JP2009249668A - Aluminum foil for electrolytic capacitor, and method for producing the same - Google Patents

Aluminum foil for electrolytic capacitor, and method for producing the same Download PDF

Info

Publication number
JP2009249668A
JP2009249668A JP2008097315A JP2008097315A JP2009249668A JP 2009249668 A JP2009249668 A JP 2009249668A JP 2008097315 A JP2008097315 A JP 2008097315A JP 2008097315 A JP2008097315 A JP 2008097315A JP 2009249668 A JP2009249668 A JP 2009249668A
Authority
JP
Japan
Prior art keywords
ppm
aluminum foil
annealing
producing
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008097315A
Other languages
Japanese (ja)
Inventor
Akira Yoshii
章 吉井
Hideo Watanabe
英雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2008097315A priority Critical patent/JP2009249668A/en
Publication of JP2009249668A publication Critical patent/JP2009249668A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To enhance a roughening ratio when an aluminum foil for an electrolytic capacitor is etched. <P>SOLUTION: The aluminum foil having a composition, which contains, by mass, 10 to 30 ppm Si, 10 to 30 ppm Fe, 20 to 80 ppm Cu, 0.6 to 1.5% Pb, one or more selected from Zr, V, Mn, Zn, Ga and Na by 10 to 50 ppm in total and 0.1 to 10 ppm REM, and the balance ≥99.9% Al with inevitable impurities, and has the thickness of 100 to <125 μm, is subjected to final annealing at ≥500°C for ≥6 hr in an inert gas or a reducing gas or a mixed gas atmosphere thereof. Upon etching, pits are effectively and uniformly formed, and a roughening ratio can be improved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、電解コンデンサの電極に用いられる電解コンデンサ用アルミニウム箔およびその製造方法に関するものである。   The present invention relates to an electrolytic capacitor aluminum foil used for an electrode of an electrolytic capacitor and a method of manufacturing the same.

電解コンデンサ用アルミニウム箔の内、中高圧用箔は直流電解を行いピット状の穴を表層に無数に開け、表面積を拡大(粗面化)して使用されている。エッチングピットを均一に発生させるため、冷間圧延後に最終焼鈍を行って立方体方位占有率が95%以上の箔が用いられている。更に、ピットの発生効率を高めるため、添加元素について様々な提案がされている。(例えば特許文献1、2参照)
特開2006−152394号公報 特開2006−152402号公報
Among the aluminum foils for electrolytic capacitors, the medium and high pressure foils are used by subjecting them to direct current electrolysis and opening countless holes in the surface layer to enlarge (roughen) the surface area. In order to uniformly generate etching pits, a foil having a cube orientation occupation ratio of 95% or more by performing final annealing after cold rolling is used. Furthermore, various proposals have been made regarding the additive elements in order to increase the generation efficiency of pits. (For example, see Patent Documents 1 and 2)
JP 2006-152394 A JP 2006-152402 A

しかし、上記特許文献1、2のような微量の元素を添加しても粗面化率の向上は十分ではないのが現状である。
エッチングピットを効率よく発生させるためには、アルミニウム箔表面の特性が重要になる。特に表面酸化皮膜の制御、焼鈍時に表面濃縮する元素の制御は重要な項目である。
中高圧用箔は立方体方位占有率が95%以上の箔を用いるため、その製造工程において500℃以上の高温熱処理が必要になる。この熱処理により、アルミニウム箔中の微粒元素は表面濃縮することが知られている。しかし、本願発明者らは、元素により表面濃縮する度合いが異なるという知見から、目的に応じた元素を適度に配合することで、優れたエッチング性を得ることができることを見出し、本発明を完成するに至ったものである。
However, the present situation is that the roughening rate is not sufficiently improved even if a trace amount of elements as in Patent Documents 1 and 2 is added.
In order to efficiently generate etching pits, the characteristics of the aluminum foil surface are important. In particular, control of the surface oxide film and control of the elements concentrated on the surface during annealing are important items.
The medium-high pressure foil uses a foil having a cubic orientation occupation ratio of 95% or more, and therefore requires high-temperature heat treatment at 500 ° C. or higher in the production process. It is known that the fine elements in the aluminum foil are concentrated on the surface by this heat treatment. However, the inventors of the present application have found that excellent etching properties can be obtained by appropriately blending elements according to the purpose from the knowledge that the degree of surface concentration differs depending on the element, and the present invention is completed. Has been reached.

すなわち、本発明は、上記事情を背景としてなされたものであり、焼鈍時に表面濃縮する元素の配合比により、エッチングピットの発生を効率よく、かつ均一にできる電解コンデンサ用アルミニウム箔およびその製造方法を提供することを目的とする。   That is, the present invention was made against the background of the above circumstances, and an aluminum foil for electrolytic capacitors that can efficiently and uniformly generate etching pits by the compounding ratio of elements concentrated on the surface during annealing, and a method for manufacturing the same. The purpose is to provide.

