JPH05195171A - Production of aluminum hard plate excellent in formability and low in earing rate - Google Patents
Production of aluminum hard plate excellent in formability and low in earing rateInfo
- Publication number
- JPH05195171A JPH05195171A JP2565292A JP2565292A JPH05195171A JP H05195171 A JPH05195171 A JP H05195171A JP 2565292 A JP2565292 A JP 2565292A JP 2565292 A JP2565292 A JP 2565292A JP H05195171 A JPH05195171 A JP H05195171A
- Authority
- JP
- Japan
- Prior art keywords
- rate
- rolling
- strength
- alloy
- rolled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は深絞り缶(DR缶,DR
D缶,DI缶等)の胴材、キャップ、コンデンサーケー
ス等の深絞り用途に適した、高強度でありしかも深絞り
耳が低く成形性に優れたアルミニウム合金硬質板の製造
方法に関するものである。BACKGROUND OF THE INVENTION The present invention relates to deep drawing cans (DR cans, DR cans).
The present invention relates to a method for producing an aluminum alloy hard plate which is suitable for deep drawing applications such as body materials for D cans, DI cans, etc., caps, condenser cases, etc. and which has high strength and which has low deep drawing ears and excellent formability. ..
【0002】[0002]
【従来の技術】深絞り用アルミニウム合金としては、1
000系、3000系、5000系および8000系合
金が用途に応じて使用されている。1000系合金およ
び8000系合金は耳率が低いものの耐力が100N/
mm2程度であることから、強度があまり重要視されな
いが特に耳率の低いことを必要とする用途に使用され
る。3000系合金は、耳率は1000系合金および8
000系合金材より若干高いが耐力は200N/mm2
程度あり、従って強度が必要とされる用途に適してい
る。また、Al−Mn系晶出化合物が多いため結晶粒が
細かくなることから成形加工後の肌荒れが少ないという
特徴を持つ。5000系合金では、耳率は1000系、
8000系および3000系合金のように低くはないが
耐力が250N/mm2程度あり、従って強度を要する
用途に適している。ただし、Mgの含有量が多いため深
絞り性には優れるものの絞り加工時にカゴメ模様(リュ
ーダース)が発生し缶外観を著しく悪化させることがあ
る。2. Description of the Related Art As an aluminum alloy for deep drawing, 1
000 series, 3000 series, 5000 series and 8000 series alloys are used depending on the application. The 1000 series alloy and the 8000 series alloy have a low ear rate but a yield strength of 100 N /
Since it is about mm 2, it is used for applications in which strength is not so important but particularly low ear ratio is required. The 3000 series alloy has an ear ratio of 1000 series alloy and 8
Although slightly higher than 000 series alloy material, the yield strength is 200 N / mm 2
Moderate and therefore suitable for applications where strength is required. In addition, since there are many Al-Mn-based crystallizing compounds, the crystal grains become finer, so that the surface roughness after molding is small. In 5000 series alloy, the ear rate is 1000 series,
It is not so low as 8000 series and 3000 series alloys, but has a proof stress of about 250 N / mm 2, and is therefore suitable for applications requiring strength. However, since the Mg content is large, the deep drawability is excellent, but a kagome pattern (luders) may be generated during the drawing process, which may significantly deteriorate the appearance of the can.
【0003】[0003]
【発明が解決しようとする課題】前記のように深絞り用
アルミニウム合金として用途に応じて種々合金が選択利
用されているが、世の中の趨勢としてたとえば缶胴材等
のように板厚を薄肉化する傾向があり、このため薄肉化
しても耐えられる程度の高強度化が深絞り用アルミニウ
ム合金板に要求されてきている。しかしながら既存のア
ルミニウム合金板では加工度を大きくする等により高強
度化した場合、深絞り耳が高くなりまたリューダースが
発生しやすくなる。このため強度は充分であっても耳率
およびリューダース等の表面状態の点で実用上問題とな
っていた。本発明は、かかる問題を解決して深絞り性に
優れリューダースの発生や肌粗れ等の外観不良もなく、
耳率が低く、しかも高強度の材料を提供することを目的
とするものである。As described above, various alloys have been selected and used as deep-drawing aluminum alloys according to the application, but the trend in the world is to reduce the plate thickness such as can body materials. Therefore, the aluminum alloy sheet for deep drawing has been required to have high strength to withstand the reduction in thickness. However, when the existing aluminum alloy plate is strengthened by increasing the workability, the deep-drawing ears become high and the Luders are likely to occur. Therefore, even if the strength is sufficient, it has been a practical problem in terms of ear ratio and surface condition such as Luders. The present invention solves such a problem and is excellent in deep drawability, and there is no appearance defect such as generation of Luders or skin roughness,
The object is to provide a material having a low ear rate and high strength.
【0004】[0004]
【課題を解決するための手段】前記目的を達成するた
め、発明者は合金成分組成ならびに製造条件等について
鋭意研究を重ねた結果、従来の5000系アルミニウム
合金と同等の耐力および引張強さを有し、しかも耳率は
従来の1000系合金と同等の低さであるアルミニウム
合金を得ることができる条件を見いだし本発明に至っ
た。In order to achieve the above-mentioned object, the inventor has conducted diligent research on alloy composition and manufacturing conditions, and as a result, it has a yield strength and tensile strength equivalent to those of conventional 5000 series aluminum alloys. In addition, the inventors have found the conditions under which an aluminum alloy having an ear ratio as low as that of the conventional 1000 series alloy can be obtained, and the present invention has been accomplished.
