JP2007191778A - Material for medium and low voltage anode electrolytic capacitor and its production method - Google Patents

Material for medium and low voltage anode electrolytic capacitor and its production method Download PDF

Info

Publication number
JP2007191778A
JP2007191778A JP2006013641A JP2006013641A JP2007191778A JP 2007191778 A JP2007191778 A JP 2007191778A JP 2006013641 A JP2006013641 A JP 2006013641A JP 2006013641 A JP2006013641 A JP 2006013641A JP 2007191778 A JP2007191778 A JP 2007191778A
Authority
JP
Japan
Prior art keywords
ppm
aluminum
medium
electrolytic capacitor
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006013641A
Other languages
Japanese (ja)
Other versions
JP4781114B2 (en
Inventor
Jun Yamazaki
純 山▲崎▼
Hidemiki Matsumoto
英幹 松本
Masashi Mehata
将志 目秦
Atsushi Konishi
敦志 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Furukawa Sky KK
Original Assignee
Toyo Aluminum KK
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK, Furukawa Sky KK filed Critical Toyo Aluminum KK
Priority to JP2006013641A priority Critical patent/JP4781114B2/en
Publication of JP2007191778A publication Critical patent/JP2007191778A/en
Application granted granted Critical
Publication of JP4781114B2 publication Critical patent/JP4781114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum foil capable of realizing a higher capacitance at a relatively low cost. <P>SOLUTION: The material for a medium and low voltage anode electrolytic capacitor is obtained by casting an aluminum alloy molten metal having an aluminum purity of ≥99.90 mass%, and comprising 50 to 350 ppm Fe, 50 to 350 ppm Si and ≤8 ppm Ti at a cooling rate of ≤1×10<SP>-2</SP>K/s, and is characterized in that the dispersion density of precipitates contained in the aluminum matrix is ≤1×10<SP>-4</SP>pieces/μm<SP>3</SP>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、中低圧陽極電解コンデンサ用材料及びその製造方法に関する。特に、本発明は、中低圧陽極電解コンデンサに使用されるアルミニウム合金箔に関する。   The present invention relates to a medium-low voltage anode electrolytic capacitor material and a manufacturing method thereof. In particular, the present invention relates to an aluminum alloy foil used for a medium to low pressure anode electrolytic capacitor.

中低圧陽極電解コンデンサ箔は、アルミニウムもしくはアルミニウム合金箔を交流エッチングして粗面化し、約200V以下の電圧で陽極酸化処理して製造される。かかる中低圧陽極電解コンデンサ用アルミニウムもしくはアルミニウム合金箔には、高い静電容量が求められる。   The medium / low pressure anodic electrolytic capacitor foil is manufactured by roughening an aluminum or aluminum alloy foil by AC etching and anodizing at a voltage of about 200 V or less. Such an aluminum or aluminum alloy foil for medium- and low-pressure anode electrolytic capacitors is required to have a high capacitance.

従来、このような中低圧陽極電解コンデンサ用アルミニウム箔としては、アルミニウム地金中の不可避的不純物であるFe及びSiの量を極力少なくした高純度アルミニウム箔(例えばFe及びSiがいずれも10ppm以下)が用いられている。この理由は、アルミニウム中のFe及びSi含有量が増加すると、エッチングの際に箔表面が異常に溶解し、表面積拡大率を大きくすることができず、静電容量が小さくなるためである。   Conventionally, as such an aluminum foil for a medium-low pressure anode electrolytic capacitor, a high-purity aluminum foil in which the amount of Fe and Si, which are inevitable impurities in the aluminum ingot, is minimized (for example, Fe and Si are both 10 ppm or less) Is used. This is because when the Fe and Si contents in aluminum are increased, the foil surface is abnormally dissolved during etching, and the surface area expansion rate cannot be increased, and the capacitance is reduced.

一方、Fe量及びSi量を極力減らした高純度アルミニウム箔は、高い静電容量を得ることができる反面、コストが非常に高くなるという問題がある。   On the other hand, a high-purity aluminum foil in which the amount of Fe and Si is reduced as much as possible can obtain a high capacitance, but has a problem that the cost becomes very high.

これに関し、Fe及びSiが存在していても、所望の静電容量を達成できるアルミニウム箔の開発が進められている。   In this regard, development of an aluminum foil that can achieve a desired capacitance even when Fe and Si are present is underway.

例えば、Fe:15〜150ppm,Si:15〜150ppm含有し、アルミニウム純度が99.96〜99.994%であり、表面から1μmの深さまでの表面層にZnが20〜200ppm含まれ、表面層以外の部分のZn含有量が、表面層のZn含有量よりも少なく、かつ、20ppmを超えない含有量とされたことを特徴とする低電圧電解コンデンサ陽極用アルミニウム箔が提案されている(例えば特許文献1)。   For example, Fe: 15 to 150 ppm, Si: 15 to 150 ppm, the aluminum purity is 99.96 to 99.994%, and the surface layer from the surface to a depth of 1 μm contains 20 to 200 ppm of Zn. There has been proposed an aluminum foil for a low voltage electrolytic capacitor anode characterized in that the Zn content of the portion other than the above is less than the Zn content of the surface layer and does not exceed 20 ppm (for example, Patent Document 1).