本発明の電解コンデンサ用アルミニウム箔は、質量比で、Si10〜30ppm、Fe10〜30ppm、Cu20〜80ppm、Pb0.6〜1.5ppm、(Zr、V、Mn、Zn、Ga、Na)のうち一種又は二種以上合計で10〜50ppm、REM0.1〜10ppmを含有し、残部が不可避不純物と99.9%以上のAlからなる組成を有し、厚さ100μm以上、125μm未満であることを特徴とする。   The aluminum foil for electrolytic capacitors of the present invention is one of Si 10-30 ppm, Fe 10-30 ppm, Cu 20-80 ppm, Pb 0.6-1.5 ppm, (Zr, V, Mn, Zn, Ga, Na) by mass ratio. Or it contains 10-50 ppm in total of 2 or more types, REM 0.1-10 ppm, the remainder has a composition consisting of inevitable impurities and 99.9% or more of Al, and has a thickness of 100 μm or more and less than 125 μm And

第2の本発明の電解コンデンサ用アルミニウム箔は、前記第1の本発明の電解コンデンサ用アルミニウム箔において、アルミニウム箔の酸化皮膜厚さが20〜100Åであることを特徴とする。   The aluminum foil for electrolytic capacitors of the second aspect of the invention is characterized in that, in the aluminum foil for electrolytic capacitors of the first aspect of the invention, the oxide film thickness of the aluminum foil is 20 to 100 mm.

第3の本発明の電解コンデンサ用アルミニウム箔の製造方法は、質量比で、Si10〜30ppm、Fe10〜30ppm、Cu20〜80ppm、Pb0.6〜1.5ppm、(Zr、V、Mn、Zn、Ga、Na)のうち一種又は二種以上合計で10〜50ppm、REM0.1〜10ppmを含有し、残部が不可避不純物と99.9%以上のAlからなる組成を有し、厚さ100μm以上、125μm未満のアルミニウム箔を、不活性ガスまたは還元性ガスもしくはこれらの混合ガス雰囲気で500℃以上、6時間以上の最終焼鈍を行うことを特徴とする   The manufacturing method of the aluminum foil for electrolytic capacitors of 3rd this invention is mass ratio, Si10-30ppm, Fe10-30ppm, Cu20-80ppm, Pb0.6-1.5ppm, (Zr, V, Mn, Zn, Ga , Na) in a total of 10 to 50 ppm and REM 0.1 to 10 ppm, with the balance being inevitable impurities and 99.9% or more of Al, with a thickness of 100 μm or more and 125 μm Less than aluminum foil is subjected to final annealing at 500 ° C. or more for 6 hours or more in an atmosphere of an inert gas, a reducing gas or a mixed gas thereof.

第4の本発明の電解コンデンサ用アルミニウム箔の製造方法は、前記第3の本発明の電解コンデンサ用アルミニウム箔の製造方法において、前記最終焼鈍時の昇温速度が30〜100℃/Hrであることを特徴とする。   The method for producing an aluminum foil for electrolytic capacitors according to a fourth aspect of the present invention is the method for producing an aluminum foil for electrolytic capacitors according to the third aspect of the present invention, wherein the rate of temperature increase during the final annealing is 30 to 100 ° C./Hr. It is characterized by that.

第5の本発明の電解コンデンサ用アルミニウム箔の製造方法は、前記第3または第4の本発明の電解コンデンサ用アルミニウム箔の製造方法において、前記アルミニウム箔を製造する冷間圧延途中で、200〜280℃、2〜10時間の中間焼鈍を行うことを特徴とする。   The manufacturing method of the aluminum foil for electrolytic capacitors of 5th this invention WHEREIN: In the manufacturing method of the aluminum foil for electrolytic capacitors of the said 3rd or 4th invention, in the middle of the cold rolling which manufactures the said aluminum foil, 200- It is characterized by performing intermediate annealing at 280 ° C. for 2 to 10 hours.

以下に、本発明で規定するアルミニウム箔の組成および製造条件について説明する。   Below, the composition and manufacturing conditions of the aluminum foil prescribed | regulated by this invention are demonstrated.

アルミニウム純度:99.9%以上
アルミニウム箔の純度が99.9%未満の場合、立方晶率が低下するため望ましくない。 不可避不純物としては地金特有の成分が含まれる。三層地金、偏析地金を用いようとも、Si、Fe、Cu、Pb、Zr、V、Mn、Zn、Ga、Naを調整後のアルミニウム純度として99.9%以上が確保されれば問題はない。
Aluminum purity: 99.9% or more When the purity of the aluminum foil is less than 99.9%, the cubic ratio is lowered, which is not desirable. Inevitable impurities include components specific to bullion. Even if three-layer metal or segregated metal is used, there is a problem if 99.9% or more is secured as aluminum purity after adjusting Si, Fe, Cu, Pb, Zr, V, Mn, Zn, Ga, and Na. There is no.

Si:10〜30ppm
Fe:10〜30ppm
Si、Feが10ppm未満の場合、精製コストが増加するため、工業的には望ましくない。一方、Si、Feが30ppm超の場合立方晶率が低下するため望ましくない。好適には10〜20ppmである。
Si: 10-30 ppm
Fe: 10-30ppm
When Si and Fe are less than 10 ppm, the purification cost increases, which is undesirable industrially. On the other hand, when Si and Fe are more than 30 ppm, the cubic rate decreases, which is not desirable. It is preferably 10 to 20 ppm.

