.1〜3.5重量%のTi。Further, the Cu-Ti-V precipitation hardening copper alloy has Cu as a main component and 0.1 to 3.5% by weight of Ti.
0.1〜3,5重量%のV1不可避不純物、および必要
に応じて固溶強化成分を含有するものである。■の含有
量の限定理由は、Tiの場合と同様である。It contains 0.1 to 3.5% by weight of V1 inevitable impurities and, if necessary, a solid solution strengthening component. The reason for limiting the content of (2) is the same as in the case of Ti.
また、Cu−T 1−V−Z r系の析出硬化型銅合金
は、Cuを主成分とし、0.1〜3.5重量%のTi、
0.1〜3.5重量%のV、0.05〜4.0重量%の
Zr、不可避不純物、および必要に応じて固溶強化成分
を含有するものである。In addition, Cu-T 1-V-Z r-based precipitation hardening copper alloys contain Cu as a main component, 0.1 to 3.5 wt% of Ti,
It contains 0.1 to 3.5% by weight of V, 0.05 to 4.0% by weight of Zr, unavoidable impurities, and, if necessary, a solid solution strengthening component.
Zrの含有量の限定理由は、Tiおよび■の場合と同様
である。The reason for limiting the Zr content is the same as in the case of Ti and (2).
固溶強化成分は、時効硬化処理後も合金中に固溶して強
度向上に寄与する。このようなものとして、P、Al)
SSn、Zn、Mns S iが挙げられる。また、
固溶強化成分の含有量は、SnおよびMnについては3
重量%以下、その他のものについては0.51ffi%
以下であることが好ましい。The solid solution strengthening component remains solid solution in the alloy even after the age hardening treatment and contributes to improving the strength. As such, P, Al)
Examples include SSn, Zn, and Mns Si. Also,
The content of solid solution strengthening components is 3 for Sn and Mn.
Weight% or less, 0.51ffi% for other items
It is preferable that it is below.
このような析出硬化型合金を次のように溶体化処理する
。Such a precipitation hardening alloy is subjected to solution treatment as follows.
まず、析出硬化型銅合金に次のような加熱温度で10分
以上の第1溶体化処理を施す。第1溶体化処理の際の加
熱温度は、900〜1000℃に設定する。第1溶体化
処理は、析出硬化型銅合金中の析出硬化に寄与する成分
を固溶させるためのものである。したかって、第1溶体
化処理の際の加熱温度は、析出硬化型銅合金の銅器相が
単相化する温度よりも高く、銅器相単相域で素材の酸化
や溶融等の劣化が起こらない範囲で、可能なかぎり高く
設定するのが好ましい。しかし、銅器相が、単相化する
温度付近では、銅器相が均質化するまでに非常に長い時
間を要し、非能率的である。そこで、第1溶体化処理の
際の加熱温度は、銅器相が単相化する温度よりも少なく
とも50℃以上高く設定する方がよい。First, a precipitation hardening copper alloy is subjected to a first solution treatment for 10 minutes or more at the following heating temperature. The heating temperature during the first solution treatment is set at 900 to 1000°C. The first solution treatment is for dissolving components that contribute to precipitation hardening in the precipitation hardening copper alloy. Therefore, the heating temperature during the first solution treatment is higher than the temperature at which the copperware phase of the precipitation hardening copper alloy becomes a single phase, and deterioration such as oxidation or melting of the material does not occur in the copperware single phase region. It is preferable to set it as high as possible within the range. However, near the temperature at which the copperware phase becomes a single phase, it takes a very long time for the copperware phase to become homogenized, which is inefficient. Therefore, the heating temperature during the first solution treatment is preferably set at least 50°C higher than the temperature at which the copperware phase becomes a single phase.