【0005】すなわち本発明は、請求項1記載のごと
く、重量%で(以下、同じ)Mg:0.1〜1.5%,
Mn:0.1〜2.0%,Fe:0.1〜2.0%,S
i:0.05〜0.5%を含有し,結晶粒微細化材とし
てのTi:0.01〜0.2%を単独であるいはB1〜
500ppmとともに含有し、さらにCu:0.01〜
0.3%,Zn:0.01〜0.5%,Cr:0.01
〜0.3%のうち1種または2種以上を含有し、残部が
アルミニウムおよび不可避的不純物からなるアルミニウ
ム合金を、鋳塊中心における冷却速度50℃/s以上で
鋳造し、圧延率30%以上で圧延し、その後500〜6
00℃で2時間以上の均熱を施し、その後圧延率30%
以上で圧延し、1℃/s以上の加熱速度で加熱し380
〜600℃の温度に到達直後または10分以内保持した
後1℃/s以上の冷却速度で冷却する中間焼鈍を行い、
その後圧延率20〜90%の冷間圧延を施すことを特徴
とする、成形性に優れた耳率の低い高強度アルミニウム
合金硬質板の製造方法 である。That is, according to the present invention, the weight% (hereinafter the same) Mg: 0.1 to 1.5%,
Mn: 0.1-2.0%, Fe: 0.1-2.0%, S
i: 0.05 to 0.5%, Ti: 0.01 to 0.2% as a grain refiner alone or B1 to
Included with 500 ppm, and further Cu: 0.01-
0.3%, Zn: 0.01 to 0.5%, Cr: 0.01
~ 0.3%, 1 type or 2 types or more are contained, and the balance makes aluminum and an unavoidable impurity cast the aluminum alloy at a cooling rate of 50 ° C / s or more at the center of the ingot, and the rolling rate is 30% or more. Rolled at 500 ~ 6
Heat soak for 2 hours or more at 00 ℃, then roll 30%
Rolled at the above temperature and heated at a heating rate of 1 ° C / s or more for 380
Immediately after reaching a temperature of ~ 600 ° C or holding for 10 minutes or less, intermediate annealing is performed at a cooling rate of 1 ° C / s or more,
A method for producing a high-strength aluminum alloy hard plate having excellent formability and low earring rate, which is characterized by performing cold rolling at a rolling rate of 20 to 90%.
【0006】[0006]
【作用】まず本発明における合金成分の限定理由を説明
する。 Mg:Mgは、固溶およびMg2Si,Al−Cu−M
g等の時効析出により強度を向上させることから、引張
強さ、耐力を得るために不可欠な元素である。また、M
gには冷間圧延時の転位の増殖作用があり、再結晶核を
増加させ再結晶粒を微細化させる効果を有する。添加量
は0.5%未満ではその効果が少なく十分な強度が得ら
れず、1.5%を超えると強度は容易に得られるものの
リューダースが発生し易くなる。従ってMg量は0.1
〜1.5%の範囲とする。 Mn:Mnは固溶による強化作用もあるが、本発明にお
いてはそれとともにMn,Fe,Si共存により生じる
晶出化合物が重要な働きをする。すなわち、本発明では
速い冷却速度で鋳造していることから1μm程度の微細
な晶出化合物が多く晶出する。この微細晶出物はリュー
ダースの剪断帯の伝播を分散消滅させる働きがあり、従
ってリューダースの発生・成長を抑制する効果がある。
また再結晶粒微細化や粒子分散硬化の効果もあり、これ
により強度を向上させる働きをする。添加量は0.1%
未満ではその効果も少なく2.0%を超えると巨大晶出
物が発生して成形性を阻害する。従ってMn量は0.1
〜2.0%の範囲とする。First, the reasons for limiting the alloy components in the present invention will be described. Mg: Mg is a solid solution and Mg 2 Si, Al-Cu-M
Since it improves the strength by aging precipitation such as g, it is an essential element for obtaining tensile strength and proof stress. Also, M
g has a dislocation multiplication effect during cold rolling, and has an effect of increasing recrystallization nuclei and refining recrystallized grains. If the addition amount is less than 0.5%, the effect is small and sufficient strength cannot be obtained, and if the addition amount exceeds 1.5%, strength is easily obtained but Luders is likely to occur. Therefore, the amount of Mg is 0.1
The range is up to 1.5%. Mn: Mn also has a strengthening action by solid solution, but in the present invention, a crystallization compound produced by coexistence of Mn, Fe, and Si plays an important role. That is, in the present invention, since the casting is performed at a high cooling rate, a large amount of finely crystallized compound of about 1 μm crystallizes out. This fine crystallized substance has a function to disperse and disperse the propagation of the Luders shear band, and therefore has an effect of suppressing the generation and growth of the Luders.
It also has the effect of refining recrystallized grains and hardening the particles by dispersion, which serves to improve the strength. Addition amount is 0.1%
If it is less than 2.0%, the effect is small, and if it exceeds 2.0%, a large crystallized substance is generated to impair the formability. Therefore, the Mn content is 0.1
The range is up to 2.0%.