Cu:20〜80ppm
Pb:0.6〜1.5ppm
Cu、Pbはアルミニウム箔の溶解性を決定する重要な成分である。Cuはエッチングピット個数の増加に効果があり、Pbは表面酸化皮膜の脆化によるエッチングピットの分散性向上に効果がある。両成分が適切なバランスを保つことにより、良好なエッチングピット分散状態を保ちながらエッチングピット個数を増加させることができるため高い静電容量が得られる。
Cu: 20-80 ppm
Pb: 0.6 to 1.5 ppm
Cu and Pb are important components that determine the solubility of the aluminum foil. Cu is effective in increasing the number of etching pits, and Pb is effective in improving dispersibility of etching pits due to embrittlement of the surface oxide film. By maintaining an appropriate balance between the two components, the number of etching pits can be increased while maintaining a good dispersed state of etching pits, so that a high capacitance can be obtained.

Cu20ppm未満の場合、エッチングピットの個数が低下し好ましくない。80ppmを超えると、立方晶率が低下するため好ましくない。このため、Cu含有量を上記範囲に定める。望ましくは下限45ppm、上限70ppmである。
また、Pb0.6ppm未満の場合、分散性が低下するため、エッチングピットの合体が生じ、静電容量が低下する。一方、Pbが1.5ppmを超えると、過剰に箔表面が溶解するため、静電容量が低下する。このため、Pb含有量を上記範囲に定める。望ましくは下限0.8ppm、上限1.2ppmである。
If the Cu content is less than 20 ppm, the number of etching pits decreases, which is not preferable. If it exceeds 80 ppm, the cubic rate decreases, which is not preferable. For this reason, Cu content is defined to the said range. Desirably, the lower limit is 45 ppm and the upper limit is 70 ppm.
Further, when Pb is less than 0.6 ppm, the dispersibility is lowered, so that etching pits are coalesced and the electrostatic capacity is lowered. On the other hand, when Pb exceeds 1.5 ppm, the foil surface is excessively dissolved, so that the capacitance decreases. For this reason, Pb content is defined to the said range. Desirably, the lower limit is 0.8 ppm and the upper limit is 1.2 ppm.

(Zr、V、Mn、Zn、Ga、Na)のうち一種又は二種以上合計で10〜50ppm
Zr、V、Mn、Zn、Ga、Naはいずれもエッチングピットの増加、分散性の向上に寄与する元素であり、一種以上を含有させる。ただし、合計量が10ppm未満の場合その効果が得られず好ましくない。一方、合計量が50ppmを超える場合、箔の過剰溶解により静電容量が低下する。このため、上記成分の合計含有量を上記範囲に定める。望ましくは下限20ppm、上限45ppmである。
(Zr, V, Mn, Zn, Ga, Na) of one or two or more in total 10 to 50 ppm
Zr, V, Mn, Zn, Ga, and Na are all elements that contribute to an increase in etching pits and an improvement in dispersibility, and contain one or more. However, when the total amount is less than 10 ppm, the effect cannot be obtained, which is not preferable. On the other hand, when the total amount exceeds 50 ppm, the capacitance decreases due to excessive dissolution of the foil. For this reason, the total content of the above components is set within the above range. Desirably, the lower limit is 20 ppm and the upper limit is 45 ppm.

REM:0.1〜10ppm
REMはFeの析出を促進し、バルクのアルミニウム純度を上げることで立方晶率を高める元素である。ただし、0.1ppm未満ではその効果がなく、10ppmを超えると粗大晶が発生するため好ましくない。このため、REMの含有量を上記範囲に定める。望ましくは下限1ppm、上限7ppmである。なお、REMは、La、Ce、Pr、Nd、等の単独、または二種以上の混合でもよく、さらにミッシュメタルの形態で添加されるものであってもよい。
REM: 0.1 to 10 ppm
REM is an element that promotes the precipitation of Fe and increases the bulk aluminum purity to increase the cubic rate. However, if it is less than 0.1 ppm, the effect is not obtained, and if it exceeds 10 ppm, coarse crystals are generated, which is not preferable. For this reason, the content of REM is determined within the above range. Desirably, the lower limit is 1 ppm and the upper limit is 7 ppm. Note that REM may be La, Ce, Pr, Nd, or the like alone, or a mixture of two or more thereof, and may be added in the form of misch metal.

箔厚100μm以上125μm未満
アルミニウム箔は、厚さ100μm以上、125μm未満のものに限定される。箔厚が100μm未満の場合、立方晶率が低下し好ましくない。一方、箔厚が125μm以上の場合、粗大晶が発生し局部的な特性が大きく低下する。このためアルミニウム箔の厚さを上記に定める。好ましくは下限110μm、上限120μmである。
The foil thickness is 100 μm or more and less than 125 μm. The aluminum foil is limited to a thickness of 100 μm or more and less than 125 μm. When the foil thickness is less than 100 μm, the cubic crystal ratio is lowered, which is not preferable. On the other hand, when the foil thickness is 125 μm or more, coarse crystals are generated and local characteristics are greatly deteriorated. For this reason, the thickness of the aluminum foil is determined as described above. Preferably, the lower limit is 110 μm and the upper limit is 120 μm.