また、第1溶体化処理の時間は、析出硬化型銅合金中に
析出硬化に寄与する成分が均質に固溶するに充分な時間
に設定する。この第1溶体化処理時間は、具体的には1
0分以上に設定するのが望ましい。Moreover, the time of the first solution treatment is set to a time sufficient to uniformly dissolve the components contributing to precipitation hardening into the precipitation hardening copper alloy. Specifically, this first solution treatment time is 1
It is desirable to set it to 0 minutes or more.
次に、第1溶体化処理後の析出硬化型銅合金を第2溶体
化処理を行う際の温度まで冷却する。次いで、析出硬化
型銅合金に第2溶体化処理を所定時間施す。なお、第1
溶体化処理後の析出硬化型銅合金を第2溶体化処理の温
度まで冷却するときの冷却速度は、工業的に問題がなけ
れば、どのような冷却速度に保持してもさしつかえない
。Next, the precipitation hardening copper alloy after the first solution treatment is cooled to a temperature at which the second solution treatment is performed. Next, the precipitation hardening copper alloy is subjected to a second solution treatment for a predetermined period of time. In addition, the first
The cooling rate when cooling the precipitation-hardened copper alloy after solution treatment to the temperature of the second solution treatment may be maintained at any cooling rate as long as there is no industrial problem.
また、第2溶体化処理の際の加熱温度は、800〜90
0℃に設定する。In addition, the heating temperature during the second solution treatment is 800 to 90°C.
Set to 0℃.
第2溶体化処理は、第1溶体化処理によって析出硬化型
銅合金母相中に導入された空孔を減少させるためのもの
である。銅合金母相中の空孔濃度が高いと、冷却工程の
際に析出する成分元素の拡散が活発になる。また、空孔
自体が核生成サイトを形成して析出硬化に寄与しない析
出相を増加させる。そこで、第2溶体化処理によって空
孔密度を減少させて、平衡空孔濃度にするものである。The second solution treatment is for reducing the pores introduced into the precipitation hardening copper alloy matrix by the first solution treatment. If the vacancy concentration in the copper alloy matrix is high, the component elements that precipitate during the cooling process will actively diffuse. In addition, the pores themselves form nucleation sites and increase the amount of precipitated phases that do not contribute to precipitation hardening. Therefore, the pore density is reduced by the second solution treatment to reach an equilibrium pore concentration.
平衡空孔濃度とは、時効硬化処理に支障を与えない程度
の空孔濃度をいう。第2溶体化処理の際の温度を銅合金
母相が単相化する温度付近の温度に保持することによっ
て、銅合金母相内で平衡空孔濃度を達成することができ
る。The equilibrium pore concentration refers to a pore concentration that does not interfere with age hardening treatment. By maintaining the temperature during the second solution treatment at a temperature near the temperature at which the copper alloy matrix becomes a single phase, an equilibrium vacancy concentration can be achieved in the copper alloy matrix.
また、第2溶体化処理の際の時間は、銅合金母相内に平
衡空孔濃度が得られるように設定する。Further, the time for the second solution treatment is set so as to obtain an equilibrium vacancy concentration within the copper alloy matrix.
この第2溶体化処理の時間は、具体的には5分以上に設
定するのが好ましい。Specifically, the time for this second solution treatment is preferably set to 5 minutes or more.
第2溶体化処理後の析出硬化型銅合金の冷却速度は、5
℃/分以上に設定する。これは、冷却速度が5℃/分未
満であると、第2冷却工程で析出硬化に寄与しない析出
相の析出を充分に抑えられないからである。The cooling rate of the precipitation hardening copper alloy after the second solution treatment is 5
Set to ℃/min or higher. This is because if the cooling rate is less than 5° C./min, precipitation of precipitated phases that do not contribute to precipitation hardening cannot be sufficiently suppressed in the second cooling step.
