JP4539911B2 - Aluminum foil for electrode capacitor anode and manufacturing method thereof - Google Patents
Aluminum foil for electrode capacitor anode and manufacturing method thereof Download PDFInfo
- Publication number
- JP4539911B2 JP4539911B2 JP2004343694A JP2004343694A JP4539911B2 JP 4539911 B2 JP4539911 B2 JP 4539911B2 JP 2004343694 A JP2004343694 A JP 2004343694A JP 2004343694 A JP2004343694 A JP 2004343694A JP 4539911 B2 JP4539911 B2 JP 4539911B2
- Authority
- JP
- Japan
- Prior art keywords
- ppm
- less
- aluminum foil
- rem
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011888 foil Substances 0.000 title claims description 39
- 229910052782 aluminium Inorganic materials 0.000 title claims description 35
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 34
- 239000003990 capacitor Substances 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 31
- 239000002244 precipitate Substances 0.000 claims description 21
- 238000000137 annealing Methods 0.000 claims description 15
- 238000005097 cold rolling Methods 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 4
- 238000005530 etching Methods 0.000 description 19
- 238000007788 roughening Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000004581 coalescence Methods 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 238000000866 electrolytic etching Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 229910018084 Al-Fe Inorganic materials 0.000 description 3
- 229910018192 Al—Fe Inorganic materials 0.000 description 3
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000012733 comparative method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Metal Rolling (AREA)
Description
この発明は、電解コンデンサの陽極に用いられる電極コンデンサ陽極用アルミニウム箔およびその製造方法に関するものである。 The present invention relates to an aluminum foil for an electrode capacitor anode used for an anode of an electrolytic capacitor and a method for producing the same.
一般に電解コンデンサ用アルミニウム箔には、99.9%以上の純度を有する純アルミニウムを常法により熱間、冷間圧延して100μm前後の厚さにしたものが使用される。そしてこのアルミニウム箔は、コンデンサとして組立てる迄に、結晶歪みの除去などを目的として500〜600℃に加熱する最終焼鈍、電解エッチングによる表面の粗面化処理、所定量の化成処理(陽極酸化)等が行われる。上記粗面化処理は、アルミニウム箔を電極として用いたときの単位面積当たりの静電容量を大きくするために行われるものである。電解エッチングでは、アルミニウム箔の表面から内部に向かってピットが無数に形成されて表面積の増大をもたらす。 In general, the aluminum foil for electrolytic capacitors is made of pure aluminum having a purity of 99.9% or more, hot and cold rolled by a conventional method to a thickness of about 100 μm. This aluminum foil is finally annealed to 500 to 600 ° C. for the purpose of removing crystal distortion, etc. before being assembled as a capacitor, surface roughening treatment by electrolytic etching, predetermined amount of chemical conversion treatment (anodic oxidation), etc. Is done. The surface roughening treatment is performed to increase the capacitance per unit area when an aluminum foil is used as an electrode. In electrolytic etching, an infinite number of pits are formed from the surface of the aluminum foil toward the inside, resulting in an increase in surface area.
この電解エッチング処理により表面に形成されるエッチングピットの微細化、高密度化について、従来から多くの研究がなされてきている。エッチングピットを高密度に形成するには、エッチング初期におけるエッチングピット分布が重要であり、なるべく箔全面に均一微細に発生することが望ましいとされている。また同時に、個々のエッチングピットの形態については、後工程で付加される化成処理における化成電圧が用途によって定められており、この化成処理に好適な形態が求められる。すなわち、一定条件下で適度なピットの径、長さが得られる箔が望ましい。
さらに、電解エッチング処理における拡面効果を最大限に得るためには、最表面の全面溶解などの無効溶解を抑制しながら、形成されるエッチングピットの数(密度)および形態(径・長さ)を適正にする必要がある。
したがってアルミニウム原箔としては、表層の全面溶解が起きにくく、内部でのエッチングピット径拡大およびピット長伸長が促進される材料が好ましいといえる。
Many studies have been made on the fine and dense etching pits formed on the surface by this electrolytic etching treatment. In order to form the etching pits with high density, the distribution of the etching pits at the initial stage of etching is important, and it is desirable that the etching pits be generated uniformly and finely on the entire surface of the foil as much as possible. At the same time, as for the form of the individual etching pits, the formation voltage in the chemical conversion treatment added in the post-process is determined by the application, and a suitable form for this chemical conversion treatment is required. That is, a foil that can obtain an appropriate pit diameter and length under certain conditions is desirable.
Furthermore, in order to maximize the surface expansion effect in the electrolytic etching process, the number (density) and form (diameter / length) of etching pits formed while suppressing ineffective dissolution such as the entire surface dissolution. It is necessary to make it appropriate.