最終焼鈍時の昇温速度:30〜100℃/Hr
昇温速度は元素の移動、酸化皮膜の成長を制御する因子である。昇温速度が30℃/Hr未満の場合、焼鈍時間が長くなり工業的に好ましくない。100℃/Hrを超える場合、十分な表面濃縮が行えず、好ましい特性が得られない。このため、望ましくは、最終焼鈍時の昇温速度を上記範囲に定める。より望ましくは、下限40℃/Hr、上限80℃/Hrである。
Temperature increase rate during final annealing: 30 to 100 ° C./Hr
The rate of temperature rise is a factor that controls element movement and oxide film growth. When the rate of temperature increase is less than 30 ° C./Hr, the annealing time becomes long, which is not industrially preferable. When it exceeds 100 ° C./Hr, sufficient surface concentration cannot be performed, and preferable characteristics cannot be obtained. For this reason, desirably, the rate of temperature increase during the final annealing is set in the above range. More desirably, the lower limit is 40 ° C./Hr and the upper limit is 80 ° C./Hr.

表面酸化皮膜厚さ:20〜100Å
焼鈍後の表面酸化皮膜は20〜100Åに制御するのが望ましい。20Å未満の場合、箔の耐食性が低下し、焼鈍された箔の保存性が悪くなり、表面酸化等の異常原因となる。一方、100Åを超える場合、エッチングの際、均一性が低下し、容量低下原因となる。このため、焼鈍後の表面酸化皮膜厚さは上記範囲とするのが望ましい。より望ましくは下限40Å、上限60Åである。
Surface oxide film thickness: 20-100mm
It is desirable to control the surface oxide film after annealing to 20 to 100 mm. When the thickness is less than 20%, the corrosion resistance of the foil is lowered, the storage stability of the annealed foil is deteriorated, and abnormal causes such as surface oxidation are caused. On the other hand, when the thickness exceeds 100%, uniformity is reduced during etching, which causes a reduction in capacity. For this reason, it is desirable that the surface oxide film thickness after annealing be in the above range. More desirably, the lower limit is 40 mm and the upper limit is 60 mm.

焼鈍雰囲気
焼鈍速度、酸化皮膜厚さを適切な範囲とするためには、焼鈍時の雰囲気を適切に選定する必要がある。
真空焼鈍では、焼鈍時の熱伝導が著しく悪くなるため、昇温速度が低下する。更に、箔表層の酸化皮膜が薄くなるため好ましくない。大気焼鈍の場合、箔表層の酸化皮膜が厚くなり、エッチング性が低下するため好ましくない。Ar、N等不活性ガス雰囲気の場合、露点、酸素分圧を制御することで、適度な酸化皮膜を形成することができるが、焼鈍速度を所定範囲とするためには、焼鈍するアルミニウム箔の形状、数量等検討する必要がある。工業的に、コイル状のアルミ箔をTon単位で焼鈍を行う場合、水素ガスで行うことが望ましい。熱伝導率が高いため、十分な焼鈍速度が得られると共に、還元性雰囲気であるため、酸化皮膜の成長も抑制できるためである。しかし、還元性ガスにおいても適切な条件を選定することで、焼鈍速度、酸化皮膜厚さの目標は達成できるため、排除するものではない。雰囲気は、還元性ガスと不活性ガスとが混合されたものであってもよい。真空焼鈍、大気焼鈍では、焼鈍速度、酸化皮膜厚さの目標を達成することはできない。
Annealing atmosphere In order to set the annealing speed and oxide film thickness within appropriate ranges, it is necessary to appropriately select the atmosphere during annealing.
In vacuum annealing, the heat conduction during annealing is significantly deteriorated, so that the rate of temperature rise is reduced. Furthermore, since the oxide film on the foil surface layer becomes thin, it is not preferable. In the case of atmospheric annealing, the oxide film on the foil surface layer becomes thick and the etching property is lowered, which is not preferable. In the case of an inert gas atmosphere such as Ar and N 2 , an appropriate oxide film can be formed by controlling the dew point and the oxygen partial pressure, but in order to set the annealing rate within a predetermined range, the aluminum foil to be annealed It is necessary to consider the shape, quantity, etc. Industrially, when annealing a coiled aluminum foil in units of Ton, it is desirable to perform with hydrogen gas. This is because the thermal conductivity is high, so that a sufficient annealing rate can be obtained, and since it is a reducing atmosphere, the growth of the oxide film can also be suppressed. However, by selecting appropriate conditions for the reducing gas, the targets of the annealing rate and the oxide film thickness can be achieved, and thus are not excluded. The atmosphere may be a mixture of a reducing gas and an inert gas. In vacuum annealing and atmospheric annealing, the target of annealing speed and oxide film thickness cannot be achieved.