【0007】Fe:Feの添加はMnと同様Mn,F
e,Si共存下で生じる微細晶出化合物によるリューダ
ースの発生を抑える効果がある。特にFeはMnを固溶
状態から引出し晶出化合物とする働きがあり必要不可欠
な元素である。またMnと同様に再結晶粒微細化や粒子
分散硬化による強度を向上させる効果もある。添加量は
0.1%未満ではその効果は少なく1.8%を超えると
巨大晶出物が発生しやすくなり成形性を阻害する。従っ
てFe量は0.1〜2.0%の範囲とする。なおFeと
ともに晶出化合物を生成することから、Fe+Mnの添
加量は1.0〜3.0%とすることが望ましい。 Si:Siの添加はMg2Siの析出による時効硬化や
単独での固溶強化による強度向上の効果があるが、本発
明においてはSiはFe,Mnを固溶状態から引出す作
用があり微細晶出化合物の最適な分布を得るのに必要な
元素である。添加量は0.05%未満ではその効果が無
く0.5%を超えるとその効果も飽和してしまい、むし
ろ過度の硬化が生じて成形性を悪くする。従ってSi量
は0.05〜0.5%の範囲とする。 Ti,B:通常、アルミニウム合金においては結晶粒の
微細化のためにTiおよびBを微量添加することが行わ
れており、本発明においても微量のTiおよびBを添加
する。但し0.01%未満ではその効果が得られず0.
2%を超えると初晶TiAl3が晶出して成形性を阻害
する。従ってTi量は0.01〜0.2%の範囲とす
る。またTiと共にBを添加するとこの効果が向上す
る。ただし、Bを添加する場合1ppm未満ではその効
果がなく500ppmを超えるとTiB2の粗大粒子が
混入して成形性を害することから、Bは1〜500pp
mの範囲とする。Fe: The addition of Fe is similar to that of Mn.
It has an effect of suppressing the generation of Luders due to the fine crystallized compound generated in the coexistence of e and Si. In particular, Fe is an indispensable element because it has a function of extracting Mn from a solid solution state to form a crystallization compound. Further, similar to Mn, it also has the effect of improving the strength by refining recrystallized grains and particle dispersion hardening. If the addition amount is less than 0.1%, the effect is small, and if it exceeds 1.8%, large crystallized substances are likely to be generated, which hinders formability. Therefore, the amount of Fe is set in the range of 0.1 to 2.0%. Since a crystallized compound is generated together with Fe, the addition amount of Fe + Mn is preferably 1.0 to 3.0%. Si: Addition of Si has an effect of age hardening by precipitation of Mg 2 Si and strength improvement by solid solution strengthening alone, but in the present invention, Si has a function of extracting Fe and Mn from a solid solution state and has a fine crystal structure. It is an element necessary for obtaining the optimum distribution of the compound. If the addition amount is less than 0.05%, its effect will not be obtained, and if it exceeds 0.5%, the effect will be saturated, and rather excessive curing will occur and the formability will be deteriorated. Therefore, the amount of Si is set to 0.05 to 0.5%. Ti, B: Usually, in an aluminum alloy, a small amount of Ti and B is added to refine the crystal grains, and also in the present invention, a small amount of Ti and B is added. However, if less than 0.01%, the effect cannot be obtained, and
If it exceeds 2%, primary crystal TiAl 3 crystallizes and hinders formability. Therefore, the Ti amount is set to the range of 0.01 to 0.2%. Further, when B is added together with Ti, this effect is improved. However, when B is added, if it is less than 1 ppm, it has no effect, and if it exceeds 500 ppm, coarse particles of TiB 2 are mixed and impair the formability, so that B is 1 to 500 pp.
The range is m.
【0008】Cu,Zn,Cr:CuはAl−Cu−M
g系の時効析出物により強度を向上させ、またZn,C
rはそれぞれ固溶により強度向上の効果があるのでこれ
らの一種又は2種以上を添加する。添加量は各々0.0
1%未満では強度向上の効果が無く、Cu;0.3%,
Zn;0.5%,Cr;0.3%を各々超えると成形性
を低下させる。よって、Cuの添加量は0.01〜0.
3%、Znの添加量は0.01〜0.5%、Crの添加
量は0.01〜0.3%とする。以上の各成分の残部は
Alおよび不可避不純物である。Cu, Zn, Cr: Cu is Al-Cu-M
Strength is improved by aging precipitates of g type, and Zn, C
Each r has the effect of improving strength by solid solution, so one or more of these are added. Addition amount is 0.0
If it is less than 1%, there is no effect of improving the strength, and Cu: 0.3%,
If Zn exceeds 0.5% and Cr exceeds 0.3%, the formability is deteriorated. Therefore, the addition amount of Cu is 0.01 to 0.
3%, the amount of Zn added is 0.01 to 0.5%, and the amount of Cr added is 0.01 to 0.3%. The balance of each of the above components is Al and inevitable impurities.
【0009】次に、本発明の製造方法について説明す
る。 鋳造:上記の合金成分を有するアルミニウム合金を、鋳
塊中心における冷却速度を50℃/s以上とする条件で
鋳造する。例えば双ロール式連続鋳造圧延法により板厚
20mm以下の鋳造圧延板を製造することにより上記条
件を満たすことができる。ただし、板厚が2mm未満で
は鋳造組織が最終製品板厚までの圧延によっても完全に
はこわされず残留してしまい悪影響を及ぼす。従って板
厚は2〜20mmとすることが望ましい。本発明の冷却
速度条件を満たすことにより1μm程度の微細晶出化合
物が鋳塊板厚中心まで分布する組織を得ることができ
る。リューダースの発生防止には0.5μmより大きな
粒子が2000個/0.2mm2以上存在することが望
ましく、本発明の鋳造条件によればこの晶出化合物の分
布状態を満たし、リューダースの発生防止に役立つとと
もに成形性を向上させる効果がある。Next, the manufacturing method of the present invention will be described. Casting: The aluminum alloy having the above alloy components is cast under the condition that the cooling rate at the center of the ingot is 50 ° C./s or more. For example, the above condition can be satisfied by manufacturing a cast rolled plate having a plate thickness of 20 mm or less by a twin roll type continuous casting and rolling method. However, if the plate thickness is less than 2 mm, the cast structure is not completely broken and remains even after rolling to the final product plate thickness, which adversely affects. Therefore, it is desirable that the plate thickness is 2 to 20 mm. By satisfying the cooling rate condition of the present invention, it is possible to obtain a structure in which a fine crystallized compound of about 1 μm is distributed up to the center of the thickness of the ingot plate. In order to prevent the generation of Luders, it is desirable that 2000 particles / 0.2 mm 2 or more of particles larger than 0.5 μm exist, and according to the casting conditions of the present invention, the distribution state of the crystallized compound is satisfied, and the generation of Luders occurs. It is effective for prevention and has the effect of improving moldability.