また、アルミニウム純度が99.9質量%以上であって、かつ、Fe,Si,Cu及びその他の不可避不純物を含み、圧延率70%以上に冷間圧延された圧延板の引張伸びY%と該圧延板から得られるエッチング前最終箔の含まれる晶・析出物の分散密度X個/mmとが2+0.02X≦Y≦4+0.02X及び100≦X≦250を満足することを特徴とする電解コンデンサ陽極低電圧用アルミニウム合金箔が提案されている。(例えば特許文献2)。 Further, the tensile elongation Y% of a rolled sheet having an aluminum purity of 99.9% by mass or more and containing Fe, Si, Cu and other inevitable impurities and cold-rolled to a rolling rate of 70% or more, electrolyte which satisfies the dispersion density X number / mm 2 and is 2 + 0.02X ≦ Y ≦ 4 + 0.02X and 100 ≦ X ≦ 250 crystalliser-precipitates containing the etched before the final foil obtained from rolled plate An aluminum alloy foil for capacitor anode low voltage has been proposed. (For example, patent document 2).

また、アルミニウム純度が99.90質量%以上で、Fe,Si,Cuを含有し、かつFe析出量が5ppm以下,Si析出量が5ppm以下であり、アルミニウムマトリックス中に分散している金属間化合物の分散密度が5×10−4個/μm以下である事を特徴とする電解コンデンサ中低圧陽極用アルミニウム合金箔が提案されている(例えば特許文献3)。
特開平9−129513号公報 特開2002−151362号公報 特開平9−71832号公報
In addition, an intermetallic compound having an aluminum purity of 99.90% by mass or more, containing Fe, Si, Cu, an Fe precipitation amount of 5 ppm or less, and an Si precipitation amount of 5 ppm or less, dispersed in the aluminum matrix. An aluminum alloy foil for a low-pressure anode in an electrolytic capacitor has been proposed (characterized in Patent Document 3, for example), which has a dispersion density of 5 × 10 −4 pieces / μm 3 or less.
JP-A-9-129513 JP 2002-151362 A JP-A-9-71832

しかしながら、いずれの技術においても、静電容量という点においてはさらなる改善の余地が残されている。   However, in any technique, there is still room for improvement in terms of capacitance.

従って、本発明の主な目的は、より高い静電容量を実現できるアルミニウム箔を比較的低コストで提供することにある。   Accordingly, a main object of the present invention is to provide an aluminum foil capable of realizing a higher capacitance at a relatively low cost.

本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の材料が上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the problems of the prior art, the present inventor has found that a specific material can achieve the above object, and has completed the present invention.

すなわち、本発明は、下記の中低圧陽極電解コンデンサ用材料に係る。
1. アルミニウム純度が99.90質量%以上であり、Fe:50〜350ppm,Si:50〜350ppm及びTi:8ppm以下を含み、アルミニウムマトリックス中に含まれる析出物の分散密度が1×10−4個/μm以下であることを特徴とする中低圧陽極電解コンデンサ用材料。
2. 中低圧陽極電解コンデンサ用材料を製造する方法であって、アルミニウム純度が99.90質量%以上であり、Fe:50〜350ppm,Si:50〜350ppm及びTi:8ppm以下であるアルミニウム合金溶湯を、冷却速度1×10−2K/s以下にて鋳造し、均質化処理温度を500℃以下とした均質化処理を施した後、300℃以上での曝露時間が30分以内とする熱間圧延を施すことを特徴とする中低圧陽極電解コンデンサ用材料の製造方法。
That is, the present invention relates to the following materials for medium and low pressure anode electrolytic capacitors.
1. The aluminum purity is 99.90% by mass or more, Fe: 50 to 350 ppm, Si: 50 to 350 ppm and Ti: 8 ppm or less, and the dispersion density of precipitates contained in the aluminum matrix is 1 × 10 −4 pieces / A material for medium- and low-pressure anode electrolytic capacitors, characterized by being not more than 3 μm.
2. A method for producing a medium / low pressure anode electrolytic capacitor material, wherein the aluminum purity is 99.90% by mass or more, Fe: 50 to 350 ppm, Si: 50 to 350 ppm and Ti: 8 ppm or less, Hot rolling in which the exposure time at 300 ° C. or higher is within 30 minutes after casting at a cooling rate of 1 × 10 −2 K / s or less and homogenizing treatment at a homogenization temperature of 500 ° C. or lower. A method for producing a medium-low pressure anode electrolytic capacitor material, characterized by comprising:

本発明の材料は、とりわけ、特定の合金組成及び特定の鋳造速度にて製造された材料であって、その材料の析出物(特に金属間化合物)の分散密度が特定範囲にあることから、優れた効果を達成することができる。   The material of the present invention is particularly excellent because it is a material produced at a specific alloy composition and a specific casting speed, and the dispersion density of precipitates (particularly intermetallic compounds) of the material is in a specific range. Effect can be achieved.

すなわち、本発明の材料は、比較的多くのFe及びSiを含有するにもかかわらず、エッチング時の異常溶解が抑制ないしは防止され、その結果として静電容量の低下を抑制ないしは防止することができる。これにより、高容量の中低圧陽極電解コンデンサ用アルミニウム合金箔を安価で供給することができる。   That is, although the material of the present invention contains a relatively large amount of Fe and Si, abnormal dissolution during etching is suppressed or prevented, and as a result, a decrease in capacitance can be suppressed or prevented. . Thereby, the high capacity | capacitance aluminum alloy foil for medium-low pressure anode electrolytic capacitors can be supplied cheaply.