最終焼鈍:500℃以上、6時間以上
最終焼鈍温度が500℃未満または焼鈍時間が6時間未満であると、アルミニウム箔の立方晶率を95%以上とするのが難しく、また、添加元素の表面への濃縮が十分になされない。このため、最終焼鈍は500℃以上、6時間以上とすることが好ましい。
Final annealing: 500 ° C. or more, 6 hours or more If the final annealing temperature is less than 500 ° C. or the annealing time is less than 6 hours, it is difficult to make the cubic rate of the aluminum foil 95% or more, and the surface of the additive element Is not fully concentrated. For this reason, it is preferable that final annealing shall be 500 degreeC or more and 6 hours or more.

中間焼鈍:200〜280℃、2〜10時間
アルミニウム箔を製造する冷間圧延工程の中途に中間焼鈍を行うことができる。
この中間焼鈍によって、立方晶の生成を促進させる事ができる。
但し、中間焼鈍温度が200℃未満または中間焼鈍時間が2時間未満であると、立方晶の生成が不十分の為、最終焼鈍後の立方晶率が低下する。一方、中間焼鈍温度が280℃を超え、または中間焼鈍時間が10時間を超えると立方晶以外の結晶粒が生成する為、最終焼鈍後の立方晶率が低下する。
Intermediate annealing: 200 to 280 ° C., 2 to 10 hours Intermediate annealing can be performed in the middle of the cold rolling process for producing the aluminum foil.
This intermediate annealing can promote the formation of cubic crystals.
However, if the intermediate annealing temperature is less than 200 ° C. or the intermediate annealing time is less than 2 hours, the formation of cubic crystals is insufficient, and the cubic crystal ratio after the final annealing is lowered. On the other hand, when the intermediate annealing temperature exceeds 280 ° C. or the intermediate annealing time exceeds 10 hours, crystal grains other than cubic crystals are generated, so that the cubic crystal ratio after the final annealing is lowered.

以上説明したように、本発明の電解コンデンサ用アルミニウム箔の製造方法によれば、質量比で、Si10〜30ppm、Fe10〜30ppm、Cu20〜80ppm、Pb0.6〜1.5ppm、(Zr、V、Mn、Zn、Ga、Na)のうち一種又は二種以上合計で10〜50ppm、REM0.1〜10ppmを含有し、残部が不可避不純物と99.9%以上のAlからなる組成を有し、厚さ100μm以上、125μm未満のアルミニウム箔を、不活性ガスまたは還元性ガスもしくはこれらの混合ガス雰囲気で500℃以上、6時間以上の最終焼鈍を行うので、エッチングに際し、ピットを効果的かつ均一に生成して粗面化率を向上させることができる。   As described above, according to the method for producing an aluminum foil for electrolytic capacitors of the present invention, by mass ratio, Si 10 to 30 ppm, Fe 10 to 30 ppm, Cu 20 to 80 ppm, Pb 0.6 to 1.5 ppm, (Zr, V, Mn, Zn, Ga, Na) are contained in a total of 10 to 50 ppm, REM 0.1 to 10 ppm, with the balance being composed of inevitable impurities and 99.9% or more of Al. Aluminum foil with a thickness of 100 μm or more and less than 125 μm is subjected to final annealing at 500 ° C. or more for 6 hours or more in an atmosphere of inert gas, reducing gas or mixed gas thereof, so that pits are generated effectively and uniformly during etching. Thus, the roughening rate can be improved.

以下に、本発明の一実施形態を説明する。
純度99.9%以上で本発明の成分となるように調製された高純度アルミニウム材を用意する。該アルミニウム材は、好適には純度99.95%以上とする。該アルミニウム材は常法により得ることができ、本発明としては特にその製造方法が限定されるものではない。例えば、半連続鋳造によって得たスラブを熱間圧延したものを用いることができ、その他に連続鋳造により得られる高純度アルミニウム材を用いるものであってもよい。上記熱間圧延または連続鋳造圧延によって例えば数mm厚程度のシート材とする。このシート材に対し冷間圧延を行い、100μmから125μm未満の厚さを有するアルミニウム合金箔を得る。なお、冷間圧延途中あるいは冷間圧延終了後に適宜脱脂を加えてもよく、また冷間圧延の途中で適宜、200〜280℃、2〜10時間の中間焼鈍を加えても差し支えない。
Hereinafter, an embodiment of the present invention will be described.
A high-purity aluminum material prepared to be a component of the present invention with a purity of 99.9% or more is prepared. The aluminum material preferably has a purity of 99.95% or more. The aluminum material can be obtained by a conventional method, and the production method is not particularly limited in the present invention. For example, a hot-rolled slab obtained by semi-continuous casting can be used, and a high-purity aluminum material obtained by continuous casting can also be used. For example, a sheet material having a thickness of about several mm is formed by the hot rolling or continuous casting rolling. This sheet material is cold-rolled to obtain an aluminum alloy foil having a thickness of 100 μm to less than 125 μm. In addition, degreasing may be appropriately added during the cold rolling or after the end of the cold rolling, and intermediate annealing at 200 to 280 ° C. for 2 to 10 hours may be appropriately added during the cold rolling.