Therefore, it can be said that the aluminum raw foil is preferably a material that hardly dissolves the entire surface layer and promotes the expansion of the etching pit diameter and the pit length inside.
従来、このような観点から粗面化処理工程により表面積を増やす努力は継続して行われて来ており、エッチング条件面やアルミニウム箔の表面性状面からの研究等がされている。
例えば、特許文献1では、Si、Fe、Cu、REM等を微量含有することで、ピット密度を増加させて粗面化率を向上させる提案がなされている。
For example, Patent Document 1 proposes that the surface roughness rate is improved by increasing the pit density by containing a small amount of Si, Fe, Cu, REM, or the like.
しかし、上記のようにピット密度を増大させても粗面化率の向上効果は十分ではなく、その一方で、ピット密度をあまりに増大させるとピット間の合体が生じて却って粗面化率が低下するという問題がある。 However, even if the pit density is increased as described above, the effect of improving the roughening rate is not sufficient. On the other hand, if the pit density is increased too much, coalescence between pits occurs and the roughening rate decreases. There is a problem of doing.
この発明は、上記事情を背景としてなされたものであり、エッチング時の粗面化率を効果的に増大させて単位面積当たりの静電容量の向上を可能とした電極コンデンサ陽極用アルミニウム箔およびその製造方法を提供することを目的とする。 The present invention has been made against the background of the above circumstances, and an aluminum foil for an electrode capacitor anode that can effectively increase the roughening rate during etching and improve the capacitance per unit area, and its An object is to provide a manufacturing method.
すなわち、本発明の電解コンデンサ陽極用アルミニウム箔は、質量比で、Si:5ppm以上100ppm以下、Fe:5ppm以上100ppm以下、Cu:10ppm以上100ppm以下、Pb:0.1ppm以上5ppm以下、希土類元素:1ppm以上50ppm以下を含有し、残部がAlと不可避不純物とからなり、表面から0.5μm以上の深さの内部においてAl−Fe−REM析出物およびAl−Fe−Si−REM析出物として存在するFe量が、質量比でFe平均含有量に対して20%以上60%以下の範囲であることを特徴とする。 That is, the aluminum foil for an electrolytic capacitor anode of the present invention is, by mass ratio, Si: 5 ppm to 100 ppm, Fe: 5 ppm to 100 ppm, Cu: 10 ppm to 100 ppm, Pb: 0.1 ppm to 5 ppm, rare earth element: Contains 1 ppm to 50 ppm, the balance is Al and inevitable impurities, and exists as Al-Fe-REM precipitates and Al-Fe-Si-REM precipitates at a depth of 0.5 μm or more from the surface. The amount of Fe is in a range of 20% to 60% with respect to the average Fe content by mass ratio.
本発明の電解コンデンサ陽極用アルミニウム箔の製造方法は、質量比で、Si:5ppm以上100ppm以下、Fe:5ppm以上100ppm以下、Cu:10ppm以上100ppm以下、Pb:0.1ppm以上5ppm以下、希土類元素:1ppm以上50ppm以下を含有し、残部がAlと不可避不純物とからなる組成の電解コンデンサ陽極用アルミニウム箔を製造する方法であって、冷間圧延時の最終冷間圧延率が15%以上25%以下であり、かつ最終焼鈍として、300℃〜450℃で2〜6時間保持した後、さらに530℃〜600℃で4〜10時間保持することを特徴とする。 The method for producing an aluminum foil for an electrolytic capacitor anode of the present invention is, by mass ratio, Si: 5 ppm to 100 ppm, Fe: 5 ppm to 100 ppm, Cu: 10 ppm to 100 ppm, Pb: 0.1 ppm to 5 ppm, rare earth element A method for producing an aluminum foil for an electrolytic capacitor anode having a composition containing 1 ppm to 50 ppm with the balance being Al and inevitable impurities, and the final cold rolling rate during cold rolling is 15% to 25% It is the following, and as final annealing, after hold | maintaining for 2 to 6 hours at 300 to 450 degreeC, it is further hold | maintained at 530 to 600 degreeC for 4 to 10 hours.
以下に、本発明で限定している成分、製造条件等の限定理由について説明する。
Si:5ppm以上100ppm以下、
Siは、Al−Fe−SiまたはAl−Fe−Si−REM化合物として存在し、表面においてはピットの発生基点として寄与し、内部においてはピットの径拡大・伸長に寄与して粗面化率を向上させる。ただし、下限未満では上記作用が十分に得られず、一方、上限を超えると過溶解、ピットの合体が生じて却って粗面化率を低下させる。なお、同様の理由で下限を10ppm、上限を60ppmとするのが望ましい。
The reasons for limitation such as components and production conditions limited in the present invention will be described below.