このようにCu−Ti系、Cu−Ti−V系およびCu
−Ti−V−Zr系の析出硬化型銅合金に第1溶体化処
理を施し、析出硬化に寄与する成分を調合相中に固溶さ
せる。次いで、析出硬化型銅合金を第1冷却工程を経て
第2溶体化処理の際の温度まで冷却する。次いで、これ
に第2溶体化処理を施して、第1溶体化処理で析出硬化
型銅合金母相中に導入された空孔の濃度を減少させる。In this way, Cu-Ti system, Cu-Ti-V system and Cu
- A Ti-V-Zr precipitation hardening copper alloy is subjected to a first solution treatment, and components contributing to precipitation hardening are dissolved in the blended phase. Next, the precipitation hardening copper alloy is cooled to a temperature for second solution treatment through a first cooling step. Next, this is subjected to a second solution treatment to reduce the concentration of pores introduced into the precipitation hardening copper alloy matrix in the first solution treatment.
その後、第2冷却工程によって、析出硬化型銅合金内に
、均質な過飽和固溶体を形成させる。これにより、その
後の時効硬化処理において析出硬化に寄与する成分が微
細に分布する。この結果、析出硬化型銅合金を充分に強
化することができる。Thereafter, a second cooling step forms a homogeneous supersaturated solid solution within the precipitation hardening copper alloy. As a result, components contributing to precipitation hardening in the subsequent age hardening treatment are finely distributed. As a result, the precipitation hardening copper alloy can be sufficiently strengthened.
以下、本発明の効果を確認にするために行った実験例に
ついて説明する。Examples of experiments conducted to confirm the effects of the present invention will be described below.
実験例1〜3
まず、析出硬化成分として2.1重量%のTiを含有す
る析出硬化型銅合金を、電気炉内で1200℃に加熱し
、溶解した。この溶解した析出硬化型銅合金を鋳造して
長さ200m、幅80關、厚さ20關の寸法の板状体と
した。この板状体を800℃で厚さ5II11に熱間圧
延した。さらに、これを厚さ1 mmに冷間圧延して薄
板状体を作製した。Experimental Examples 1 to 3 First, a precipitation hardening copper alloy containing 2.1% by weight of Ti as a precipitation hardening component was heated to 1200° C. in an electric furnace and melted. This molten precipitation-hardening copper alloy was cast into a plate-like body with dimensions of 200 m in length, 80 m in width, and 20 m in thickness. This plate-shaped body was hot rolled at 800°C to a thickness of 5II11. Furthermore, this was cold-rolled to a thickness of 1 mm to produce a thin plate-like body.
次に、得られた薄板状体に950℃で30分間加熱して
第1溶体化処理を施した。第1溶体化処理後、薄板状体
を900℃まで10℃/分の冷却速度で冷却した。次に
、これを900℃の温度で30分間保持して、薄板状体
に第2溶体化処理を施した。その後、第2溶体化処理後
の薄板状体を室温まで250℃/分の冷却速度で冷却し
た。Next, the obtained thin plate-shaped body was heated at 950° C. for 30 minutes to undergo a first solution treatment. After the first solution treatment, the thin plate was cooled to 900°C at a cooling rate of 10°C/min. Next, this was held at a temperature of 900° C. for 30 minutes to perform a second solution treatment on the thin plate-like body. Thereafter, the thin plate-like body after the second solution treatment was cooled to room temperature at a cooling rate of 250° C./min.
このようにして、本発明を適用して溶体化処理を行った
析出硬化型銅合金薄板状体(実験例1)を得た。また、
室温まで冷却する冷却速度を100℃/分、40℃/分
にした点景外は、上記と同様にして析出硬化型銅合金薄
板状体(実験例2.3)を得た。In this way, a precipitation-hardened copper alloy thin plate (Experimental Example 1) which was subjected to solution treatment according to the present invention was obtained. Also,
A precipitation-hardened copper alloy thin plate (Experimental Example 2.3) was obtained in the same manner as above, except that the cooling rate for cooling to room temperature was 100° C./min and 40° C./min.