1.中低圧陽極電解コンデンサ用材料
本発明の中低圧陽極電解コンデンサ用材料は、アルミニウム純度が99.90質量%以上であり、Fe:50〜350ppm,Si:50〜350ppm及びTi:8ppm以下を含み、アルミニウムマトリックス中に含まれる析出物の分散密度が1×10−4個/μm以下であることを特徴とする。
1. Material for medium and low voltage anode electrolytic capacitor The material for medium and low voltage anode electrolytic capacitor of the present invention has an aluminum purity of 99.90% by mass or more, Fe: 50 to 350 ppm, Si: 50 to 350 ppm, and Ti: 8 ppm or less, The dispersion density of the precipitate contained in the aluminum matrix is 1 × 10 −4 pieces / μm 3 or less.

本発明材料は、アルミニウムマトリックス中に析出物(分散粒子)が分散した状態になっている。析出物は、通常はFe、Si、Ti等の少なくとも1種を含むものであるが、これらに限定されない。また、析出物は、一般的には金属間化合物等として存在する。   In the material of the present invention, precipitates (dispersed particles) are dispersed in an aluminum matrix. The precipitate usually contains at least one of Fe, Si, Ti and the like, but is not limited thereto. Further, the precipitate is generally present as an intermetallic compound or the like.

前記析出物の分散密度は1×10−4個/μm以下であり、好ましくは1×10−5個/μm以下の範囲である。分散密度が1×10−4個/μmより大きい場合は、アルミニウム箔の交流電解エッチング時において溶解の起点となる化合物が増加するため、静電容量の増大に寄与しない溶解が増え、静電容量が低下してしまう。なお、分散密度の下限値は限定されないが、通常は約1×10−6個/μm程度とすれば良い。 The dispersion density of the precipitate is 1 × 10 −4 particles / μm 3 or less, and preferably 1 × 10 −5 particles / μm 3 or less. When the dispersion density is larger than 1 × 10 −4 pieces / μm 3, the compound that becomes the starting point of dissolution at the time of AC electrolytic etching of the aluminum foil increases. Capacity will drop. Although the lower limit of the dispersion density is not limited, it is usually about 1 × 10 −6 pieces / μm 3 .

なお、本発明材料の組成については、後記の製造方法の項目において詳細に説明する。
2.中低圧陽極電解コンデンサ用材料の製造方法
本発明材料の製造方法は限定的ではないが、例えば次の方法によって好適に製造することができる。すなわち、中低圧陽極電解コンデンサ用材料を製造する方法であって、アルミニウム純度が99.90質量%以上であり、Fe:50〜350ppm,Si:50〜350ppm及びTi:8ppm以下であるアルミニウム合金溶湯を、冷却速度1×10−2K/s以下にて鋳造し、均質化処理温度を500℃以下とした均質化処理を施した後、300℃以上での曝露時間が30分以内とする熱間圧延を施す製造方法により得ることができる。なお、本明細書では、「重量ppm」を「ppm」と略記する。
The composition of the material of the present invention will be described in detail in the item of the manufacturing method described later.
2. Method for Producing Medium / Low Voltage Anode Electrolytic Capacitor Material The production method of the material of the present invention is not limited, but can be suitably produced by, for example, the following method. That is, a method for producing a medium-low pressure anode electrolytic capacitor material, wherein the aluminum purity is 99.90 mass% or more, Fe: 50 to 350 ppm, Si: 50 to 350 ppm, and Ti: 8 ppm or less. Is cast at a cooling rate of 1 × 10 −2 K / s or less and subjected to a homogenization treatment with a homogenization treatment temperature of 500 ° C. or less, and then an exposure time at 300 ° C. or more is set to be within 30 minutes. It can be obtained by a production method that performs hot rolling. In the present specification, “ppm by weight” is abbreviated as “ppm”.

アルミニウム合金溶湯
出発原料として用いるアルミニウム合金溶湯は、アルミニウム純度が99.90質量%以上であり、Fe:50〜350ppm,Si:50〜350ppm及びTi:8ppm以下のものを使用する。以下、各成分の役割等について説明する。ただし、本発明では、各成分は相乗的に作用するものであることから、各役割は限定的ではない。
The aluminum alloy melt used as the aluminum alloy melt starting material has an aluminum purity of 99.90% by mass or more, Fe: 50 to 350 ppm, Si: 50 to 350 ppm, and Ti: 8 ppm or less. Hereinafter, the role of each component will be described. However, in the present invention, since each component acts synergistically, each role is not limited.

アルミニウム純度は、99.90質量%以上、好ましくは99.93質量%以上の範囲とする。99.90質量%より小さいと、異常溶解を防止することが困難となり、所望の静電容量が得られなくなる。   The aluminum purity is 99.90% by mass or more, preferably 99.93% by mass or more. If it is less than 99.90% by mass, it becomes difficult to prevent abnormal dissolution, and a desired capacitance cannot be obtained.

Feは、50〜350ppm、好ましくは100〜300ppmの範囲とする。350ppmを超える場合は、アルミニウム箔の交流電解エッチング時において溶解の起点となる析出物の数が増加するため、静電容量の増大に寄与しない溶解が増え、静電容量が低下するとともに、エッチド箔の強度が低下してしまう。一方、50ppm未満の場合は、高い効率で交流電解エッチングを行うことができないので、結果として静電容量が低下することになる。   Fe is in the range of 50 to 350 ppm, preferably 100 to 300 ppm. If it exceeds 350 ppm, the number of precipitates that become the starting point of dissolution during AC electrolytic etching of the aluminum foil increases, so the amount of dissolution that does not contribute to the increase in capacitance increases, the capacitance decreases, and the strength of the etched foil Will fall. On the other hand, when the concentration is less than 50 ppm, AC electrolytic etching cannot be performed with high efficiency, and as a result, the capacitance decreases.