Si: 5 ppm or more and 100 ppm or less,
Si exists as an Al-Fe-Si or Al-Fe-Si-REM compound, and contributes as a starting point of pits on the surface, and contributes to the enlargement / elongation of the pits and increases the roughening rate inside. Improve. However, if the amount is less than the lower limit, the above-described effect cannot be obtained sufficiently. On the other hand, if the amount exceeds the upper limit, overmelting and coalescence of pits occur and the roughening rate is lowered. For the same reason, it is desirable to set the lower limit to 10 ppm and the upper limit to 60 ppm.
Fe:5ppm以上100ppm以下、
Feは、Al−Fe、Al−Fe−Si、Al−Fe−REM、またはAl−Fe−REM−Si化合物として存在し、表面においてはピットの発生基点として寄与し、内部においてはピットの径拡大・伸長に寄与する。ただし、下限未満では上記作用が十分に得られず、一方、上限を超えると過溶解、ピットの合体が生じて却って粗面化率を低下させる。なお、同様の理由で下限を10ppm、上限を50ppmとするのが望ましい。
Fe: 5 ppm or more and 100 ppm or less,
Fe exists as an Al-Fe, Al-Fe-Si, Al-Fe-REM, or Al-Fe-REM-Si compound, which contributes as a starting point of pits on the surface and enlarges the pit diameter inside.・ Contributes to growth. However, if the amount is less than the lower limit, the above-described effect cannot be obtained sufficiently. On the other hand, if the amount exceeds the upper limit, overmelting and coalescence of pits occur and the roughening rate is lowered. For the same reason, it is desirable to set the lower limit to 10 ppm and the upper limit to 50 ppm.
Cu:10ppm以上100ppm以下、
Cuは、アノード皮膜の形成とその上へのカソード皮膜の形成を促進して粗面化率を向上させる。ただし、下限未満ではアノード皮膜およびカソード皮膜が十分形成されず、拡面にほとんど寄与しない全面溶解が進む。一方、上限を超えると、アノード皮膜およびカソード皮膜が厚くなりすぎるので、皮膜欠陥が形成されにくくなり、ピットの形成が阻害される。なお、同様の理由で下限を20ppm、上限を70ppmとするのが望ましい。
Cu: 10 ppm or more and 100 ppm or less,
Cu promotes the formation of the anode coating and the formation of the cathode coating thereon to improve the roughening rate. However, if it is less than the lower limit, the anode coating and the cathode coating are not sufficiently formed, and the entire surface dissolution that hardly contributes to the surface expansion proceeds. On the other hand, when the upper limit is exceeded, the anode coating and the cathode coating become too thick, so that coating defects are difficult to form and pit formation is inhibited. For the same reason, it is desirable that the lower limit is 20 ppm and the upper limit is 70 ppm.
Pb:0.1ppm以上5ppm以下、
Pbは、最表層近傍に濃縮し、エッチング初期のピット形成を促進する。ただし、下限未満では、上記作用が十分に得られず、一方、上限を超えると、ピットが過密に生成されて合体し、無効溶解となる。なお、同様の理由で下限を0.2ppm、上限を2ppmとするのが望ましい。
Pb: 0.1 ppm or more and 5 ppm or less,
Pb concentrates in the vicinity of the outermost layer and promotes pit formation at the initial stage of etching. However, if the amount is less than the lower limit, the above-described effect cannot be obtained sufficiently. On the other hand, if the upper limit is exceeded, the pits are generated excessively and coalesce, resulting in ineffective dissolution. For the same reason, it is desirable to set the lower limit to 0.2 ppm and the upper limit to 2 ppm.
希土類元素(REM):1ppm以上50ppm以下
希土類元素は、Al−FeまたはAl−Fe−Si化合物と結びつき、ピットの合体を招く表層へのこれら化合物の拡散・濃縮を抑制し、箔内部にとどめることで粗面化率を向上させる。ただし、下限未満では、上記作用が十分に得られず、一方、上限を越えると過溶解を招く。なお、同様の理由で下限を3ppm、上限を30ppmとするのが望ましい。
Rare earth elements (REM): 1 ppm or more and 50 ppm or less Rare earth elements are bound to Al-Fe or Al-Fe-Si compounds to suppress diffusion / concentration of these compounds to the surface layer causing coalescence of pits, and remain within the foil. To improve the roughening rate. However, if the amount is less than the lower limit, the above-described effect cannot be obtained sufficiently, while if the upper limit is exceeded, overdissolution occurs. For the same reason, it is desirable to set the lower limit to 3 ppm and the upper limit to 30 ppm.