このようにして得た3つの析出硬化型銅合金薄板状体に
450℃で30分間の時効硬化処理を施した後、氷水中
に投入して焼入れした。その後、それぞれの析出硬化型
銅合金薄板状体の引張り強度を調べた。その結果を溶体
化処理条件と共に下記第1表に示す。The three precipitation-hardened copper alloy thin plates thus obtained were subjected to an age hardening treatment at 450° C. for 30 minutes, and then placed in ice water for quenching. Thereafter, the tensile strength of each precipitation-hardened copper alloy thin plate was examined. The results are shown in Table 1 below along with the solution treatment conditions.
なお、引張強度は、前記薄板状体を所定の寸法に切断し
て引張り試験片を作製しミニの試験片をアムスラー型引
張り試験機に取り付けて測定した。Note that the tensile strength was measured by cutting the thin plate-like body into a predetermined size to prepare a tensile test piece, and attaching the mini test piece to an Amsler type tensile tester.
比較例1〜3
実験例1と同様の薄板状体を用いて、これに950℃で
60分間溶体化処理を施した。その後、加熱処理後の薄
板状体を室温まで250℃/分の速度で冷却した。Comparative Examples 1 to 3 Using the same thin plate body as in Experimental Example 1, it was subjected to solution treatment at 950°C for 60 minutes. Thereafter, the thin plate-shaped body after the heat treatment was cooled to room temperature at a rate of 250° C./min.
このようにして、従来の溶体化処理を施した析出硬化型
銅合金薄板状体(比較例1)を得た。In this way, a precipitation-hardened copper alloy thin plate (Comparative Example 1) which had been subjected to conventional solution treatment was obtained.
また、室温まで冷却する速度を100℃/分、40℃/
分にした点以外は比較例1と同様にして比較例2.3の
析出硬化型銅合金薄板状体を得た。In addition, the cooling rate to room temperature was 100℃/min, 40℃/min.
A precipitation-hardened copper alloy thin plate-like body of Comparative Example 2.3 was obtained in the same manner as Comparative Example 1 except for the point that the thickness was changed to 1.
これらの析出硬化型銅合金薄板状体の引張り強度を、実
験例1と同様にして調べた。その結果を下記第1表に併
記する。The tensile strength of these precipitation-hardened copper alloy thin plates was examined in the same manner as in Experimental Example 1. The results are also listed in Table 1 below.
実験例4〜6
まず、析出硬化成分として2.0重量%のTi10.5
重量%のVを含有する析出硬化型銅合金を電気炉内で1
200℃に加熱し溶解した。これに実験例1と同様に圧
延処理して薄板状体を得た。Experimental Examples 4 to 6 First, 2.0% by weight of Ti10.5 as a precipitation hardening component
Precipitation hardening copper alloy containing % by weight of V was heated in an electric furnace at 1% by weight.
It was heated to 200°C and dissolved. This was rolled in the same manner as in Experimental Example 1 to obtain a thin plate-like body.
次に、得られた薄板状体に950℃で30分間加熱して
第1溶体化処理を施した。第1溶体化処理工程後、薄板
状体を900℃まで10℃/分の冷却速度で冷却した。Next, the obtained thin plate-shaped body was heated at 950° C. for 30 minutes to undergo a first solution treatment. After the first solution treatment step, the thin plate-shaped body was cooled to 900°C at a cooling rate of 10°C/min.
次に、900℃の温度で30分間保持して、薄板状体に
第2溶体化処理を施した。その後、第2溶体化処理後の
薄板状体を室温まで250℃/分の冷却速度で冷却した
。Next, the thin plate-shaped body was subjected to a second solution treatment by holding at a temperature of 900° C. for 30 minutes. Thereafter, the thin plate-like body after the second solution treatment was cooled to room temperature at a cooling rate of 250° C./min.