Siは、50〜350ppm、好ましくは100〜300ppmの範囲とする。Feの場合と同様、350ppmより大きくなると、アルミニウム箔の交流電解エッチング時において溶解の起点となる析出物の数が増加するため、静電容量の増大に寄与しない溶解が増え、静電容量が低下するとともに、エッチド箔の強度が低下してしまう。一方、50ppmを下回る場合は、高い効率で交流電解エッチングを行うことができないため、結果として静電容量が低下することになる。   Si is 50 to 350 ppm, preferably 100 to 300 ppm. As in the case of Fe, if it exceeds 350 ppm, the number of precipitates that become the starting point of dissolution at the time of AC electrolytic etching of the aluminum foil increases, so the amount of dissolution that does not contribute to the increase in capacitance increases, and the capacitance decreases. The strength of the etched foil is reduced. On the other hand, when the concentration is less than 50 ppm, AC electrolytic etching cannot be performed with high efficiency, and as a result, the capacitance decreases.

Tiは、8ppm以下、好ましくは5ppm以下とする。8ppmより大きくなると、交流電解エッチング時にエッチング不良が発生し、全面溶解となるため、静電容量が低下する。なお、Ti含有量の下限値は限定的ではないが、通常は2ppm程度である。   Ti is 8 ppm or less, preferably 5 ppm or less. If it exceeds 8 ppm, an etching failure occurs during AC electrolytic etching and the entire surface is melted, so that the capacitance decreases. The lower limit of the Ti content is not limited, but is usually about 2 ppm.

なお、Ti含有量を減少させる方法としては、アルミニウム合金溶湯のB(ホウ素)処理がある(例えば、特開2002−194453参照)。具体的には、TiBとして計算される化学当量よりも10〜200ppm多い量のBをアルミニウム合金溶湯に添加し、Ti−B系化合物を形成させ、これをアルミニウム合金溶湯から分離する方法を採用することができる。 In addition, as a method of reducing Ti content, there exists B (boron) process of molten aluminum alloy (for example, refer Unexamined-Japanese-Patent No. 2002-194453). Specifically, an amount of 10 to 200 ppm higher than the chemical equivalent calculated as TiB 2 is added to the molten aluminum alloy to form a Ti-B compound, which is separated from the molten aluminum alloy. can do.

アルミニウム合金溶湯の鋳造
本発明では、前記アルミニウム合金溶湯を冷却速度1×10−2K/s以下(好ましくは1×10−3K/s以下)にて鋳造する。冷却速度が1×10−2K/sを超える場合は、鋳塊の凝固速度が速くなり、微細な金属間化合物が増大するため、所望の金属間化合物の分散密度が得られない。また、アルミニウム箔の交流電解エッチング時において溶解の起点となる化合物が増加するため、静電容量の増大に寄与しない溶解が増え、静電容量が低下してしまう。
Casting of molten aluminum alloy In the present invention, the molten aluminum alloy is cast at a cooling rate of 1 × 10 −2 K / s or less (preferably 1 × 10 −3 K / s or less). When the cooling rate exceeds 1 × 10 −2 K / s, the solidification rate of the ingot is increased and the fine intermetallic compound is increased, so that a desired intermetallic compound dispersion density cannot be obtained. Moreover, since the compound used as the starting point of melt | dissolution at the time of the alternating current electrolytic etching of aluminum foil increases, melt | dissolution which does not contribute to the increase in an electrostatic capacitance increases, and an electrostatic capacitance will fall.

なお、一般に冷却速度は、DAS(dendrite arm spacing)と冷却速度cとの間で成り立つ下記の関係式に基づいて算出される値で示すことができる。   In general, the cooling rate can be represented by a value calculated based on the following relational expression established between DAS (dendrite arm spacing) and the cooling rate c.

DAS(d)=A×c(ただし、dはデンドライトアームスペーシングを示す。A及びnは合金系に特有の係数を示す。)
前記dは、文献(軽金属学会 鋳造・凝固部会「デンドライトアームスペーシング測定手順」、“アルミニウムのデンドライトアームスペーシングと冷却速度の測定法”,軽金属学会、昭和63年8月20日,pp.46−52)に記載の交線法に従って測定した値を示す。この方法では、視野数3、交線数10と条件設定した。
DAS (d) = A × c n (where d represents dendrite arm spacing, and A and n represent coefficients specific to the alloy system)
The above-mentioned d is a document (Dendrite Arm Spacing Measurement Procedure of the Japan Institute of Light Metals “Dendrite Arm Spacing Measurement Procedure”, “Method of Measuring Dendritic Arm Spacing and Cooling Rate of Aluminum”, Japan Institute of Light Metals, August 20, 1988, pp. 46-52. The value measured in accordance with the intersection method described in). In this method, conditions were set such that the number of fields of view was 3 and the number of intersections was 10.

上記A及びnは、AlFeSi系合金では、それぞれ33.4及び0.33とされている。従って、本発明においても、AlFeSi系合金として上記数値を用い、d=33.4×c0.33を近似式として採用し、この近似式に基づいて得られる値を冷却速度とする。 The above A and n are 33.4 and 0.33, respectively, in the AlFeSi alloy. Therefore, also in the present invention, the above numerical values are used as the AlFeSi-based alloy, d = 33.4 × c 0.33 is adopted as an approximate expression, and the value obtained based on this approximate expression is set as the cooling rate.