Al−Fe−REM析出物およびAl−Fe−Si−REM析出物
アルミニウム箔の内部(表面から0.5μm以上の深さ)でのピットの拡大、伸長を促進する。ただし、Al−Fe−REM析出物またはAl−Fe−Si−REM析出物として存在する合計のFe量がFe平均含有量の20%未満であると上記作用が十分に得られない。一方、60%を越えるとアルミニウム箔内部で過溶解、ピットの合体、貫通を招く。なお、同様の理由で上記Fe量は、下限が30%、上限が50%であるのが望ましい。
Al-Fe-REM precipitate and Al-Fe-Si-REM precipitate Promote the expansion and extension of pits inside the aluminum foil (depth of 0.5 μm or more from the surface). However, when the total amount of Fe existing as Al-Fe-REM precipitates or Al-Fe-Si-REM precipitates is less than 20% of the average Fe content, the above-described effect cannot be obtained sufficiently. On the other hand, if it exceeds 60%, overmelting, coalescence of pits and penetration are caused inside the aluminum foil. For the same reason, it is desirable that the Fe amount has a lower limit of 30% and an upper limit of 50%.
最終冷間圧延率:15%以上25%以下
冷間圧延時の中間焼鈍後(複数回の中間焼鈍では最後の中間焼鈍後)における最終冷間圧延率を適正に行うことで歪み導入を多くして上記析出に寄与するFe、Si、REM各元素の拡散の駆動力を高めてAl−Fe−REM析出物およびAl−Fe−Si−REM析出物による上記作用を向上させる。ただし、最終冷間圧延率が下限未満であると、上記作用が十分に得られず、また、上限を超えると駆動力が大きくなりすぎて表層と内部でAl−Fe−REM析出物およびAl−Fe−Si−REM析出物の析出量バランスが好適ではなくなり、上記作用が十分に得られない。
Final cold rolling rate: 15% or more and 25% or less Introducing distortion by appropriately performing the final cold rolling rate after intermediate annealing during cold rolling (after the final intermediate annealing in the case of multiple intermediate annealings) Thus, the driving force of the diffusion of each element of Fe, Si, and REM contributing to the precipitation is increased to improve the above-described action by the Al-Fe-REM precipitate and the Al-Fe-Si-REM precipitate. However, when the final cold rolling rate is less than the lower limit, the above-described effect is not sufficiently obtained, and when the upper limit is exceeded, the driving force becomes excessively large, and Al—Fe—REM precipitates and Al— The precipitation amount balance of the Fe—Si—REM precipitates is not suitable, and the above-described effect cannot be obtained sufficiently.
最終焼鈍:
1段目300〜450℃、2〜6時間、後段530〜600℃、4〜10時間
1段目の最終焼鈍によって、アルミニウム箔内部での前記析出物の好適な析出物量を確保する。上記温度、時間が下限未満であると、析出の駆動力が十分ではなく好適な析出物量を得ることができない。一方、上記加熱温度が上限を超えると表面への拡散駆動が優位となり内部での好適な析出物量の減少を招く。また、時間が上限を超えると、不必要な長時間保持は経済的ではなく、効果も飽和する。
なお、後段の最終焼鈍では、立方晶を十分に成長させるために、530℃で4時間以上の加熱が必要になる。ただし、600℃を越えると箔の溶着などの問題が生じるため600℃以下とする。なお、10時間を超えて加熱しても効果は飽和するため加熱時間は10時間以下が望ましい。
Final annealing:
First stage 300 to 450 ° C., 2 to 6 hours, rear stage 530 to 600 ° C., 4 to 10 hours The final annealing in the first stage ensures a suitable amount of precipitates in the aluminum foil. If the temperature and time are less than the lower limit, the driving force for precipitation is not sufficient, and a suitable amount of precipitate cannot be obtained. On the other hand, when the heating temperature exceeds the upper limit, diffusion driving to the surface is dominant and a suitable amount of precipitates inside is reduced. If the time exceeds the upper limit, unnecessary long-time holding is not economical and the effect is saturated.
In the final annealing at the latter stage, heating at 530 ° C. for 4 hours or more is necessary to sufficiently grow the cubic crystals. However, if the temperature exceeds 600 ° C., problems such as welding of the foil occur, so the temperature is 600 ° C. or less. In addition, since the effect is saturated even if it heats over 10 hours, the heating time is desirably 10 hours or less.