このようにして、実験例4の析出硬化型銅合金薄板状体
を得た。また、室温まで冷却する速度を100℃/分、
40℃/分にした点以外は実験例4と同様にして実験例
5.6の析出硬化型銅合金薄板状体を得た。In this way, a precipitation hardening type copper alloy thin plate-like body of Experimental Example 4 was obtained. In addition, the cooling rate to room temperature was set to 100°C/min.
Precipitation hardening type copper alloy thin plate bodies of Experimental Example 5.6 were obtained in the same manner as Experimental Example 4 except that the heating rate was 40° C./min.
これらの析出硬化型銅合金薄板状体の引張り強度を、時
効温度を500℃にした点以外は実験例1と同様にして
調べた。その結果を、下記第1表に併記する。The tensile strength of these precipitation-hardened copper alloy thin plates was examined in the same manner as in Experimental Example 1 except that the aging temperature was 500°C. The results are also listed in Table 1 below.
比較例4〜6
実験例4と同様の薄板状体を用いて、これに950℃で
60分間溶体化処理を施した。その後。Comparative Examples 4 to 6 Using the same thin plate body as in Experimental Example 4, it was subjected to solution treatment at 950°C for 60 minutes. after that.
加熱処理後の薄板状体を室温まで250℃/分の冷却速
度で冷却した。The thin plate-shaped body after the heat treatment was cooled to room temperature at a cooling rate of 250° C./min.
このようにして、従来の溶体化処理を施した比較例4の
析出硬化型銅合金薄板状体を得た。また、室温まで冷却
する速度を100℃/分、40℃/分にした点以外は比
較例4と同様にして比較例5.6の析出硬化型銅合金薄
板状体を得た。In this way, a precipitation-hardened copper alloy thin plate of Comparative Example 4, which had been subjected to conventional solution treatment, was obtained. Further, a precipitation-hardened copper alloy thin plate body of Comparative Example 5.6 was obtained in the same manner as Comparative Example 4 except that the cooling rate to room temperature was 100° C./min and 40° C./min.
これらの析出硬化型銅合金薄板状体の引張り強度を、実
験例4と同様にして調べた。その結果を下記第1表に併
記する。The tensile strength of these precipitation-hardened copper alloy thin plates was examined in the same manner as in Experimental Example 4. The results are also listed in Table 1 below.
実験例7〜9
まず、析出硬化成分として2.0重量%のTi、0.5
重量%の■、0.5重量%のZrを含有する析出硬化型
銅合金を電気炉内で1200℃に加熱し溶解した。これ
に実験例1と同様に圧延処理して薄板状体を得た。Experimental Examples 7 to 9 First, 2.0% by weight of Ti, 0.5% by weight as precipitation hardening components
A precipitation-hardening copper alloy containing 0.5% by weight of Zr and 0.5% by weight was heated to 1200° C. and melted in an electric furnace. This was rolled in the same manner as in Experimental Example 1 to obtain a thin plate-like body.
次に、得られた薄板状体に950℃で30分間加熱して
第1溶体化処理を施した。第1溶体化処理工程後、薄板
状体を900℃まで10℃/分の冷却速度で冷却した。Next, the obtained thin plate-shaped body was heated at 950° C. for 30 minutes to undergo a first solution treatment. After the first solution treatment step, the thin plate-shaped body was cooled to 900°C at a cooling rate of 10°C/min.
次に、900℃の温度で30分間保持して、薄板状体に
第2溶体化処理を施した。その後、第2溶体化処理後の
薄板状体を室温まで250℃/分の冷却速度で冷却した
。Next, the thin plate-shaped body was subjected to a second solution treatment by holding at a temperature of 900° C. for 30 minutes. Thereafter, the thin plate-like body after the second solution treatment was cooled to room temperature at a cooling rate of 250° C./min.
このようにして、実験例7の析出硬化型銅合金薄板状体
を得た。また、室温まで冷却する速度を100℃/分、
40℃/分にした点以外は実験例7と同様にして実験例
8,9の析出硬化型銅合金薄板状体を得た。In this way, a precipitation hardening type copper alloy thin plate-like body of Experimental Example 7 was obtained. In addition, the cooling rate to room temperature was set to 100°C/min.