冷却速度を上記範囲に制御する手段(特に冷却速度を遅くする方法)は、鋳造方法、用いる装置等に応じて適宜決定することができる。例えば、鋳造速度(鋳型を降下させる速度)を極めて遅くする方法、鋳型下部付近から出る冷却水をワイパー等で切る方法等で対応することが可能である。この場合、冷却速度を遅くすることにより多く発生する表面不均一層は、面削量を増加させ、除去することにより対処することもできる。   The means for controlling the cooling rate within the above range (particularly, the method for reducing the cooling rate) can be appropriately determined according to the casting method, the apparatus used, and the like. For example, it is possible to cope with a method of extremely slowing the casting speed (speed at which the mold is lowered), a method of cutting cooling water from the vicinity of the lower part of the mold with a wiper or the like. In this case, the non-uniform surface layer, which is frequently generated by slowing the cooling rate, can be dealt with by increasing the amount of chamfering and removing it.

本発明の鋳造は、冷却速度を前記範囲に設定するほかは、公知の鋳造方法に従って実施することができる。例えば、DC法(Direct chill casting)等を採用することができる。従って、鋳造装置も公知のものを使用できる。特に、鋳造時に溶湯を冷却するために冷却水の供給手段を備えた鋳造装置を好適に用いることができる。   The casting of the present invention can be carried out according to a known casting method except that the cooling rate is set in the above range. For example, a DC method (Direct chill casting) or the like can be employed. Therefore, a known casting apparatus can be used. In particular, a casting apparatus provided with a cooling water supply means for cooling the molten metal during casting can be suitably used.

アルミニウム合金鋳塊の均質化処理方法
均質化処理温度は、500℃以下の範囲とする。500℃を超えると、熱間圧延時や箔圧延後の最終焼鈍時に析出が進行し、アルミニウム箔の交流電解エッチング時において溶解の起点となる析出物の数が増加するため、静電容量の増大に寄与しない溶解が増え、静電容量が低下する。下限は特に限定しないが、好ましくは400℃以上とする。また処理時間に関しても特に限定しないが、好ましくは1〜12時間の範囲とする。
Homogenization treatment method of aluminum alloy ingot The homogenization treatment temperature is set to a range of 500 ° C. or lower. If the temperature exceeds 500 ° C., precipitation proceeds during hot rolling or final annealing after foil rolling, and the number of precipitates that become the starting point of dissolution during AC electrolytic etching of aluminum foil increases, contributing to an increase in capacitance. Dissolution increases and capacitance decreases. Although a minimum is not specifically limited, Preferably it shall be 400 degreeC or more. Further, the treatment time is not particularly limited, but is preferably in the range of 1 to 12 hours.

アルミニウム合金鋳塊の熱間圧延方法
熱間圧延工程における300℃以上での曝露時間(例えば熱間圧延開始から300℃に冷却されるまでの時間)を30分以内の範囲とする。好ましくは20分以内の範囲とする。Feの析出が起こる温度域が300℃以上であり、この温度域での曝露時間が30分より長くなると析出が進行し、アルミニウム箔の交流電解エッチング時において溶解の起点となる析出物の数が増加するため、静電容量の増大に寄与しない溶解が増え、静電容量が低下する。その他熱間圧延条件は特に限定しないが、熱間圧延開始温度は350〜500℃、熱間圧延終了温度は200〜300℃程度が好ましい。
Method of hot rolling aluminum alloy ingot The exposure time (for example, the time from the start of hot rolling to cooling to 300 ° C.) at 300 ° C. or higher in the hot rolling step is set within a range of 30 minutes or less. The range is preferably within 20 minutes. The temperature range where Fe precipitation occurs is 300 ° C. or higher, and when the exposure time in this temperature range is longer than 30 minutes, precipitation proceeds, and the number of precipitates that become the starting point of dissolution during AC electrolytic etching of the aluminum foil increases. Therefore, dissolution that does not contribute to the increase in capacitance increases, and the capacitance decreases. Other hot rolling conditions are not particularly limited, but the hot rolling start temperature is preferably 350 to 500 ° C, and the hot rolling end temperature is preferably about 200 to 300 ° C.

本発明では、上記の熱間圧延を施した後は、公知の方法により加工することによって箔とすることができる。例えば、熱間圧延した後、1回又はそれ以上の冷間圧延を施すことによって、所定の厚みのアルミニウム合金箔を得ることができる。アルミニウム合金箔の厚みは、用途に応じて適宜変更すればよいが、通常0.05〜0.2mm程度とすれば良い。また、冷間圧延の途中または最後に300℃以下の熱処理を行っても良い。   In this invention, after performing said hot rolling, it can be set as foil by processing by a well-known method. For example, after hot rolling, an aluminum alloy foil having a predetermined thickness can be obtained by performing cold rolling one or more times. The thickness of the aluminum alloy foil may be appropriately changed according to the use, but is usually about 0.05 to 0.2 mm. Further, heat treatment at 300 ° C. or lower may be performed during or at the end of cold rolling.

上記アルミニウム合金を中低圧陽極電解コンデンサに用いる場合には、公知の方法に従ってエッチング(交流エッチング)、陽極酸化処理等を施すことにより所定のコンデンサ用箔を得ることができる。   When the aluminum alloy is used for a medium-low pressure anode electrolytic capacitor, a predetermined capacitor foil can be obtained by performing etching (AC etching), anodizing treatment, or the like according to a known method.

以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。   The features of the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the examples.