最終冷間圧延後には、最終焼鈍熱処理を行う。最終焼鈍の加熱条件は、前記した添加元素を濃縮させるとともに、95%以上の立方晶率を得るために重要であり、Hなどを用いた還元性雰囲気または、Ar、N等の不活性雰囲気もしくはこれらの混合ガス雰囲気中で、少なくとも300〜450℃の間で30〜100℃/時間の昇温速度によって加熱をし、500℃以上で6時間以上加熱することで平均厚さで20〜100Åの酸化皮膜を有するアルミニウム合金箔を得る。
還元性雰囲気では、Hなどの還元性ガスに不活性ガスや微量の酸素などを混合した混合ガスを用いることも可能である。立方晶率は95%以上が好ましい。上記焼鈍によって前記添加元素が表層部に濃縮する。なお、焼鈍を真空下で行うと、表面に酸化皮膜が適切に形成されずエッチング時に良好なエッチングが困難になる。
After the final cold rolling, a final annealing heat treatment is performed. The heating conditions for the final annealing are important for concentrating the above-described additive elements and obtaining a cubic crystal ratio of 95% or more, and a reducing atmosphere using H 2 or the like, or inert such as Ar or N 2 In an atmosphere or a mixed gas atmosphere thereof, heating is performed at a temperature rising rate of at least 30 to 100 ° C./hour between 300 to 450 ° C., and heating is performed at 500 ° C. or more for 6 hours or more to obtain an average thickness of 20 to An aluminum alloy foil having a 100-mm oxide film is obtained.
In a reducing atmosphere, it is possible to use a mixed gas obtained by mixing a reducing gas such as H 2 with an inert gas or a small amount of oxygen. The cubic rate is preferably 95% or more. The said additional element concentrates on a surface layer part by the said annealing. When annealing is performed under vacuum, an oxide film is not properly formed on the surface, and good etching becomes difficult during etching.

上記各工程を経て得られたアルミニウム箔には、その後、エッチング処理がなされる。該エッチング工程は塩酸を主体とする電解液を用いた電解エッチングにより行うことができる。なお、本発明としては電解液の種別が特に限定されるものではない。エッチング処理は、表層部除去工程と、エッチングピット発生工程と、エッチングピット孔径拡大工程により行うことができる。 表層部除去工程は、酸化皮膜を含む表層部を溶解することによって除去する。表層部除去後は、アルミニウム箔表面にエッチングピットを発生させるエッチングピット発生工程を行う。エッチングピット発生工程後に、エッチングピット孔径拡大工程を行う。この箔を化成処理し、必要な耐電圧を得た後、常法により電解コンデンサに電極(陽極)として組み込むことにより静電容量の高いコンデンサが得られる。   The aluminum foil obtained through the above steps is then subjected to an etching process. The etching step can be performed by electrolytic etching using an electrolytic solution mainly composed of hydrochloric acid. In the present invention, the type of the electrolytic solution is not particularly limited. The etching process can be performed by a surface layer portion removing process, an etching pit generating process, and an etching pit hole diameter expanding process. The surface layer portion removing step is performed by dissolving the surface layer portion including the oxide film. After removing the surface layer portion, an etching pit generation step is performed for generating etching pits on the surface of the aluminum foil. After the etching pit generation process, an etching pit hole diameter expanding process is performed. After this foil is subjected to chemical conversion treatment to obtain a required withstand voltage, a capacitor having a high capacitance can be obtained by incorporating it as an electrode (anode) in an electrolytic capacitor by a conventional method.

以下に、本発明の一実施例を説明する。
4N純度のアルミニウム地金を用い、表1の成分(その他:不可避不純物+99.9%以上のAl)に調整した後、半連続鋳造法によってアルミニウムスラブを作成した。なお、成分中のREMとして、(La:20wt%、Ce:50wt%、Pr:5wt%、Nd:25wt%)の組成を有するミッシュメタルを用いた。
上記スラブに対し、580℃、2時間以上の均熱処理を行った後、熱間圧延を行った。その際、仕上がり温度を230℃〜350℃とし、加工率を90%以上とした。熱間圧延後、冷間圧延を行った。その際、150℃〜280℃、2〜15時間の中間焼鈍を行い、さらに10〜20%の冷間加工を行ってアルミニウム箔とした。尚、中間焼鈍は冷間圧延での加工率が95%以上の段階で行った。
An embodiment of the present invention will be described below.
A 4N purity aluminum ingot was used and adjusted to the components shown in Table 1 (others: inevitable impurities + 99.9% or more Al), and then an aluminum slab was prepared by a semi-continuous casting method. In addition, as the REM in the component, a misch metal having a composition of (La: 20 wt%, Ce: 50 wt%, Pr: 5 wt%, Nd: 25 wt%) was used.
The slab was subjected to soaking at 580 ° C. for 2 hours or more, and then hot rolled. At that time, the finishing temperature was 230 ° C. to 350 ° C., and the processing rate was 90% or more. After hot rolling, cold rolling was performed. At that time, intermediate annealing was performed at 150 ° C. to 280 ° C. for 2 to 15 hours, and further cold working of 10 to 20% was performed to obtain an aluminum foil. In addition, the intermediate annealing was performed at a stage where the processing rate in cold rolling was 95% or more.

得られたアルミニウム箔を表2に示す条件で焼鈍した後、1M塩酸+3M硫酸、80℃中で、300mA/cmの直流電流を120sec印加し、ピット発生エッチングを行った。ピット発生エッチングを行った後、同液中に20min浸漬しピット径を拡大した。得られたエッチング箔を300Vの化成を行い、静電容量を測定した。静電容量は、供試材No.9を100として、相対評価によって示した。
また、得られた供試材について、ESCA(X線光電子分析装置)によって酸化皮膜厚さを測定し、Cubeエッチング液(35%HCl:60%HNO:浄水=1:1:1)、30℃、30sec浸漬後の画像解析より立方晶率を測定し、その結果を表2に示した。また、500mm巾、30cm長さの供試材をCubeエッチング液30℃、30sec浸漬した後、目視によって粗大晶を評価した。尚本特許では5mm×5mm以上の異常結晶粒を粗大晶とする。
After the obtained aluminum foil was annealed under the conditions shown in Table 2, pit generation etching was performed by applying a direct current of 300 mA / cm 2 for 120 sec in 1M hydrochloric acid + 3M sulfuric acid at 80 ° C. After performing pit generation etching, the pit diameter was expanded by dipping in the same solution for 20 min. The obtained etching foil was formed at 300 V, and the capacitance was measured. The electrostatic capacity is the test material No. 9 was taken as 100, and was shown by relative evaluation.
Further, the obtained test specimen, measuring the oxide film thickness by ESCA (X-ray photoelectron spectrometer), Cube etchant (35% HCl: 60% HNO 3: purified water = 1: 1: 1), 30 The cubic rate was measured by image analysis after immersion at 30 ° C. for 30 seconds, and the results are shown in Table 2. Moreover, after immersing a specimen having a width of 500 mm and a length of 30 cm for 30 seconds at 30 ° C. in a Cube etching solution, coarse crystals were visually evaluated. In this patent, an abnormal crystal grain of 5 mm × 5 mm or more is regarded as a coarse crystal.

Figure 2009249668
Figure 2009249668

Figure 2009249668
Figure 2009249668

Claims (5)

質量比で、Si10〜30ppm、Fe10〜30ppm、Cu20〜80ppm、Pb0.6〜1.5ppm、(Zr、V、Mn、Zn、Ga、Na)のうち一種又は二種以上合計で10〜50ppm、REM0.1〜10ppmを含有し、残部が不可避不純物と99.9%以上のAlからなる組成を有し、厚さ100μm以上、125μm未満であることを特徴とする電解コンデンサ用アルミニウム箔。   By mass ratio, Si 10-30 ppm, Fe 10-30 ppm, Cu 20-80 ppm, Pb 0.6-1.5 ppm, (Zr, V, Mn, Zn, Ga, Na) one or two or more in total 10-50 ppm, An aluminum foil for electrolytic capacitors, characterized by containing REM 0.1 to 10 ppm, the balance being an inevitable impurity and 99.9% or more of Al, and having a thickness of 100 μm or more and less than 125 μm. アルミニウム箔の酸化皮膜厚さが20〜100Åであることを特徴とする請求項1に記載の電解コンデンサ用アルミニウム箔。   The aluminum foil for an electrolytic capacitor according to claim 1, wherein the aluminum foil has an oxide film thickness of 20 to 100 mm. 質量比で、Si10〜30ppm、Fe10〜30ppm、Cu20〜80ppm、Pb0.6〜1.5ppm、(Zr、V、Mn、Zn、Ga、Na)のうち一種又は二種以上合計で10〜50ppm、REM0.1〜10ppmを含有し、残部が不可避不純物と99.9%以上のAlからなる組成を有し、厚さ100μm以上、125μm未満のアルミニウム箔を、不活性ガスまたは還元性ガスもしくはこれらの混合ガス雰囲気で500℃以上、6時間以上の最終焼鈍を行うことを特徴とする電解コンデンサ用アルミニウム箔の製造方法。   By mass ratio, Si 10-30 ppm, Fe 10-30 ppm, Cu 20-80 ppm, Pb 0.6-1.5 ppm, (Zr, V, Mn, Zn, Ga, Na) one or two or more in total 10-50 ppm, An aluminum foil containing REM 0.1 to 10 ppm, the balance being inevitable impurities and 99.9% or more of Al, and having a thickness of 100 μm or more and less than 125 μm, is made of an inert gas or a reducing gas, or these gases. A method for producing an aluminum foil for electrolytic capacitors, comprising performing final annealing at 500 ° C. or more for 6 hours or more in a mixed gas atmosphere. 前記最終焼鈍時の昇温速度が30〜100℃/Hrであることを特徴とする請求項3記載の電解コンデンサ用アルミニウム箔の製造方法。   The method for producing an aluminum foil for an electrolytic capacitor according to claim 3, wherein a rate of temperature rise during the final annealing is 30 to 100 ° C / Hr. 前記アルミニウム箔を製造する冷間圧延途中で、200〜280℃、2〜10時間の中間焼鈍を行うことを特徴とする請求項3または4に記載の電解コンデンサ用アルミニウム箔の製造方法。   5. The method for producing an aluminum foil for electrolytic capacitors according to claim 3, wherein intermediate annealing is performed at 200 to 280 ° C. for 2 to 10 hours during cold rolling for producing the aluminum foil.
JP2008097315A 2008-04-03 2008-04-03 Aluminum foil for electrolytic capacitor, and method for producing the same Pending JP2009249668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097315A JP2009249668A (en) 2008-04-03 2008-04-03 Aluminum foil for electrolytic capacitor, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097315A JP2009249668A (en) 2008-04-03 2008-04-03 Aluminum foil for electrolytic capacitor, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2009249668A true JP2009249668A (en) 2009-10-29

Family

ID=41310642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097315A Pending JP2009249668A (en) 2008-04-03 2008-04-03 Aluminum foil for electrolytic capacitor, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2009249668A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052289A1 (en) 2009-10-30 2011-05-05 日立コンシューマエレクトロニクス株式会社 Content-receiving device
JP2012091226A (en) * 2010-09-29 2012-05-17 Sumitomo Chemical Co Ltd Aluminum rolled material, and method of manufacturing the same
JP2012167348A (en) * 2011-02-16 2012-09-06 Mitsubishi Alum Co Ltd Method for producing aluminum foil for electrolytic capacitor
JP2013124402A (en) * 2011-12-15 2013-06-24 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor, and method for producing the same
WO2017018028A1 (en) * 2015-07-30 2017-02-02 昭和電工株式会社 Method for manufacturing aluminum material for electrolytic capacitor electrodes, method for manufacturing electrode material for aluminum electrolytic capacitors, and method for manufacturing aluminum electrolytic capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140276A (en) * 1996-11-11 1998-05-26 Toyo Alum Kk Aluminum alloy for electrolytic capacitor high tension anode and its foil
JP2005179719A (en) * 2003-12-17 2005-07-07 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor, and its production method
JP2006152365A (en) * 2004-11-29 2006-06-15 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor anode and its production method
JP2007046093A (en) * 2005-08-09 2007-02-22 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor electrode, and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140276A (en) * 1996-11-11 1998-05-26 Toyo Alum Kk Aluminum alloy for electrolytic capacitor high tension anode and its foil
JP2005179719A (en) * 2003-12-17 2005-07-07 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor, and its production method
JP2006152365A (en) * 2004-11-29 2006-06-15 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor anode and its production method
JP2007046093A (en) * 2005-08-09 2007-02-22 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor electrode, and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052289A1 (en) 2009-10-30 2011-05-05 日立コンシューマエレクトロニクス株式会社 Content-receiving device
JP2012091226A (en) * 2010-09-29 2012-05-17 Sumitomo Chemical Co Ltd Aluminum rolled material, and method of manufacturing the same
JP2012167348A (en) * 2011-02-16 2012-09-06 Mitsubishi Alum Co Ltd Method for producing aluminum foil for electrolytic capacitor
JP2013124402A (en) * 2011-12-15 2013-06-24 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor, and method for producing the same
WO2017018028A1 (en) * 2015-07-30 2017-02-02 昭和電工株式会社 Method for manufacturing aluminum material for electrolytic capacitor electrodes, method for manufacturing electrode material for aluminum electrolytic capacitors, and method for manufacturing aluminum electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP4168066B2 (en) Aluminum alloy for anodizing treatment used in plasma processing apparatus and manufacturing method thereof, aluminum alloy member having anodized film, and plasma processing apparatus
JP2013124402A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP2009249668A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP4237236B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP2007046093A (en) Aluminum foil for electrolytic capacitor electrode, and manufacturing method therefor
JP4521771B2 (en) Aluminum material for electrolytic capacitor electrodes
JP5328129B2 (en) Aluminum alloy foil for electrolytic capacitors
JP6619173B2 (en) Aluminum foil for electrolytic capacitors
JP4071232B2 (en) Aluminum foil for electrolytic capacitors
JP3983785B2 (en) Aluminum foil for electrolytic capacitors
JP3920301B2 (en) Aluminum foil for electrolytic capacitors
JP2008150692A (en) Aluminum material for electrolytic capacitor electrode
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP5117673B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP6752110B2 (en) Manufacturing method of aluminum foil for electrolytic capacitors, aluminum foil for electrolytic capacitors, and electrodes for electrolytic capacitors
JP2005206883A (en) Aluminum foil for electrolytic capacitor and manufacturing method therefor
JP4827103B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP4793827B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP3920306B1 (en) Aluminum foil for electrolytic capacitors
JP6686744B2 (en) Titanium alloy plate and its manufacturing method.
JP2010013714A (en) Aluminum foil for electrolytic capacitor electrode
JP3930033B1 (en) Aluminum foil for electrolytic capacitors
JP4539912B2 (en) Aluminum foil for electrolytic capacitor anode and manufacturing method thereof
JP2009270138A (en) Aluminum foil for electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130619