【0010】圧延・均熱:30%以上の圧延率の加工が
加わっていないと、均熱による再結晶時に均一に行われ
ずに粗大化してその結晶粒界が最終製品に悪影響を及ぼ
す。この均熱の前の圧延が耳率を低くするために必要な
プロセスであるが、そのメカニズムについては良くわか
らない点があるが、次の2通りの考え方が出来る。1.
均熱温度の下限である500℃までに生成した再結晶粒
には耳率を低くする成分のCube方位と高くするR方
位が存在して、500℃以上の加熱で、Cube方位を
もつ結晶がR方位をもつ結晶粒を取込む(優先成長す
る)ために均熱後ではCube方位をもつ結晶粒が多く
なる。そのCube方位をもつ結晶粒はその後の冷間圧
延によっても残存して、冷間圧延後の中間焼鈍時のCu
be方位の再結晶核と成り得るために低耳プロセスが成
り立つ。均熱時に粗大な結晶粒からなる鋳造組織で占め
られていると、均熱温度の下限である500℃に到達し
てもCube方位が生成しないためにその後の高温域で
のCube方位の成長がありえない。再結晶させてCu
be方位を生成させるために、冷延率30%以上が必要
となる。2.鋳造後の冷間圧延で歪を加えることによ
り、均熱のように加熱速度が遅い場合(35℃/h程
度)300℃より低い温度でMn等の過飽和固溶遷移元
素が容易に微細(分散)な析出物が生成して、その後の
500℃以上の加熱状態で微細析出物は容易に固溶して
無析出物帯(以後PFZと称す)が広くなる。鋳造のま
まで均熱する場合は、歪は存在しないために昇温過程で
の析出量は少なく、500℃より高温域の拡散速度が速
い状態でのみ、Mn等の過飽和固溶遷移元素が析出し始
めるために、低温時に析出する析出物のように微細では
なく、均熱保持により析出が進み平衡反応による析出物
の消滅は容易ではなくなり、通常の工業レベルの均熱で
はPFZが少ない。このPFZが少ない方がCALのよ
うな焼鈍ではCube方位の優先成長が促進される。均
熱温度については、0.5μm以下のAl−Mn系の析
出物が多く存在すれば成形時の転位のピンニングがおこ
りリューダースの発生原因となるので、500℃以上の
温度でしかも2時間以上の保持をしてこの0.5μm以
下のAl−Mn系の析出物量を少なくする必要がある。
保持温度は高い方がよいが620℃より高温では共晶融
解が起りこれ以上の温度には出来ない。なお、均熱終了
後最終板厚までの間に、表面酸化物を取るために表面層
を除去する方が製造性や製品の外観上望ましい。その方
法は、機械的に除去してもよいし苛性液などによりエッ
チングしてもよい。 圧延:再結晶を均一に起こさせ結晶粒を微細化させるた
めに30%以上の圧延率が必要となる。Rolling / soaking: If the rolling ratio of 30% or more is not applied, it is not uniformly performed during recrystallization by soaking and coarsens, and the grain boundaries thereof adversely affect the final product. The rolling before the soaking is a necessary process for lowering the ear ratio, but there are some points that are not clear about the mechanism, but the following two approaches can be considered. 1.
The recrystallized grains formed up to the lower limit of the soaking temperature, 500 ° C., have a Cube orientation of a component that lowers the ear ratio and an R orientation that raises the ear ratio. In order to take in the crystal grains having the R orientation (preferred growth), the crystal grains having the Cube orientation increase after soaking. The crystal grains having the Cube orientation remain even during the subsequent cold rolling, and Cu during the intermediate annealing after the cold rolling is performed.
The low ear process is established because it can be a recrystallized nucleus of be direction. When the casting structure composed of coarse crystal grains is soaked during soaking, the Cube orientation does not form even when the lower limit of the soaking temperature of 500 ° C. is reached, so that the subsequent Cube orientation growth in the high temperature region Impossible. Recrystallize Cu
A cold rolling rate of 30% or more is required to generate the be direction. 2. When strain is applied by cold rolling after casting, supersaturated solid solution transition elements such as Mn can be easily finely dispersed (dispersed) at a temperature lower than 300 ° C when the heating rate is slow like soaking (about 35 ° C / h). ), A fine precipitate easily forms a solid solution in the subsequent heating state at 500 ° C. or higher, and the precipitate-free zone (hereinafter referred to as PFZ) becomes wide. When soaking in the as-cast state, there is no strain, so the amount of precipitation during the temperature rise process is small, and supersaturated solid solution transition elements such as Mn precipitate only when the diffusion rate in the high temperature region is higher than 500 ° C. In order to start the process, it is not as fine as the precipitate that precipitates at a low temperature, the precipitation proceeds due to soaking, and the disappearance of the precipitate due to the equilibrium reaction is not easy. The smaller the PFZ, the preferential growth of the Cube orientation is promoted by annealing such as CAL. As for the soaking temperature, if many Al-Mn-based precipitates of 0.5 μm or less are present, pinning of dislocations will occur during molding, which will cause the generation of Luders. It is necessary to hold the above to reduce the amount of the Al-Mn-based precipitates of 0.5 μm or less.