以上説明したように本発明の電解コンデンサ陽極用アルミニウム箔によれば、質量比で、Si:5ppm以上100ppm以下、Fe:5ppm以上100ppm以下、Cu:10ppm以上100ppm以下、Pb:0.1ppm以上5ppm以下、希土類元素:1ppm以上50ppm以下を含有し、残部がAlと不可避不純物とからなり、表面から0.5μm以上の深さの内部においてAl−Fe−REM析出物およびAl−Fe−Si−REM析出物として存在するFe量が、質量比でFe平均含有量に対して20%以上60%以下の範囲であるので、エッチングに際しアルミニウム箔の表面に適度な密度でピットが形成されるとともに、該ピットが箔内部で拡大、伸長して表面性が効果的に増大する粗面化がなされる。すなわち、本発明では、表層への析出物の拡散・濃縮を抑制し、内部析出物を残留させることにより、表層の溶解性を抑制するとともに、内部溶解性を向上させて粗面化率を向上させる。これにより電解コンデンサの陽極に用いた際には、単位面積当たりの静電容量に優れたコンデンサを得ることができる。 As described above, according to the aluminum foil for an electrolytic capacitor anode of the present invention, by mass ratio, Si: 5 ppm to 100 ppm, Fe: 5 ppm to 100 ppm, Cu: 10 ppm to 100 ppm, Pb: 0.1 ppm to 5 ppm Hereinafter, rare earth elements: 1 ppm or more and 50 ppm or less, with the balance consisting of Al and inevitable impurities, Al—Fe—REM precipitates and Al—Fe—Si—REM inside the depth of 0.5 μm or more from the surface Since the amount of Fe existing as a precipitate is in the range of 20% to 60% by mass ratio with respect to the average Fe content, pits are formed at an appropriate density on the surface of the aluminum foil during etching. The pits are enlarged and elongated inside the foil, and the surface is effectively roughened. That is, in the present invention, by suppressing the diffusion / concentration of precipitates on the surface layer and leaving the internal precipitates, the solubility of the surface layer is suppressed and the internal solubility is improved to improve the roughening rate. Let Thereby, when used as an anode of an electrolytic capacitor, a capacitor having an excellent capacitance per unit area can be obtained.
また、本発明の電解コンデンサ陽極用アルミニウム箔の製造方法によれば、質量比で、Si:5ppm以上100ppm以下、Fe:5ppm以上100ppm以下、Cu:10ppm以上100ppm以下、Pb:0.1ppm以上5ppm以下、希土類元素:1ppm以上50ppm以下を含有し、残部がAlと不可避不純物とからなる組成の電解コンデンサ陽極用アルミニウム箔を製造する方法であって、冷間圧延時の最終冷間圧延率が15%以上25%以下であり、かつ最終焼鈍として、300℃〜450℃で2〜6時間保持した後、さらに530℃〜600℃で4〜10時間保持するので、アルミニウム箔内部でのAl−Fe−REM析出物およびAl−Fe−Si−REM析出物の適正な析出量を確保するとともに、アルミニウム箔の表層と内部とで、上記析出物量のバランスを適切なものにして、上記構成の電解コンデンサ陽極用アルミニウム箔を得ることができる。 Moreover, according to the manufacturing method of the aluminum foil for electrolytic capacitor anodes of this invention, by mass ratio, Si: 5 ppm or more and 100 ppm or less, Fe: 5 ppm or more and 100 ppm or less, Cu: 10 ppm or more and 100 ppm or less, Pb: 0.1 ppm or more and 5 ppm The following is a method for producing an aluminum foil for an electrolytic capacitor anode having a composition containing rare earth elements: 1 ppm to 50 ppm, the balance being Al and inevitable impurities, and the final cold rolling rate during cold rolling is 15 % And 25% or less, and as final annealing, after being held at 300 ° C. to 450 ° C. for 2 to 6 hours, further held at 530 ° C. to 600 ° C. for 4 to 10 hours, Al—Fe inside the aluminum foil -REM deposits and Al-Fe-Si-REM deposits are ensured in an appropriate amount, and aluminum In the surface layer and interior of the foil, the balance of the deposit amount in the appropriate, it is possible to obtain an electrolytic capacitor anode for aluminum foil of the above configuration.
以下に、本発明の一実施形態を説明する。
好適には純度99.9%以上で、本発明の成分となるように調製されたアルミニウム材は、常法により得ることができ、本発明としては特にその製造方法が限定されるものではない。例えば、半連続鋳造によって得たスラブを熱間圧延したものを用いることができる。その他に連続鋳造により得られるアルミニウム材を対象とするものであってもよい。なお、REMの含有に際してはミッシュメタルを用いることもできる。上記熱間圧延または連続鋳造圧延によって例えば数mm厚程度のシート材とする。このシート材に対し冷間圧延を行い、数十μmから100μm程度のアルミニウム合金箔を得る。なお、冷間圧延の途中で1回以上の中間焼鈍を行う。本発明としては、該中間焼鈍の条件が特に限定されるものではないが、例えば、200〜270℃、1〜6時間のバッチ炉での処理や、250〜300℃、30秒〜10分の連続炉での処理を示すことができる。
Hereinafter, an embodiment of the present invention will be described.