<実施例1〜5及び比較例6〜10>
表1に示す化学組成のアルミニウム合金溶湯を調製した。次いで、表1に示す冷却速度で鋳塊を製造した。この鋳塊に表1に示す温度で均質化処理を施した後、表1に示す曝露時間で熱間圧延を行い、6mmの熱間圧延板とした。この熱間圧延板に冷間圧延を施し、厚さ0.4mmの箔地とし、続いて最終箔圧延を行って厚さ0.1mmの箔とした。
<Examples 1-5 and Comparative Examples 6-10>
A molten aluminum alloy having the chemical composition shown in Table 1 was prepared. Subsequently, the ingot was manufactured at the cooling rate shown in Table 1. The ingot was homogenized at the temperature shown in Table 1, and then hot rolled at the exposure time shown in Table 1 to obtain a 6 mm hot rolled plate. The hot-rolled sheet was cold-rolled to obtain a foil with a thickness of 0.4 mm, and subsequently subjected to final foil rolling to obtain a foil with a thickness of 0.1 mm.

Ti含有量の制御方法は、アルミニウム合金溶湯にB処理を施す事で実施した。B処理とは、Al−B母合金を用いてTi含有量からTiBとして計算される化学当量よりもB含有量が多くなるように添加し、Ti−B系化合物を沈殿させるため長時間保持してから鋳造を開始した。なお本実施例では、Ti含有量が30ppmであるアルミニウム地金を20kg使用したので、TiBとして計算される化学当量よりもB含有量が100ppm多くなるように33gのAl−4質量%B母合金を添加した。 The Ti content was controlled by subjecting the molten aluminum alloy to B treatment. The B treatment is performed using an Al—B master alloy so that the B content is larger than the chemical equivalent calculated as TiB 2 from the Ti content, and the Ti—B compound is precipitated for a long time. Then casting started. In this example, since 20 kg of aluminum ingot having a Ti content of 30 ppm was used, 33 g of Al-4 mass% B base was used so that the B content was 100 ppm higher than the chemical equivalent calculated as TiB 2. The alloy was added.

また、冷却速度の制御方法は、鋳造速度(鋳型を降下させる速度)を変更する事で実施した。   The cooling rate was controlled by changing the casting speed (speed for lowering the mold).

Figure 2007191778
Figure 2007191778

<試験例1>
(分散密度の測定)
上記により得た箔について、特公平7−69322号に記載のフェノール溶解方法にてろ過捕集した析出物を走査型電子顕微鏡にて観察し、析出物の分散密度を求めた。その結果を表2に示す。
<Test Example 1>
(Measurement of dispersion density)
About the foil obtained by the above, the deposit collected by the phenol dissolution method of Japanese Patent Publication No. 7-69322 was observed with the scanning electron microscope, and the dispersion density of the deposit was calculated | required. The results are shown in Table 2.

なお、分散密度は、具体的には、以下の手順1)〜10)に従って測定・算出した。   The dispersion density was specifically measured and calculated according to the following procedures 1) to 10).

1)フェノール溶解法にてろ過捕集した残渣物を走査型電子顕微鏡(SEM)にて観察する。   1) The residue collected by filtration with the phenol dissolution method is observed with a scanning electron microscope (SEM).

2)前記SEM写真にて画像解析を実施する。このとき、析出粒子を50個以上含むように画像解析する。   2) Perform image analysis on the SEM photograph. At this time, image analysis is performed so as to include 50 or more precipitated particles.

3)画像解析にてカウントされた粒子数をnとする。   3) Let n be the number of particles counted in the image analysis.

4)前記3)の画像解析にて各析出粒子の直径dを測定し、析出粒子が球であると仮定して各析出粒子の体積V(=4πr/3, r=d/2)を算出する。 4) the 3) to measure the diameter d n of the precipitated particles by an image analysis, assuming precipitated particles with a spherical volume V n of the precipitated particles (= 4πr 3/3, r = d n / 2) is calculated.

5)この体積Vの総和ΣVを粒子数nで除し、析出粒子1個当たりの平均体積V´を求める。 5) The total volume ΣV n of the volume V n is divided by the number of particles n to obtain an average volume V ′ per precipitated particle.

6)平均体積 V´であるAlFeの重量(mAl3Fe)は、(体積=質量/比重)の関係から下記式:
Al3Fe=V´×ρAl3Fe (ρAl3Fe=3.84g/cm3
により算出する。
6) The weight (m Al3Fe ) of Al 3 Fe having an average volume V ′ is represented by the following formula from the relationship of (volume = mass / specific gravity):
m Al3Fe = V ′ × ρAl3Fe ( ρAl3Fe = 3.84 g / cm 3 )
Calculated by

7)また、mAl3Fe中に含まれるFeの重量(mFe)は、原子量を考慮して算出すると、
Fe=mAl3Fe×0.4083
これは、析出粒子1個当りの平均のFeの重量となる。
7) The weight of Fe contained in m Al3Fe (m Fe ) is calculated in consideration of the atomic weight.
m Fe = m Al3Fe × 0.4083
This is the average weight of Fe per precipitated particle.

8)Al単位g中のFe析出量(μg/g)を求める。すなわち、溶解前のAl重量を測定しておき、フェノール溶解法にてろ過捕集した残渣物全部をICP発光分析した結果をAl重量で除することにより算出する。   8) The amount of Fe precipitation (μg / g) in Al unit g is obtained. That is, the Al weight before dissolution is measured, and the result of ICP emission analysis of all residues collected by filtration by the phenol dissolution method is divided by the Al weight.

9)Al単位体積=Al単位g/Al比重 → Al単位g/Al単位体積=2.7より
Al単位体積中のFe量をFe析出量(μg/g)×2.7により求める。
9) Al unit volume = Al unit g / Al specific gravity → Al unit g / Al unit volume = 2.7 From the amount of Fe in the Al unit volume, Fe precipitation amount (μg / g) × 2.7 is obtained.

10)前記7)及び前記9)の結果に基づいて分散密度を算出する。   10) The dispersion density is calculated based on the results of 7) and 9).