The higher the holding temperature, the better, but if the temperature is higher than 620 ° C, eutectic melting will occur and the temperature cannot be raised above this. It should be noted that it is preferable from the viewpoint of manufacturability and the appearance of the product to remove the surface layer in order to remove the surface oxide between the end of soaking and the final plate thickness. The method may be mechanical removal or etching with caustic liquid or the like. Rolling: A rolling rate of 30% or more is required in order to uniformly cause recrystallization and refine crystal grains.
【0011】中間焼鈍:中間焼鈍条件は1℃/s以上の
加熱速度、到達温度380℃以上、1℃/s以上の冷却
速度とする。これによりMg,Si,Cu等の金属元素
の固溶が促進され最終焼鈍または最終の焼付塗装処理で
時効硬化し強度向上をはかることができる。さらに、1
℃/s以上の加熱速度で再結晶温度まで加熱することに
より、Cube方位の再結晶粒の優先的生成・成長を促
すため耳率の低減に効果がある。加熱速度が1℃/s未
満では再結晶の進行が加熱中に析出する化合物によりピ
ンニングされてしまいCube方位の優先成長が阻害さ
れランダム方位となり、このため次工程の冷間圧延で4
5°耳が高くなってしまう。保持時間は長時間の方が合
金元素の固溶が進み強度アップには有利であるが、10
分以上の保持は焼鈍コストが増加するのみで時間の割に
その効果が少なく、また現行のCAL(連続焼鈍炉)の
如き焼鈍炉では長時間保持が難しい。また加熱速度、到
達温度が上記条件を満たすならば昇温中に再結晶の進行
が行われ従って所定温度到達直後に冷却を開始しても充
分効果がある。よって、保持時間は所定温度到達直後ま
たは10分以内保持とした。到達温度は600℃を超え
て設定すると温度分布のばらつきにより局部的な共晶融
解を起こす可能性が生じるため600℃以下とした。従
って到達温度は380〜600℃とする。Intermediate annealing: The intermediate annealing conditions are a heating rate of 1 ° C./s or more and an ultimate temperature of 380 ° C. or more and a cooling rate of 1 ° C./s or more. As a result, solid solution of metal elements such as Mg, Si, and Cu is promoted, and age hardening is performed in the final annealing or final baking coating treatment to improve the strength. Furthermore, 1
By heating to the recrystallization temperature at a heating rate of not less than ° C / s, preferential generation and growth of Cube-oriented recrystallized grains are promoted, which is effective in reducing the ear rate. If the heating rate is less than 1 ° C./s, the progress of recrystallization is pinned by the compound that precipitates during heating, and the preferential growth of the Cube orientation is hindered, resulting in a random orientation.
The ears are raised by 5 °. The longer the holding time is, the more solid solution of the alloying elements progresses, which is advantageous for increasing the strength.
Holding for more than a minute only increases the annealing cost and is less effective for the time, and it is difficult to hold for a long time in an annealing furnace such as the current CAL (continuous annealing furnace). Further, if the heating rate and the reached temperature satisfy the above conditions, recrystallization proceeds during the temperature rise, and therefore cooling can be started immediately after reaching the predetermined temperature, which is sufficiently effective. Therefore, the holding time was set immediately after reaching the predetermined temperature or within 10 minutes. If the ultimate temperature is set to be higher than 600 ° C, the temperature distribution may be varied to cause local eutectic melting. Therefore, the ultimate temperature is set to 380 to 600 ° C.
【0012】冷間圧延:中間焼鈍後の冷間圧延の圧延率
が20%未満では所望の強度が得られず、90%を超え
ると45°耳が高く発生する。従って最終冷間圧延の圧
延率は20〜90%とする。Cold rolling: If the rolling ratio of the cold rolling after the intermediate annealing is less than 20%, the desired strength cannot be obtained, and if it exceeds 90%, 45 ° ears are highly generated. Therefore, the rolling rate of the final cold rolling is set to 20 to 90%.
【0013】以上の製造工程により、耳率が低くリュー
ダースの発生しにくい金属組織が得られる。なお、上記
冷間圧延の後、時効性を高めたり強度調整のための軟化
処理として必要に応じて最終焼鈍を施してもよく、その
場合には100〜250℃の温度で30分以上の焼鈍を
施すことが望ましい。By the above manufacturing process, a metal structure having a low ear rate and less likely to cause Luders can be obtained. After the cold rolling, a final annealing may be performed as necessary as a softening treatment for enhancing the aging property or adjusting the strength. In that case, annealing is performed at a temperature of 100 to 250 ° C for 30 minutes or more. Is desirable.
【0014】[0014]
【実施例】以下、本発明の実施例について説明する。表
1に示す化学成分を有するアルミニウム合金を表2に示
す製造方法により鋳造、圧延、熱処理し試料を作成し
た。EXAMPLES Examples of the present invention will be described below. An aluminum alloy having the chemical composition shown in Table 1 was cast, rolled and heat-treated by the manufacturing method shown in Table 2 to prepare a sample.