Preferably, an aluminum material having a purity of 99.9% or more and prepared to be a component of the present invention can be obtained by a conventional method, and the production method is not particularly limited as the present invention. For example, a hot-rolled slab obtained by semi-continuous casting can be used. In addition, an aluminum material obtained by continuous casting may be used. Misch metal can also be used when REM is contained. For example, a sheet material having a thickness of about several mm is formed by the hot rolling or continuous casting rolling. This sheet material is cold-rolled to obtain an aluminum alloy foil of about several tens of μm to 100 μm. In addition, at least one intermediate annealing is performed in the middle of cold rolling. As the present invention, the conditions for the intermediate annealing are not particularly limited. For example, the treatment in a batch furnace at 200 to 270 ° C. for 1 to 6 hours, or 250 to 300 ° C. for 30 seconds to 10 minutes. Processing in a continuous furnace can be shown.
最終冷間圧延後には、好適には前段で300〜450℃×2〜6時間、後段で530〜600℃×4〜10時間に加熱する最終焼鈍熱処理を行う。なお、好適には、前段の加熱後、冷却することなく昇温させて連続して後段の加熱を行う。 After the final cold rolling, a final annealing heat treatment is preferably performed in which heating is performed at 300 to 450 ° C. for 2 to 6 hours in the former stage and 530 to 600 ° C. for 4 to 10 hours at the latter stage. Preferably, after the former stage heating, the subsequent stage heating is performed by raising the temperature without cooling.
上記各工程を経て得られたアルミニウム箔には、その後、エッチング処理がなされる。エッチング処理は、塩酸を主体とする電解液を用いた電解エッチングによって行われる。本発明としてはこのエッチング処理の具体的条件等について特に限定されるものではなく、常法に従って行うことができるが、主として直流エッチングが適用される。
エッチング処理においては、前記成分の設定によって箔にピットが高密度で形成され、高い粗面化率が得られるとともに、無効溶解が抑制される。この箔を常法により電解コンデンサに電極として組み込むことにより静電容量の高いコンデンサが得られる。
The aluminum foil obtained through the above steps is then subjected to an etching process. The etching process is performed by electrolytic etching using an electrolytic solution mainly composed of hydrochloric acid. The present invention is not particularly limited with respect to specific conditions and the like of this etching treatment, and can be performed according to a conventional method, but DC etching is mainly applied.
In the etching process, pits are formed at a high density on the foil by setting the above components, and a high roughening rate is obtained and ineffective dissolution is suppressed. A capacitor having a high capacitance can be obtained by incorporating this foil as an electrode in an electrolytic capacitor by a conventional method.
本発明は中高圧電解コンデンサの陽極として使用するのが好適であるが、本発明としてはこれに限定されるものではなく、より化成電圧の低いコンデンサ用としても使用することができ、また電解コンデンサの陰極用の材料として使用することもできる。 The present invention is preferably used as an anode of a medium-high voltage electrolytic capacitor. However, the present invention is not limited to this, and can be used for a capacitor having a lower formation voltage. It can also be used as a cathode material.
以下に、本発明の実施例を比較例と比較しつつ説明する。
表1に示す組成を有するアルミニウム材料を溶製し、熱間圧延、冷間圧延を経てアルミニウム箔を製造した。なお、冷間圧延の途中では、250℃×4時間の中間焼鈍を行い、中間焼鈍後の最終冷間圧延率を変えて同一厚さの最終厚(110μm厚)とした。
これらのアルミニウム箔に表1に示す条件で最終焼鈍を施した。さらに全ての高純度アルミニウム箔に対し、以下の条件でエッチングを行いアルミニウム箔を粗面化した。
Examples of the present invention will be described below in comparison with comparative examples.
An aluminum material having the composition shown in Table 1 was melted, and an aluminum foil was manufactured through hot rolling and cold rolling. In the middle of cold rolling, intermediate annealing at 250 ° C. × 4 hours was performed, and the final cold rolling rate after the intermediate annealing was changed to a final thickness (110 μm thickness) of the same thickness.
These aluminum foils were subjected to final annealing under the conditions shown in Table 1. Further, all high-purity aluminum foils were etched under the following conditions to roughen the aluminum foil.
(直流エッチング)
75℃HCl 1M、H2SO4 3M溶液中で200mA/cm2の直流電流を120秒印加後、80℃HCl 2M溶液中で50mA/cm2の直流電流を600秒印加した。
(DC etching)
A direct current of 200 mA / cm 2 was applied for 120 seconds in a 75 ° C. HCl 1M and H 2 SO 4 3M solution, and then a 50 mA / cm 2 direct current was applied for 600 seconds in an 80 ° C. HCl 2M solution.