単位体積中の析出物粒子数
=単位体積中のFeの重量(b)/析出物1個当りの平均のFeの重量(a)
<試験例2>
(静電容量の測定)
各実施例及び比較例で得られた箔を55℃のエッチング液(5vol%塩酸と0.5vol%燐酸の混合水溶液)中に浸漬し、交流電流60Hz,8A/dmを与えながら、3分間エッチングした。その後、アルミニウム箔を60℃の陽極酸化処理溶液(5wt%アジピン酸アンモニウム水溶液)に浸漬して25Vで陽極酸化処理し、LCRメーターを用いて静電容量を測定した。この結果は、Fe:10ppm,Si:10ppmを含有するアルミニウムの純度99.99質量%の箔(性能基準用,No.6)の静電容量を100%として相対比較した。その結果を表2に示す。
Number of precipitate particles in unit volume = weight of Fe in unit volume (b) / average weight of Fe per precipitate (a)
<Test Example 2>
(Measurement of capacitance)
The foils obtained in each Example and Comparative Example were immersed in an etching solution at 55 ° C. (mixed aqueous solution of 5 vol% hydrochloric acid and 0.5 vol% phosphoric acid) for 3 minutes while giving an alternating current of 60 Hz and 8 A / dm 2. Etched. Thereafter, the aluminum foil was immersed in an anodizing solution (5 wt% ammonium adipate aqueous solution) at 60 ° C. and anodized at 25 V, and the capacitance was measured using an LCR meter. As a result, a relative comparison was made by setting the capacitance of an aluminum containing Fe: 10 ppm and Si: 10 ppm with a purity of 99.99 mass% (for performance standards, No. 6) as 100%. The results are shown in Table 2.

Figure 2007191778
Figure 2007191778

表2からも明らかなように、本発明の製造条件で製造した中低圧陽極電解コンデンサ材料は、エッチングでの異常溶解が抑制ないしは防止されるため、静電容量の高い中低圧陽極電解コンデンサ材料であることが確認された。   As is apparent from Table 2, the medium / low pressure anode electrolytic capacitor material produced under the production conditions of the present invention is a medium / low pressure anode electrolytic capacitor material having a high capacitance because abnormal dissolution during etching is suppressed or prevented. It was confirmed that there was.

このように、本発明では、静電容量の高い中低圧陽極電解コンデンサ材料を得ることができる。特に、本発明では、No.3〜5のように、Fe又はSiが150ppmを超える場合(さらには200ppm以上の場合)であっても、高い静電容量を達成できることがわかる。   As described above, in the present invention, a medium-low pressure anode electrolytic capacitor material having a high capacitance can be obtained. In particular, according to the present invention, no. It can be seen that a high capacitance can be achieved even when Fe or Si exceeds 150 ppm (or more than 200 ppm) as in 3-5.

Claims (2)

アルミニウム純度が99.90質量%以上であり、Fe:50〜350ppm,Si:50〜350ppm及びTi:8ppm以下を含み、アルミニウムマトリックス中に含まれる析出物の分散密度が1×10−4個/μm以下であることを特徴とする中低圧陽極電解コンデンサ用材料。 The aluminum purity is 99.90% by mass or more, Fe: 50 to 350 ppm, Si: 50 to 350 ppm and Ti: 8 ppm or less, and the dispersion density of precipitates contained in the aluminum matrix is 1 × 10 −4 pieces / A material for medium- and low-pressure anode electrolytic capacitors, characterized by being not more than 3 μm. 中低圧陽極電解コンデンサ用材料を製造する方法であって、アルミニウム純度が99.90質量%以上であり、Fe:50〜350ppm,Si:50〜350ppm及びTi:8ppm以下であるアルミニウム合金溶湯を、冷却速度1×10−2K/s以下にて鋳造し、均質化処理温度を500℃以下とした均質化処理を施した後、300℃以上での曝露時間が30分以内とする熱間圧延を施すことを特徴とする中低圧陽極電解コンデンサ用材料の製造方法。 A method for producing a medium / low pressure anode electrolytic capacitor material, wherein the aluminum purity is 99.90% by mass or more, Fe: 50 to 350 ppm, Si: 50 to 350 ppm and Ti: 8 ppm or less, Hot rolling in which the exposure time at 300 ° C. or higher is within 30 minutes after casting at a cooling rate of 1 × 10 −2 K / s or less and homogenizing treatment at a homogenization temperature of 500 ° C. or lower. A method for producing a medium-low pressure anode electrolytic capacitor material, characterized by comprising:
JP2006013641A 2006-01-23 2006-01-23 Manufacturing method of materials for medium and low pressure anode electrolytic capacitors Active JP4781114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006013641A JP4781114B2 (en) 2006-01-23 2006-01-23 Manufacturing method of materials for medium and low pressure anode electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006013641A JP4781114B2 (en) 2006-01-23 2006-01-23 Manufacturing method of materials for medium and low pressure anode electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2007191778A true JP2007191778A (en) 2007-08-02
JP4781114B2 JP4781114B2 (en) 2011-09-28

Family

ID=38447710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006013641A Active JP4781114B2 (en) 2006-01-23 2006-01-23 Manufacturing method of materials for medium and low pressure anode electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP4781114B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395265A (en) * 1977-01-31 1978-08-21 Mitsubishi Keikinzoku Kogyo Aluminum anode foil for electrolytic capacitor and method of making same
JPH02221356A (en) * 1989-02-23 1990-09-04 Furukawa Alum Co Ltd Production of aluminum alloy stock for heat radiation bar
JPH04289142A (en) * 1991-03-18 1992-10-14 Nippon Light Metal Co Ltd Aluminum alloy for natural color anodizing and its manufacture
JPH05195171A (en) * 1992-01-16 1993-08-03 Sky Alum Co Ltd Production of aluminum hard plate excellent in formability and low in earing rate
JPH07169657A (en) * 1993-12-16 1995-07-04 Sumitomo Light Metal Ind Ltd Aluminum alloy foil for electrolytic capacitor anode
JPH08337833A (en) * 1995-06-08 1996-12-24 Mitsubishi Alum Co Ltd Aluminum foil for electrode of electrolytic capacitor
JPH0971832A (en) * 1995-09-05 1997-03-18 Furukawa Electric Co Ltd:The Aluminum alloy foil for low pressure anode in electrolytic capacitor
JPH0978168A (en) * 1995-09-18 1997-03-25 Kobe Steel Ltd Aluminum alloy sheet
JPH09268355A (en) * 1996-04-01 1997-10-14 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for can body, reduced in earing rate
JPH11199993A (en) * 1998-01-19 1999-07-27 Furukawa Electric Co Ltd:The Production of aluminum soft foil for medium-low voltage anode of electrolytic capacitor
JP2000054093A (en) * 1998-08-07 2000-02-22 Kobe Steel Ltd Manufacture of aluminum foil
JP2001335868A (en) * 2000-05-22 2001-12-04 Nippon Foil Mfg Co Ltd Aluminum alloy foil for electrolytic capacitor cathode
JP2004131811A (en) * 2002-10-11 2004-04-30 Nippon Foil Mfg Co Ltd Aluminum alloy foil for electrode of electrolytic capacitor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395265A (en) * 1977-01-31 1978-08-21 Mitsubishi Keikinzoku Kogyo Aluminum anode foil for electrolytic capacitor and method of making same
JPH02221356A (en) * 1989-02-23 1990-09-04 Furukawa Alum Co Ltd Production of aluminum alloy stock for heat radiation bar
JPH04289142A (en) * 1991-03-18 1992-10-14 Nippon Light Metal Co Ltd Aluminum alloy for natural color anodizing and its manufacture
JPH05195171A (en) * 1992-01-16 1993-08-03 Sky Alum Co Ltd Production of aluminum hard plate excellent in formability and low in earing rate
JPH07169657A (en) * 1993-12-16 1995-07-04 Sumitomo Light Metal Ind Ltd Aluminum alloy foil for electrolytic capacitor anode
JPH08337833A (en) * 1995-06-08 1996-12-24 Mitsubishi Alum Co Ltd Aluminum foil for electrode of electrolytic capacitor
JPH0971832A (en) * 1995-09-05 1997-03-18 Furukawa Electric Co Ltd:The Aluminum alloy foil for low pressure anode in electrolytic capacitor
JPH0978168A (en) * 1995-09-18 1997-03-25 Kobe Steel Ltd Aluminum alloy sheet
JPH09268355A (en) * 1996-04-01 1997-10-14 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for can body, reduced in earing rate
JPH11199993A (en) * 1998-01-19 1999-07-27 Furukawa Electric Co Ltd:The Production of aluminum soft foil for medium-low voltage anode of electrolytic capacitor
JP2000054093A (en) * 1998-08-07 2000-02-22 Kobe Steel Ltd Manufacture of aluminum foil
JP2001335868A (en) * 2000-05-22 2001-12-04 Nippon Foil Mfg Co Ltd Aluminum alloy foil for electrolytic capacitor cathode
JP2004131811A (en) * 2002-10-11 2004-04-30 Nippon Foil Mfg Co Ltd Aluminum alloy foil for electrode of electrolytic capacitor

Also Published As

Publication number Publication date
JP4781114B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP6119937B1 (en) Aluminum alloy extruded material having anodized film with excellent appearance quality and method for producing the same
KR20100108370A (en) Aluminum alloy sheet for motor vehicle and process for producing the same
JP4174526B2 (en) Aluminum alloy plate manufacturing method and aluminum alloy plate
JP5215710B2 (en) Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JP2003239052A (en) Method for producing aluminum foil base material and method for producing aluminum foil
JP2007046093A (en) Aluminum foil for electrolytic capacitor electrode, and manufacturing method therefor
JP4061211B2 (en) Titanium alloy used for cathode electrode for producing electrolytic copper foil and method for producing the same
WO2017006816A1 (en) Aluminum alloy extruded material having positive electrode oxide film and excellent external appearance quality and production method therefor
JP3893031B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP4174527B2 (en) Aluminum alloy plate manufacturing method and aluminum alloy plate
JP2008163357A (en) Aluminum alloy sheet for automobile and manufacturing method therefor
JP4781114B2 (en) Manufacturing method of materials for medium and low pressure anode electrolytic capacitors
JPH0138865B2 (en)
JP2001020027A (en) Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE
JP2000104149A (en) Production of aluminum-manganese alloy rolling stock having fine recrystallized grain structure
JP4839739B2 (en) High purity aluminum alloy material
JP4916698B2 (en) Aluminum material for electrolytic capacitor and manufacturing method thereof, manufacturing method of electrode material for electrolytic capacitor, anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP2007113098A (en) Aluminum alloy foil for cathode in electrolytic capacitor and producing method therefor
JP4582627B2 (en) Aluminum alloy foil for electrolytic capacitor cathode
JP4215039B2 (en) Manufacturing method of thin plate for aluminum hard foil for electrolytic capacitor
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP2007131917A (en) Aluminum alloy sheet for printing plate and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4781114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350