Precipitation hardening type copper alloy thin plate bodies of Experimental Examples 8 and 9 were obtained in the same manner as Experimental Example 7 except that the heating rate was 40° C./min.
これらの析出硬化型銅合金薄板状体の引張り強度を時効
硬化処理の温度を530℃にした点以外は実験例1と同
様にして調べた。その結果を、下記第1表に併記する。The tensile strength of these precipitation-hardened copper alloy thin plates was examined in the same manner as in Experimental Example 1, except that the temperature of the age hardening treatment was 530°C. The results are also listed in Table 1 below.
比較例7〜9
実験例7と同様の薄板状体を用いて、これに950℃で
60分間溶体化処理を施した。その後、加熱処理後の薄
板状体を室温まで250℃/分の冷却速度で冷却した。Comparative Examples 7 to 9 Using the same thin plate-shaped body as in Experimental Example 7, it was subjected to solution treatment at 950°C for 60 minutes. Thereafter, the thin plate-shaped body after the heat treatment was cooled to room temperature at a cooling rate of 250° C./min.
このようにして、従来の溶体化処理を施した比較例7の
析出硬化型銅合金薄板状体を得た3また、室温まで冷却
する速度を100℃/分、40℃/分にした点以外は比
較例7と同様にして比較例8.9の析出硬化型銅合金薄
板状体を得た。In this way, a precipitation-hardened copper alloy thin plate of Comparative Example 7 was obtained which had been subjected to conventional solution treatment.3 In addition, the cooling rate to room temperature was 100°C/min and 40°C/min. In the same manner as in Comparative Example 7, a precipitation-hardened copper alloy thin plate of Comparative Example 8.9 was obtained.
これらの析出硬化型銅合金薄板状体の引張り強度を、実
験例7と同様にして調べた。その結果を、下記第1表に
併記する。The tensile strength of these precipitation-hardened copper alloy thin plates was examined in the same manner as in Experimental Example 7. The results are also listed in Table 1 below.
第 1
表
第1表から明らかように、本発明の溶体化処理方法を行
って得た析出硬化型銅合金(実験例1〜9)は、時効硬
化処理後の引張強度が高いものであった。これに対して
、従来の溶体化処理方法を行って得られた析出硬化型銅
合金(比較例1〜9)は、いずれも時効硬化後の引張強
度が低いものであった。Table 1 As is clear from Table 1, the precipitation hardening copper alloys (Experimental Examples 1 to 9) obtained by the solution treatment method of the present invention had high tensile strength after age hardening treatment. . On the other hand, the precipitation hardening copper alloys (Comparative Examples 1 to 9) obtained by conventional solution treatment methods all had low tensile strength after age hardening.
以上の結果、明らかなように本発明の析出硬化型銅合金
の溶体化処理方法は、次のような効果を奏する。From the above results, it is clear that the solution treatment method for precipitation hardening copper alloys of the present invention has the following effects.
■急冷することなしに優れた特性を有する析出硬化型銅
合金に効率よく溶体化処理することができる。■Precipitation-hardening copper alloys with excellent properties can be efficiently solution-treated without rapid cooling.
■熱間圧延時の加熱による溶体化処理、連続焼鈍炉やベ
ル炉による溶体化処理が可能となる。■ Solution treatment by heating during hot rolling, solution treatment using a continuous annealing furnace or a bell furnace becomes possible.
[発明の効果]
以上説明した如く、本発明にかかる析出硬化型銅合金の
溶体化処理方法によれば、簡易な設備で実施可能であり
、しかも、最終の冷却工程中に析出硬化に寄与しない析
出相が析出するのを防止できるものである。[Effects of the Invention] As explained above, the solution treatment method for precipitation hardening copper alloys according to the present invention can be carried out with simple equipment, and does not contribute to precipitation hardening during the final cooling step. It is possible to prevent precipitation of the precipitated phase.
Claims (3)
3.5重量%のTiを含有する析出硬化型銅合金を90
0〜1000℃の温度で10分以上加熱してCuにTi
を固溶させる第1溶体化処理工程と、該第1溶体化処理
後の銅合金を所定の温度まで冷却する第1冷却工程と、
該第1冷却工程後の銅合金に前記第1溶体化処理の際の
温度よりも低い温度で、かつ、800〜900℃の温度
で5分以上の加熱を施してCuにTiを固溶させる第2
溶体化処理工程と、該第2溶体化処理後の銅合金を5℃
/分以上の冷却速度で冷却する第2冷却工程とを具備す
ることを特徴とする析出硬化型銅合金の溶体化処理方法
。(1) Cu is the main component, and the precipitation hardening component is 0.1~
90% precipitation hardening copper alloy containing 3.5% by weight of Ti
Heat at a temperature of 0 to 1000℃ for 10 minutes or more to convert Ti to Cu.
a first solution treatment step in which the copper alloy is dissolved in solid solution; a first cooling step in which the copper alloy after the first solution treatment is cooled to a predetermined temperature;
The copper alloy after the first cooling step is heated at a temperature lower than the temperature during the first solution treatment and at a temperature of 800 to 900 ° C. for 5 minutes or more to dissolve Ti into Cu. Second
The solution treatment process and the copper alloy after the second solution treatment are heated to 5°C.
1. A method for solution treatment of a precipitation hardening copper alloy, comprising a second cooling step of cooling at a cooling rate of 1/min or more.
3.5重量%のTiおよび0.1〜3.5重量%のVを
含有する析出硬化型銅合金を900〜1000℃の温度
で10分以上加熱してCuにTiおよびVを固溶させる
第1溶体化処理工程と、該第1溶体化処理後の銅合金を
所定の温度まで冷却する第1冷却工程と、該第1冷却工
程後の銅合金に前記第1溶体化処理の際の温度よりも低
い温度で、かつ、800〜900℃の温度で5分以上の
加熱を施してCuにTiおよびVを固溶させる第2溶体
化処理工程と、該第2溶体化処理後の銅合金を5℃/分
以上の冷却速度で冷却する第2冷却工程とを具備するこ
とを特徴とする析出硬化型銅合金の溶体化処理方法。(2) Cu is the main component, and the precipitation hardening component is 0.1~
A precipitation hardening copper alloy containing 3.5% by weight of Ti and 0.1 to 3.5% by weight of V is heated at a temperature of 900 to 1000°C for 10 minutes or more to dissolve Ti and V into Cu. a first solution treatment step; a first cooling step of cooling the copper alloy after the first solution treatment to a predetermined temperature; A second solution treatment step in which Ti and V are dissolved in Cu by heating at a temperature of 800 to 900° C. for 5 minutes or more at a temperature lower than the above temperature, and the copper after the second solution treatment. A method for solution treatment of a precipitation hardening copper alloy, comprising a second cooling step of cooling the alloy at a cooling rate of 5° C./min or more.
3.5重量%のTi、0.1〜3.5重量%のV、およ
び0.05〜4.0重量%のZrを含有する析出硬化型
銅合金を900〜1000℃の温度で10分以上加熱し
てCuにTi、V、およびZrを固溶させる第1溶体化
処理工程と、該第1溶体化処理後の銅合金を所定の温度
まで冷却する第1冷却工程と、該第1冷却工程後の銅合
金に前記第1溶体化処理の際の温度よりも低い温度で、
かつ、800〜900℃の温度で5分以上の加熱を施し
てCuにTi、V、およびZrを固溶させる第2溶体化
処理工程と、該第2溶体化処理後の銅合金を5℃/分以
上の冷却速度で冷却する第2冷却工程とを具備すること
を特徴とする析出硬化型銅合金の溶体化処理方法。(3) Cu is the main component, and the precipitation hardening component is 0.1~
A precipitation hardening copper alloy containing 3.5 wt% Ti, 0.1-3.5 wt% V, and 0.05-4.0 wt% Zr was heated at a temperature of 900-1000°C for 10 minutes. a first solution treatment step in which Ti, V, and Zr are dissolved in Cu by heating as described above; a first cooling step in which the copper alloy after the first solution treatment is cooled to a predetermined temperature; At a temperature lower than the temperature during the first solution treatment on the copper alloy after the cooling step,
and a second solution treatment step in which Ti, V, and Zr are dissolved in Cu by heating at a temperature of 800 to 900°C for 5 minutes or more, and the copper alloy after the second solution treatment is heated at 5°C. 1. A method for solution treatment of a precipitation hardening copper alloy, comprising a second cooling step of cooling at a cooling rate of 1/min or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9630090A JPH03294460A (en) | 1990-04-13 | 1990-04-13 | Solution treatment for precipitation hardening copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9630090A JPH03294460A (en) | 1990-04-13 | 1990-04-13 | Solution treatment for precipitation hardening copper alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03294460A true JPH03294460A (en) | 1991-12-25 |
Family
ID=14161183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9630090A Pending JPH03294460A (en) | 1990-04-13 | 1990-04-13 | Solution treatment for precipitation hardening copper alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03294460A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012207254A (en) * | 2011-03-29 | 2012-10-25 | Jx Nippon Mining & Metals Corp | Titanium copper superior in strength, electrical conductivity, and bending workability, and method for manufacturing the same |
-
1990
- 1990-04-13 JP JP9630090A patent/JPH03294460A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012207254A (en) * | 2011-03-29 | 2012-10-25 | Jx Nippon Mining & Metals Corp | Titanium copper superior in strength, electrical conductivity, and bending workability, and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018513913A (en) | Strain-induced aging strengthening in dilute magnesium alloy sheets | |
JPS5974251A (en) | Copper alloy for electric and electronic parts and manufact-ure | |
JPS623225B2 (en) | ||
JPH05195171A (en) | Production of aluminum hard plate excellent in formability and low in earing rate | |
JPH03294459A (en) | Solution treatment for precipitation hardening copper alloy | |
JPS60258454A (en) | Manufacture of aluminum alloy rigid plate for molding | |
JPH03294462A (en) | Solid solution treatment of precipitation hardening copper alloy | |
JPH03294458A (en) | Solution treatment for precipitation hardening copper alloy | |
JP3942505B2 (en) | Titanium copper alloy material and manufacturing method thereof | |
JPH03294460A (en) | Solution treatment for precipitation hardening copper alloy | |
JPS5953347B2 (en) | Manufacturing method of aircraft stringer material | |
JPS6058299B2 (en) | Method for producing Al-Zn-Mg-Cu alloy material with excellent formability | |
CN109385561B (en) | Production process of Al-Mg-Si-Zr aluminum alloy tubular bus | |
JPH03294457A (en) | Solution treatment for precipitation hardening copper alloy | |
JPH05132745A (en) | Production of aluminum alloy excellent in formability | |
JP2738130B2 (en) | High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same | |
JPS62297433A (en) | Structural al alloy excellent in hardenability | |
JPH0366387B2 (en) | ||
JPH0588302B2 (en) | ||
JPS6296643A (en) | Superplastic aluminum alloy | |
JPS63169353A (en) | Aluminum alloy for forming and its production | |
JP2635648B2 (en) | Manufacturing method of tin-copper alloy sheet | |
JPS61143564A (en) | Manufacture of high strength and highly conductive copper base alloy | |
JPH02217449A (en) | Manufacture of aluminum alloy sheet for forming | |
JPS62182256A (en) | Manufacture of aluminum alloy superior in formability |