(静電容量測定)
上記エッチング箔を1×5cmのサイズに切り出し、80℃ホウ酸80g/l溶液にて300Vの化成を行い、150g/lアジピン酸溶液中にて容量を測定した。
上記で測定した静電容量は、比較例19(現行標準材)を基準にして百分率で相対評価した。これらの評価結果を表2に示した。
(Capacitance measurement)
The etching foil was cut into a size of 1 × 5 cm, formed at 300 ° C. with an 80 ° C. boric acid 80 g / l solution, and the capacity was measured in a 150 g / l adipic acid solution.
The electrostatic capacity measured above was relatively evaluated as a percentage based on Comparative Example 19 (current standard material). The evaluation results are shown in Table 2.
また、各供試材について、表面から0.5μm以上の深さの内部について、Al−Fe−REM析出物およびAl−Fe−Si−REM析出物の析出物量を熱フェノールによる溶解抽出法によって測定し、Fe平均含有量に対する前記析出物中のFe含有量の比を求めた。
上記静電容量およびFeの質量比の結果を表2に示した。
Moreover, about each test material, about the inside of the depth of 0.5 micrometer or more from the surface, the amount of deposits of the Al-Fe-REM deposit and the Al-Fe-Si-REM deposit was measured by the solution extraction method with hot phenol. Then, the ratio of the Fe content in the precipitate to the average Fe content was determined.
The results of the capacitance and the mass ratio of Fe are shown in Table 2.
表2から明らかなように、本発明の実施例は、いずれも優れた静電容量を示している。
これに対し、本発明の成分範囲を外れた比較例では良好な静電容量が得られなかった。
また、比較例のうち、比較法で製造したものは、析出物に関する本発明の要件を満たすことができず、いずれも静電容量は本発明に比べて劣っていた。
As is apparent from Table 2, all of the examples of the present invention exhibit excellent capacitance.
On the other hand, in the comparative example out of the component range of the present invention, good electrostatic capacity could not be obtained.
In addition, among the comparative examples, those produced by the comparative method could not satisfy the requirements of the present invention regarding the precipitates, and the electrostatic capacity was inferior to that of the present invention.
Claims (2)
Si:5ppm以上100ppm以下、
Fe:5ppm以上100ppm以下、
Cu:10ppm以上100ppm以下、
Pb:0.1ppm以上5ppm以下、
希土類元素:1ppm以上50ppm以下を含有し、残部がAlと不可避不純物とからなり、表面から0.5μm以上の深さの内部においてAl−Fe−REM析出物およびAl−Fe−Si−REM析出物として存在するFe量が、質量比でFe平均含有量に対して20%以上60%以下の範囲であることを特徴とする電解コンデンサ陽極用アルミニウム箔。 By mass ratio,
Si: 5 ppm or more and 100 ppm or less,
Fe: 5 ppm or more and 100 ppm or less,
Cu: 10 ppm or more and 100 ppm or less,
Pb: 0.1 ppm or more and 5 ppm or less,
Rare earth element: 1 ppm or more and 50 ppm or less, with the balance being Al and inevitable impurities, Al—Fe—REM precipitate and Al—Fe—Si—REM precipitate inside 0.5 μm or more depth from the surface An aluminum foil for an electrolytic capacitor anode, wherein the amount of Fe present as a mass ratio is in the range of 20% to 60% with respect to the average Fe content.