【0015】[0015]
【表1】 [Table 1]
【0016】[0016]
【表2】 [Table 2]
【0017】1〜3は深絞り用途に使用される従来例で
あり、8は発明例であり、4〜7は発明合金の製造方法
を変更した比較例である。ここで、DC(DC鋳造)の
冷却速度は約10℃/s、SC(連続鋳造圧延)の冷却
速度は約150℃/sである。SC材は板厚7mmに連続
鋳造し(発明例では冷間圧延し)均熱後に表面酸化被膜
を除去するため60℃10%苛性ソーダ液に45秒間浸
漬・水洗・デスマット・水洗・乾燥処理を施した。 中間焼鈍 バッチ焼鈍は330または350℃で保持2時間で行っ
た。この時の昇温・冷却速度は約35℃/hであった。
一方、連続焼鈍(CAL焼鈍)は500℃で0s(保持
無し)で行った。この時の昇温・冷却速度は約20℃/
sであった。またベーキングはオイルバス浸漬保持で行
った。1 to 3 are conventional examples used for deep drawing applications, 8 is an example of the invention, and 4 to 7 are comparative examples in which the manufacturing method of the invention alloy is changed. Here, the cooling rate of DC (DC casting) is about 10 ° C./s, and the cooling rate of SC (continuous casting and rolling) is about 150 ° C./s. The SC material is continuously cast to a plate thickness of 7 mm (cold rolling in the invention example), and after soaking, it is immersed in 60% 10% caustic soda solution for 45 seconds, washed with water, desmutted, washed with water, and dried. did. Intermediate annealing The batch annealing was performed at 330 or 350 ° C. for 2 hours. The temperature rising / cooling rate at this time was about 35 ° C./h.
On the other hand, continuous annealing (CAL annealing) was performed at 500 ° C. for 0 s (no holding). The heating / cooling rate at this time is approximately 20 ° C /
It was s. The baking was performed by holding it in an oil bath.
【0018】得られた試料について引張強さ、耐力、伸
び、耳率、LDR、結晶粒径、肌粗、リューダースの発
生を調べた。耳率は、32¢肩4Rのポンチを用いて5
8¢サークルをクリアランス30%で深絞りを行って測
定した。またLDRは、32¢肩2Rのポンチを用いて
クリアランス30%、サークル径変更で測定し、限界絞
り比=サークル径/32として求めた。肌荒れはカップ
に絞り目視でランク評価し、○は良、△は中間、×は不
良とした。またリューダースはカップに絞り目視でラン
ク評価し、○は無し、△は小、×は不良とした。結果を
表3に示す。ここで引張強さ、耐力の単位はN/mm2
である。The obtained sample was examined for tensile strength, proof stress, elongation, ear ratio, LDR, crystal grain size, skin roughness, and generation of Luders. Ear rate is 5 using a punch with 32 shoulders 4R
The measurement was performed by deep-drawing an 8 circle with a clearance of 30%. Further, the LDR was measured by using a punch having 32 shoulders and 2R with a clearance of 30% and a change of the circle diameter, and was obtained as a limit drawing ratio = circle diameter / 32. The rough skin was evaluated by visually squeezing it in a cup, and ◯ was evaluated as good, Δ was intermediate, and × was bad. In addition, Luders was ranked in a cup and visually evaluated for rank. O was none, Δ was small, and X was defective. The results are shown in Table 3. Here, the unit of tensile strength and proof stress is N / mm 2
Is.
【0019】[0019]
【表3】 [Table 3]
【0020】No1は1000系合金からなる従来例で
あり、耳率は低いものの強度が低く肌荒れが目立つ。 No2は3000系合金からなる従来例であり、発明例
に比較するとリューダースの判定以外すべての点で劣
る。 No3は5000系合金からなる従来例であり、強度は
高いものの耳率、リューダースの点で劣る。 No8は発明例であり、引張強さは大きく伸び良く耳率
低い。 No4〜7は発明例と同じ組成の合金を用いて製造条件
を変化させた比較例である。No4は3000系合金、
DC鋳造材 発明例に比較すると強度、耳率の点で劣る。 No5:3000系合金、連続鋳造圧延材で均熱なし材 発明例に比較すると強度は高いが耳率、リューダース、
LDRの点で劣る。 No6:3000系合金、連続鋳造圧延材で中間バッチ
焼鈍材 発明例に比較すると強度、耳率、LDRの点で劣る。 No7:3000系合金、連続鋳造圧延材で均熱前の圧
延なし材発明例に比較すると耳率の点で劣る。No. 1 is a conventional example made of a 1000-series alloy, and although the ear rate is low, the strength is low and rough skin is noticeable. No. 2 is a conventional example made of a 3000 series alloy, and is inferior to the invention example in all points except for the determination of Luders. No. 3 is a conventional example made of a 5000-series alloy and has high strength but is inferior in terms of ear ratio and Luders. No. 8 is an example of the invention, and the tensile strength is large and the elongation is good and the ear rate is low. Nos. 4 to 7 are comparative examples in which the manufacturing conditions were changed by using an alloy having the same composition as the invention example. No4 is 3000 series alloy,
DC casting material Inferior in strength and ear ratio to the invention examples. No. 5: 3000 series alloy, continuously cast rolled material without soaking. Compared with the invention examples, the strength is higher, but the ear rate, Luders,
Inferior in LDR. No. 6: 3000 series alloy, continuous casting and rolling material, intermediate batch annealed material Inferior in strength, ear rate, and LDR to the invention examples. No. 7: 3000 series alloy, continuously cast rolled material, which is inferior in ear ratio as compared with the invention example of unrolled material before soaking.
【0021】[0021]
【効果】以上詳述したように、本発明によれば高強度化
しても深絞り性に優れリューダースの発生や肌荒れ等の
外観不良がなくしかも耳率が低いアルミニウム合金硬質
板が得られるので、薄肉化のニーズに充分応えることが
できマーケットの拡大に寄与する。As described above in detail, according to the present invention, it is possible to obtain an aluminum alloy hard plate which is excellent in deep drawability even if the strength is increased, has no appearance defects such as generation of Luders and rough skin, and has a low ear rate. , Can fully meet the needs for thinning and contribute to the expansion of the market.
Claims (1)
1.5%,Mn:0.1〜2.0%,Fe:0.1〜
2.0%,Si:0.05〜0.5%を含有し,結晶粒
微細化材としてのTi:0.01〜0.2%を単独であ
るいはB1〜500ppmとともに含有し、さらにC
u:0.01〜0.3%,Zn:0.01〜0.5%,
Cr:0.01〜0.3%のうち1種または2種以上を
含有し、残部がアルミニウムおよび不可避的不純物から
なるアルミニウム合金を、鋳塊中心における冷却速度5
0℃/s以上で鋳造し、圧延率30%以上で圧延し、そ
の後500〜600℃で2時間以上の均熱を施し、その
後圧延率30%以上で圧延し、1℃/s以上の加熱速度
で加熱し380〜600℃の温度に到達直後または10
分以内保持した後1℃/s以上の冷却速度で冷却する中
間焼鈍を行い、その後圧延率20〜90%の冷間圧延を
施すことを特徴とする、成形性に優れ耳率の低い高強度
アルミニウム合金硬質板の製造方法。1. Weight% (hereinafter the same) Mg: 0.1
1.5%, Mn: 0.1 to 2.0%, Fe: 0.1
2.0%, Si: 0.05 to 0.5%, Ti: 0.01 to 0.2% as a grain refiner alone or together with B to 500 ppm, and further C
u: 0.01 to 0.3%, Zn: 0.01 to 0.5%,
Cr: An aluminum alloy containing one or more of 0.01 to 0.3% and the balance of aluminum and unavoidable impurities, and a cooling rate of 5 at the center of the ingot.
Casting at 0 ° C / s or more, rolling at a rolling rate of 30% or more, then soaking at 500 to 600 ° C for 2 hours or more, then rolling at a rolling rate of 30% or more, heating at 1 ° C / s or more. Immediately after reaching the temperature of 380 to 600 ° C by heating at a speed or 10
A high strength with excellent formability and a low ear rate, which is characterized by performing intermediate annealing in which the material is held for less than 1 minute and then cooled at a cooling rate of 1 ° C./s or more, and then cold-rolled at a rolling rate of 20 to 90%. Manufacturing method of aluminum alloy hard plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2565292A JPH05195171A (en) | 1992-01-16 | 1992-01-16 | Production of aluminum hard plate excellent in formability and low in earing rate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2565292A JPH05195171A (en) | 1992-01-16 | 1992-01-16 | Production of aluminum hard plate excellent in formability and low in earing rate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05195171A true JPH05195171A (en) | 1993-08-03 |
Family
ID=12171754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2565292A Pending JPH05195171A (en) | 1992-01-16 | 1992-01-16 | Production of aluminum hard plate excellent in formability and low in earing rate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05195171A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003327262A (en) * | 2002-03-07 | 2003-11-19 | Mitsubishi Materials Corp | Cap, bottle can, and screw-type sealing bottle |
JP2007162056A (en) * | 2005-12-13 | 2007-06-28 | Mitsubishi Alum Co Ltd | Aluminum alloy sheet for bottle-type beverage can |
JP2007191778A (en) * | 2006-01-23 | 2007-08-02 | Furukawa Sky Kk | Material for medium and low voltage anode electrolytic capacitor and its production method |
JP2008127656A (en) * | 2006-11-22 | 2008-06-05 | Kobe Steel Ltd | Aluminum alloy sheet for battery case and production method therefor |
JP2009019248A (en) * | 2007-07-13 | 2009-01-29 | Sumitomo Light Metal Ind Ltd | Aluminum foil material for electrode of electrolytic capacitor |
CN101923908A (en) * | 2010-08-20 | 2010-12-22 | 安徽亚南电缆厂 | Aluminium alloy conductor for automotive wires and manufacturing method thereof |
JP2013036089A (en) * | 2011-08-09 | 2013-02-21 | Furukawa-Sky Aluminum Corp | Aluminum-alloy sheet for boiler drum and manufacturing method of the same, and boiler-drum resin-coated aluminum-alloy sheet and manufacturing method of the same |
CN103060584A (en) * | 2012-12-21 | 2013-04-24 | 佛山市深达美特种铝合金有限公司 | Ultra-fine grain 6061 aluminum alloy and preparation method thereof |
JP2014055338A (en) * | 2012-09-13 | 2014-03-27 | Uacj Corp | Aluminum clad-plate for heat exchanger and method for manufacturing the same, and aluminum heat exchanger employing clad-plate and method for manufacturing the same |
CN107868894A (en) * | 2017-11-02 | 2018-04-03 | 南南铝业股份有限公司 | High compressive strength handle 5005 aluminium alloys and preparation method |
CN111304475A (en) * | 2020-03-31 | 2020-06-19 | 江苏亨通电力特种导线有限公司 | High-performance aluminum material for air conditioner connecting pipe and preparation method thereof |
CN113416860A (en) * | 2021-05-19 | 2021-09-21 | 江苏国鑫铝业有限公司 | Mg-alloyed high-strength high-punching-performance aluminum alloy and preparation method thereof |
CN114438372A (en) * | 2021-12-24 | 2022-05-06 | 广西百矿冶金技术研究有限公司 | Aluminum alloy strip for rapid cast-rolling battery case and preparation method thereof |
EP4060067A1 (en) * | 2021-03-18 | 2022-09-21 | ACR II Aluminium Group Cooperatief U.A. | Aluminium alloy sheet for closures and thermomechanical method for producing the same |
-
1992
- 1992-01-16 JP JP2565292A patent/JPH05195171A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003327262A (en) * | 2002-03-07 | 2003-11-19 | Mitsubishi Materials Corp | Cap, bottle can, and screw-type sealing bottle |
JP2007162056A (en) * | 2005-12-13 | 2007-06-28 | Mitsubishi Alum Co Ltd | Aluminum alloy sheet for bottle-type beverage can |
JP2007191778A (en) * | 2006-01-23 | 2007-08-02 | Furukawa Sky Kk | Material for medium and low voltage anode electrolytic capacitor and its production method |
JP2008127656A (en) * | 2006-11-22 | 2008-06-05 | Kobe Steel Ltd | Aluminum alloy sheet for battery case and production method therefor |
JP2009019248A (en) * | 2007-07-13 | 2009-01-29 | Sumitomo Light Metal Ind Ltd | Aluminum foil material for electrode of electrolytic capacitor |
CN101923908A (en) * | 2010-08-20 | 2010-12-22 | 安徽亚南电缆厂 | Aluminium alloy conductor for automotive wires and manufacturing method thereof |
JP2013036089A (en) * | 2011-08-09 | 2013-02-21 | Furukawa-Sky Aluminum Corp | Aluminum-alloy sheet for boiler drum and manufacturing method of the same, and boiler-drum resin-coated aluminum-alloy sheet and manufacturing method of the same |
JP2014055338A (en) * | 2012-09-13 | 2014-03-27 | Uacj Corp | Aluminum clad-plate for heat exchanger and method for manufacturing the same, and aluminum heat exchanger employing clad-plate and method for manufacturing the same |
CN103060584A (en) * | 2012-12-21 | 2013-04-24 | 佛山市深达美特种铝合金有限公司 | Ultra-fine grain 6061 aluminum alloy and preparation method thereof |
CN107868894A (en) * | 2017-11-02 | 2018-04-03 | 南南铝业股份有限公司 | High compressive strength handle 5005 aluminium alloys and preparation method |
CN107868894B (en) * | 2017-11-02 | 2019-11-05 | 南南铝业股份有限公司 | High compressive strength knob 5005 aluminium alloys and preparation method |
CN111304475A (en) * | 2020-03-31 | 2020-06-19 | 江苏亨通电力特种导线有限公司 | High-performance aluminum material for air conditioner connecting pipe and preparation method thereof |
EP4060067A1 (en) * | 2021-03-18 | 2022-09-21 | ACR II Aluminium Group Cooperatief U.A. | Aluminium alloy sheet for closures and thermomechanical method for producing the same |
WO2022194875A1 (en) * | 2021-03-18 | 2022-09-22 | Acr Ii Aluminium Group Cooperatief U.A. | Aluminium alloy sheet for closures and thermomechanical method for producing the same |
CN113416860A (en) * | 2021-05-19 | 2021-09-21 | 江苏国鑫铝业有限公司 | Mg-alloyed high-strength high-punching-performance aluminum alloy and preparation method thereof |
CN114438372A (en) * | 2021-12-24 | 2022-05-06 | 广西百矿冶金技术研究有限公司 | Aluminum alloy strip for rapid cast-rolling battery case and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4645544A (en) | Process for producing cold rolled aluminum alloy sheet | |
JP4901757B2 (en) | Aluminum alloy plate and manufacturing method thereof | |
JPH0127146B2 (en) | ||
JP2007031819A (en) | Method for producing aluminum alloy sheet | |
JPH05195171A (en) | Production of aluminum hard plate excellent in formability and low in earing rate | |
JP2003239052A (en) | Method for producing aluminum foil base material and method for producing aluminum foil | |
JPS626740B2 (en) | ||
JP4001059B2 (en) | Method for producing aluminum alloy sheet with excellent bake resistance | |
WO2005061744A1 (en) | Aluminum alloy sheet excellent in resistance to softening by baking | |
JPH07310153A (en) | Production of aluminum alloy sheet excellent in strength ductility and stability | |
JP2584615B2 (en) | Method of manufacturing hard aluminum alloy rolled sheet for forming | |
JP3871462B2 (en) | Method for producing aluminum alloy plate for can body | |
JPS6022054B2 (en) | High-strength Al alloy thin plate with excellent formability and corrosion resistance, and method for producing the same | |
JP3871473B2 (en) | Method for producing aluminum alloy plate for can body | |
JP3644819B2 (en) | Method for producing aluminum alloy plate for can body | |
JPH04365834A (en) | Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production | |
JP2626859B2 (en) | Method for producing aluminum alloy sheet for high strength forming with low anisotropy | |
JPS63125645A (en) | Production of aluminum alloy material having fine crystal grain | |
JPS6254183B2 (en) | ||
JP2000001730A (en) | Aluminum alloy sheet for can body, and its production | |
JPH0387329A (en) | Aluminum alloy material for baking finish and its manufacture | |
KR960007633B1 (en) | Al-mg alloy & the preparation | |
JPH09176805A (en) | Production of aluminum fin material | |
JPH05222497A (en) | Production of hard aluminum alloy sheet reduced in edge rate | |
JP3180812B2 (en) | Method for producing Al-Fe alloy foil |