Si:5ppm以上100ppm以下、
Fe:5ppm以上100ppm以下、
Cu:10ppm以上100ppm以下、
Pb:0.1ppm以上5ppm以下、
希土類元素:1ppm以上50ppm以下を含有し、残部がAlと不可避不純物とからなる組成の電解コンデンサ陽極用アルミニウム箔を製造する方法であって、冷間圧延時の最終冷間圧延率が15%以上25%以下であり、かつ最終焼鈍として、300℃〜450℃で2〜6時間保持した後、さらに530℃〜600℃で4〜10時間保持することを特徴とする電解コンデンサ陽極用アルミニウム箔の製造方法。 By mass ratio,
Si: 5 ppm or more and 100 ppm or less,
Fe: 5 ppm or more and 100 ppm or less,
Cu: 10 ppm or more and 100 ppm or less,
Pb: 0.1 ppm or more and 5 ppm or less,
A method for producing an aluminum foil for an electrolytic capacitor anode having a composition containing rare earth elements: 1 ppm or more and 50 ppm or less, the balance being Al and inevitable impurities, the final cold rolling rate during cold rolling being 15% or more An aluminum foil for electrolytic capacitor anodes, characterized in that it is 25% or less and, as final annealing, held at 300 ° C. to 450 ° C. for 2 to 6 hours and further held at 530 ° C. to 600 ° C. for 4 to 10 hours. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004343694A JP4539911B2 (en) | 2004-11-29 | 2004-11-29 | Aluminum foil for electrode capacitor anode and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004343694A JP4539911B2 (en) | 2004-11-29 | 2004-11-29 | Aluminum foil for electrode capacitor anode and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006152363A JP2006152363A (en) | 2006-06-15 |
JP4539911B2 true JP4539911B2 (en) | 2010-09-08 |
Family
ID=36631001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004343694A Expired - Fee Related JP4539911B2 (en) | 2004-11-29 | 2004-11-29 | Aluminum foil for electrode capacitor anode and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4539911B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6374196B2 (en) * | 2014-03-27 | 2018-08-15 | 三菱アルミニウム株式会社 | Aluminum foil for electrolytic capacitor and manufacturing method thereof |
CN105908021B (en) * | 2016-05-18 | 2017-08-25 | 登电集团铝加工有限公司 | A kind of capacitor fine aluminium Cathode Foil and its manufacture method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57162322A (en) * | 1981-03-30 | 1982-10-06 | Showa Aluminium Co Ltd | Aluminum alloy foil for electrolytic condenser electrode |
JPH10189396A (en) * | 1996-12-26 | 1998-07-21 | Nippon Light Metal Co Ltd | Aluminum alloy for electrolytic capacitor anode |
JP2003277863A (en) * | 2002-03-27 | 2003-10-02 | Kyushu Mitsui Alum Kogyo Kk | Aluminum alloy for anode foil for electrolytic capacitor |
-
2004
- 2004-11-29 JP JP2004343694A patent/JP4539911B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57162322A (en) * | 1981-03-30 | 1982-10-06 | Showa Aluminium Co Ltd | Aluminum alloy foil for electrolytic condenser electrode |
JPH10189396A (en) * | 1996-12-26 | 1998-07-21 | Nippon Light Metal Co Ltd | Aluminum alloy for electrolytic capacitor anode |
JP2003277863A (en) * | 2002-03-27 | 2003-10-02 | Kyushu Mitsui Alum Kogyo Kk | Aluminum alloy for anode foil for electrolytic capacitor |
Also Published As
Publication number | Publication date |
---|---|
JP2006152363A (en) | 2006-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013124402A (en) | Aluminum foil for electrolytic capacitor, and method for producing the same | |
JP4198584B2 (en) | Aluminum foil for electrolytic capacitor and manufacturing method thereof | |
JP2009249668A (en) | Aluminum foil for electrolytic capacitor, and method for producing the same | |
JP4237236B2 (en) | Aluminum foil for electrolytic capacitor and manufacturing method thereof | |
JPH10189396A (en) | Aluminum alloy for electrolytic capacitor anode | |
JP4021923B1 (en) | Aluminum foil for electrolytic capacitor electrode and manufacturing method thereof | |
JP4539911B2 (en) | Aluminum foil for electrode capacitor anode and manufacturing method thereof | |
JP4071232B2 (en) | Aluminum foil for electrolytic capacitors | |
JP4650887B2 (en) | Aluminum foil for electrolytic capacitors | |
JP6619173B2 (en) | Aluminum foil for electrolytic capacitors | |
JP4874039B2 (en) | Aluminum alloy foil for electrolytic capacitor cathode and alloy foil used therefor | |
JP2005206883A (en) | Aluminum foil for electrolytic capacitor and manufacturing method therefor | |
JP4539912B2 (en) | Aluminum foil for electrolytic capacitor anode and manufacturing method thereof | |
JP2004076059A (en) | Aluminum alloy foil for cathode of electrolytic capacitor, and manufacturing method therefor | |
JP3920306B1 (en) | Aluminum foil for electrolytic capacitors | |
JP2007169690A (en) | Aluminum foil for electrolytic capacitor | |
JP6752110B2 (en) | Manufacturing method of aluminum foil for electrolytic capacitors, aluminum foil for electrolytic capacitors, and electrodes for electrolytic capacitors | |
JP4021922B1 (en) | Method for producing aluminum foil for electrolytic capacitor electrode | |
JP4827103B2 (en) | Method for producing aluminum foil for electrolytic capacitor electrode | |
JP4071233B2 (en) | Aluminum foil for electrolytic capacitors | |
JP2010013714A (en) | Aluminum foil for electrolytic capacitor electrode | |
JP4958464B2 (en) | Aluminum foil for electrolytic capacitor electrode | |
JP3244131B2 (en) | Aluminum alloy foil for electrolytic capacitor electrode and method for producing the same | |
JP2009270138A (en) | Aluminum foil for electrolytic capacitor | |
JP4793827B2 (en) | Aluminum foil for electrolytic capacitor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100616 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100616 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4539911 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130702 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |