JP6686744B2 - Titanium alloy plate and its manufacturing method. - Google Patents

Titanium alloy plate and its manufacturing method. Download PDF

Info

Publication number
JP6686744B2
JP6686744B2 JP2016132158A JP2016132158A JP6686744B2 JP 6686744 B2 JP6686744 B2 JP 6686744B2 JP 2016132158 A JP2016132158 A JP 2016132158A JP 2016132158 A JP2016132158 A JP 2016132158A JP 6686744 B2 JP6686744 B2 JP 6686744B2
Authority
JP
Japan
Prior art keywords
oxide
titanium alloy
alloy plate
mass
immediately below
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016132158A
Other languages
Japanese (ja)
Other versions
JP2018003101A (en
Inventor
浩史 神尾
浩史 神尾
高橋 一浩
一浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016132158A priority Critical patent/JP6686744B2/en
Publication of JP2018003101A publication Critical patent/JP2018003101A/en
Application granted granted Critical
Publication of JP6686744B2 publication Critical patent/JP6686744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

本発明は、耐食性に優れたチタン合金板およびその製造方法に関する。   The present invention relates to a titanium alloy plate having excellent corrosion resistance and a method for manufacturing the same.

チタンまたはチタン合金は拡散接合性に優れるため、高温でのバッチ式真空炉で焼鈍すると、コイルを形成する素材同士が接合してしまい、コイルを展開できない、または展開した際に表面疵が発生するといった問題がある。
そのため、焼鈍は大気雰囲気での連続焼鈍ラインによる焼鈍が望ましい工程である。
Since titanium or titanium alloy has excellent diffusion bonding properties, when annealing in a batch type vacuum furnace at high temperature, the materials that form the coil are bonded together, and the coil cannot be expanded or surface defects occur when expanded. There is such a problem.
Therefore, the annealing is preferably a step of annealing in a continuous annealing line in an air atmosphere.

この大気雰囲気での連続焼鈍ラインによる焼鈍では、高温での焼鈍が可能なものの、表面に形成される酸化物が厚くなってしまう。
この酸化物は、フッ硝酸での酸洗により除去されるが、多量の酸化物除去は製造効率の悪化につながる。
In the annealing using the continuous annealing line in the air atmosphere, although high temperature annealing is possible, the oxide formed on the surface becomes thick.
This oxide is removed by pickling with hydrofluoric nitric acid, but removal of a large amount of oxide leads to deterioration of production efficiency.

チタン合金の耐食性については、種々の先行技術が知られている(例えば、特許文献1〜4参照)。
また、チタン合金の焼鈍温度と耐食性の関係について一部の知見がある(例えば、特許文献5参照)。
Various prior arts are known for the corrosion resistance of titanium alloys (see, for example, Patent Documents 1 to 4).
Further, there is some knowledge about the relationship between the annealing temperature and corrosion resistance of titanium alloys (see, for example, Patent Document 5).

特公昭62−20269号公報Japanese Patent Publication No. 62-20269 特公昭63−4892号公報Japanese Patent Publication No. 63-4892 特公昭63−12932号公報Japanese Patent Publication No. 63-12932 特公平5−77735号公報Japanese Patent Publication No. 5-77735 特公昭64−2662号公報Japanese Patent Publication No. 64-2662

しかしながら、特許文献1〜4には、焼鈍条件と形成される金属組織に関する記載はない。
また、特許文献5には、表面近傍の元素分布と冷間圧延率の関係について記載されていない。
However, Patent Documents 1 to 4 do not describe the annealing conditions and the metal structure formed.
Further, Patent Document 5 does not describe the relationship between the element distribution near the surface and the cold rolling rate.

本発明は、前記事情に鑑みて為されたもので、大気雰囲気での酸化物形成量を抑制し、かつ耐食性に優れたチタン合金板およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a titanium alloy plate that suppresses the amount of oxides formed in the atmosphere and has excellent corrosion resistance, and a method for manufacturing the same.

前記目的を達成するために、本発明のチタン合金板は、mass%で、Ru:0.005〜2.0%、Ni:0.1〜1.0%、C:0.001〜0.1%を含有し、残部がTiおよび不可避的不純物からなるチタン合金板であって、チタン合金板の表面を覆う酸化物の厚さが30nm以下、酸化物の直下における平均Ni量が0.1〜5.5mass%、さらに酸化物の直下の金属組織にTi2Niが含まれることを特徴とする。 To achieve the above object, the titanium alloy sheet of the present invention has a mass% of Ru : 0.005 to 2.0%, Ni: 0.1 to 1.0%, C: 0.001 to 0. A titanium alloy plate containing 1%, the balance being Ti and unavoidable impurities, the thickness of the oxide covering the surface of the titanium alloy plate is 30 nm or less, and the average amount of Ni immediately below the oxide is 0.1. .About.5.5 mass%, and Ti 2 Ni is contained in the metal structure immediately below the oxide.

また、本発明のチタン合金板の製造方法は、mass%で、Ru:0.005〜2.0%、Ni:0.1〜1.0%を含有し、残部がTiおよび不可避的不純物からなるチタン合金板素材を、Cを含有する潤滑剤を用いて冷間圧延率10%以上で冷間圧延することによって、チタン合金板素材の内部にCを0.001〜0.1mass%導入する第1のステップと、チタン合金板素材を焼鈍温度650℃〜700℃の条件で焼鈍することによって、チタン合金板素材の表面に酸化物を形成し、酸化物の直下の平均Ni量を10.0〜30.0mass%とし、酸化物の直下の金属組織にTi2Niを含有するNi濃化層を形成する第2のステップと、チタン合金板素材を酸洗することによって、酸化物を除去すると共にNi濃化層の一部を除去し、チタン合金板素材表面の直下におけるNi濃化層の平均Ni量を0.1〜5.5mass%に低減する第3のステップと、チタン合金板素材に厚さ30nm以下の酸化物を形成する第4のステップと、を順次処理することを特徴とする。 Further, the method for producing a titanium alloy plate of the present invention contains, in mass%, Ru : 0.005 to 2.0% and Ni: 0.1 to 1.0%, and the balance from Ti and inevitable impurities. 0.001 to 0.1 mass% of C is introduced into the titanium alloy plate raw material by cold rolling the titanium alloy plate raw material using a C-containing lubricant at a cold rolling rate of 10% or more. In the first step, the titanium alloy plate material is annealed at an annealing temperature of 650 ° C. to 700 ° C. to form an oxide on the surface of the titanium alloy plate material, and the average Ni content immediately below the oxide is 10. The second step is to form a Ni-enriched layer containing Ti2Ni in the metal structure immediately below the oxide with 0 to 30.0 mass%, and the oxide is removed by pickling the titanium alloy plate material. Part of the Ni enriched layer Then, the third step of reducing the average Ni content of the Ni-enriched layer immediately below the surface of the titanium alloy plate material to 0.1 to 5.5 mass% and the oxide having a thickness of 30 nm or less on the titanium alloy plate material. The fourth step of forming and the fourth step are sequentially processed.

本発明によれば、大気雰囲気での酸化物形成量を抑制し、かつ耐食性に優れたチタン合金板およびその製造方法を提供することができる。   According to the present invention, it is possible to provide a titanium alloy plate that suppresses the amount of oxides formed in the atmosphere and has excellent corrosion resistance, and a method for producing the same.

本発明の実施例に係るチタン合金板の酸洗前酸化物厚さとその直下の平均Ni量の関係を示す図である。It is a figure which shows the relationship between the oxide thickness before pickling of the titanium alloy plate and the average amount of Ni just under that of the titanium alloy plate which concerns on the Example of this invention. 本発明の実施例に係るチタン合金板の腐食速度と酸洗後表面酸化物直下の平均Ni量の関係を示す図である。It is a figure which shows the corrosion rate of the titanium alloy plate which concerns on the Example of this invention, and the relationship of the average Ni content just under the surface oxide after pickling.

以下、本発明の実施の形態を説明する。
発明者らは、まず酸化物増大による製造効率悪化について、詳細に調査した。一般的には、酸化物は焼鈍温度が高く、保持時間が長いほど多量に形成する。しかし、700℃以下の温度で焼鈍した場合には、保持時間を長時間化しても酸化物形成量はほとんど増大しない。これは表面に形成する酸化物の直下にNiが濃縮することに起因している。なお、酸化物の直下とは、酸化物と金属の界面を起点として金属側へ1μmの範囲内を意味する。
Hereinafter, embodiments of the present invention will be described.
The inventors first investigated in detail about the deterioration of manufacturing efficiency due to the increase of oxides. Generally, oxides are formed in a larger amount as the annealing temperature is higher and the holding time is longer. However, when annealed at a temperature of 700 ° C. or lower, the oxide formation amount hardly increases even if the holding time is extended. This is because Ni is concentrated just below the oxide formed on the surface. The term “immediately below the oxide” means within a range of 1 μm toward the metal side, starting from the interface between the oxide and the metal.

このようなNiの元素分布とするには、冷間圧延率が重要である。本発明者らは、冷間圧延率が10%以上である場合に表面に形成する酸化物の直下へのNi濃縮が顕著であることを見出した。   The cold rolling rate is important to obtain such an element distribution of Ni. The present inventors have found that when the cold rolling ratio is 10% or more, the concentration of Ni immediately below the oxide formed on the surface is remarkable.

これは冷間圧延後での焼鈍工程における再結晶が原因であると考えられる。大気雰囲気中での焼鈍工程においては、表面酸化物の形成と同時に加工組織の再結晶が起こる。素材の温度上昇は、表面が最も速く、板厚中心部が最も遅い。焼鈍の初期段階において素材表面の温度が再結晶開始温度以上に到達した際、Ni原子を核としてα粒が再結晶する。   It is considered that this is due to recrystallization in the annealing process after cold rolling. In the annealing step in the air atmosphere, the recrystallization of the work structure occurs at the same time when the surface oxide is formed. The temperature rise of the material is fastest on the surface and slowest in the center of the plate thickness. When the temperature of the surface of the material reaches or exceeds the recrystallization start temperature in the initial stage of annealing, α grains are recrystallized with Ni atoms as nuclei.

これは、本発明材のほとんどの構成元素であるTiに比べてNiは酸化物を形成し難い元素であり、表面のTi原子は大気中の酸素と反応してチタン酸化物の形成に消費されるため、酸化し難いNi原子が再結晶の核となる。   This is because Ni is an element that is less likely to form an oxide than Ti, which is most of the constituent elements of the material of the present invention, and Ti atoms on the surface react with oxygen in the atmosphere and are consumed in the formation of titanium oxide. Therefore, the Ni atom that is difficult to oxidize becomes the nucleus of recrystallization.

しかしながら、Niはβ安定化元素であるため、再結晶したα粒から吐き出されて酸化物と金属の界面に濃縮する。   However, since Ni is a β-stabilizing element, it is discharged from the recrystallized α-grains and concentrated at the interface between the oxide and the metal.

以上の機構により、表面酸化物の直下でのNi濃縮が達成され、酸化し難いNi濃化層が保護層として機能し酸化物増量が抑制される。   By the mechanism described above, Ni concentration immediately under the surface oxide is achieved, the Ni-rich layer that is difficult to oxidize functions as a protective layer, and the oxide increase is suppressed.

さらに、本発明者らは、耐食性向上について、鋭意研究を行った。一般にチタンの耐食性を向上させるためには、水素過電圧の小さい白金族元素の添加が有効である。ここで白金族元素とは、Ru(ルテニウム)、Rh(ロジウム)、Pd(パラジウム)、Os(オスミウム)、Ir(イリジウム)およびPt(白金)を意味する。白金族元素は希少金属のため高価であるが、Ru、Pd、RhおよびIrはPtほど高価ではないので、本発明に適用する添加元素として好ましい。   Furthermore, the inventors of the present invention have earnestly studied to improve the corrosion resistance. In general, in order to improve the corrosion resistance of titanium, it is effective to add a platinum group element having a small hydrogen overvoltage. Here, the platinum group element means Ru (ruthenium), Rh (rhodium), Pd (palladium), Os (osmium), Ir (iridium) and Pt (platinum). Platinum group elements are rare metals and are therefore expensive, but Ru, Pd, Rh and Ir are not so expensive as Pt and are therefore preferable as additional elements applied to the present invention.

本実施形態では、上述した酸化物形成を抑制する効果があるNiに加えてRu、Pd等の白金族元素を添加元素として選択した。   In the present embodiment, a platinum group element such as Ru and Pd is selected as an additive element in addition to Ni which has the effect of suppressing oxide formation.

TiにNiと白金族元素を添加した合金を様々な温度、時間で焼鈍し、表層の金属組織と耐食性の関係を調査した。なお、表層とは酸化物除去後の金属表面を起点として素材内部1μmまでの範囲を意味する。   Alloys in which Ni and a platinum group element were added to Ti were annealed at various temperatures and times, and the relationship between the metal structure of the surface layer and the corrosion resistance was investigated. The surface layer means a range up to 1 μm inside the material starting from the metal surface after oxide removal.

本実施形態で用いられるチタン合金板は、合金成分の増減と製造条件に応じて、α+TiNi、α+β+TiNi、α+β組織に加えて、α+TiNi+TiC、α+β+TiNi+TiC、α+β+TiCといった6種の金属組織を形成し得る。TiCは冷間圧延時の加工発熱により圧延油とTiが反応するため形成する。このようなTiCは、例えば炭素含有量が50%以上の圧延油を潤滑油として用いて、10mpm以上の圧延速度で冷間圧延した際に加工発熱により形成する。 The titanium alloy plate used in the present embodiment has six kinds of metals such as α + Ti 2 Ni + TiC, α + β + Ti 2 Ni + TiC, and α + β + TiC in addition to α + Ti 2 Ni, α + β + Ti 2 Ni, and α + β structure, depending on increase / decrease of alloy components and manufacturing conditions. Tissue may form. TiC is formed because the rolling oil reacts with Ti due to the heat generated during processing during cold rolling. Such TiC is formed by working heat when cold-rolled at a rolling speed of 10 mpm or more using a rolling oil having a carbon content of 50% or more as a lubricating oil.

これらの表層金属組織のなかでα+TiNi、α+β+TiNi、α+TiNi+TiC、α+β+TiNi+TiC組織を形成する際に耐食性に優れることを明らかにした。 It has been clarified that among these surface layer metal structures, α + Ti 2 Ni, α + β + Ti 2 Ni, α + Ti 2 Ni + TiC, and α + β + Ti 2 Ni + TiC structures are excellent in corrosion resistance.

本発明範囲内の成分であっても、α+βまたはα+β+TiC組織の場合は耐食性向上効果が不十分である。これはα/β界面が存在し、かつTiNi析出物が存在しないためである。α/β界面には耐食性向上効果をもたらすNiとRu濃度が低く、他の組織界面に比べて耐食性に劣る。α/β界面が存在してもTiNiのように、耐食性向上効果をもたらすNi原子が濃化している組織があれば問題ない。 Even with the components within the scope of the present invention, the effect of improving corrosion resistance is insufficient in the case of α + β or α + β + TiC structure. This is because there is an α / β interface and there is no Ti 2 Ni precipitate. The α / β interface has a low concentration of Ni and Ru, which bring about the effect of improving the corrosion resistance, and is inferior in corrosion resistance to the interfaces of other tissues. Even if the α / β interface is present, there is no problem as long as there is a structure in which Ni atoms that bring about an effect of improving corrosion resistance are concentrated, such as Ti 2 Ni.

以上の知見により、大気雰囲気での酸化物形成量を抑制し、かつ耐食性に優れたチタン合金とその製造方法に関する本発明がなされた。   Based on the above findings, the present invention has been made regarding a titanium alloy that suppresses the amount of oxides formed in the atmosphere and has excellent corrosion resistance, and a method for producing the same.

<合金組成>
[白金族元素:0.005〜2.0mass%]
白金族元素は水素過電圧の低い元素であり、チタン中に添加することで不動態化を促進し、耐食性を向上させる。この効果をもたらすためには、少なくとも0.005mass%の添加が必要である。白金族元素は高価であるため、多量の添加は素材コストの増大をもたらすことになり好ましくない。そのため、添加量の上限は2.0mass%とした。望ましい下限は0.008mass%、望ましい上限は1.6mass%である。なお、本発明のチタン合金板に添加される白金族元素は、単独の元素であっても、複数の種類の元素であってもよい。
<Alloy composition>
[Platinum group element: 0.005 to 2.0 mass%]
The platinum group element is an element having a low hydrogen overvoltage, and when added to titanium, it promotes passivation and improves corrosion resistance. In order to bring about this effect, addition of at least 0.005 mass% is necessary. Since the platinum group element is expensive, addition of a large amount causes an increase in material cost, which is not preferable. Therefore, the upper limit of the added amount is set to 2.0 mass%. A desirable lower limit is 0.008 mass% and a desirable upper limit is 1.6 mass%. The platinum group element added to the titanium alloy plate of the present invention may be a single element or plural kinds of elements.

[Ni:0.1〜1.0mass%]
Niは水素過電圧の低い元素であり、チタン中に添加することで不動態化を促進し、耐食性を向上させる。また、上述したように表面酸化物の直下に濃縮し酸化物生成を抑制する。これらの効果をもたらすためには、少なくとも0.1mass%の添加が必要である。Niは他の白金族元素に比べると安価ではあるが、多量の添加は素材コストの増大をもたらすため好ましくない。また、多量の添加により金属間化合物TiNiが多量析出し、熱間および冷間での製造性を劣化させる。そのため、添加量の上限は1.0mass%とした。望ましい下限は0.15mass%、望ましい上限は0.90mass%である。
[Ni: 0.1 to 1.0 mass%]
Ni is an element having a low hydrogen overvoltage, and when added to titanium, it promotes passivation and improves corrosion resistance. In addition, as described above, it concentrates immediately below the surface oxide to suppress oxide formation. In order to bring about these effects, addition of at least 0.1 mass% is necessary. Ni is cheaper than other platinum group elements, but addition of a large amount of Ni causes an increase in material cost, which is not preferable. Further, by adding a large amount, a large amount of intermetallic compound Ti 2 Ni precipitates, which deteriorates the manufacturability in hot and cold. Therefore, the upper limit of the amount added is 1.0 mass%. A desirable lower limit is 0.15 mass% and a desirable upper limit is 0.90 mass%.

[酸洗前における酸化スケールの直下の平均Ni量:10.0〜30.0mass%]
上述した機構により、焼鈍時に酸化物の直下にNiが濃化し、酸化物形成を抑制する。この効果を充分にもたらすためには、少なくとも10.0mass%のNi濃化が必要である。また、酸化物の直下にNiが濃化し過ぎるとTiNi析出量が減少するとともにβ相率が増大し、充分な耐食性を示さない。そのため、酸化物の直下に濃化するNiの上限は30.0mass%とする。望ましい下限は12.0mass%、望ましい上限は26.0mass%である。
[酸洗後における酸化物の直下の平均Ni量:0.1〜5.5mass%]
図1に示すように、酸洗前の表面酸化物厚さは酸化物直下におけるNi量が多いほど薄くなる。すなわち、酸化物直下におけるNiは表面酸化物の成長を抑制し、酸洗による歩留低下を改善し酸洗後の酸化物残りを防止する。
また、図2に示すように、腐食速度は酸洗後酸化物直下における平均Ni量が5.5mass%を超えると急激に劣化する。
[Average Ni content immediately below the oxide scale before pickling: 10.0 to 30.0 mass%]
By the mechanism described above, Ni is concentrated immediately below the oxide during annealing and suppresses oxide formation. In order to fully bring out this effect, Ni concentration of at least 10.0 mass% is necessary. Further, if Ni is excessively concentrated just below the oxide, the amount of Ti 2 Ni precipitation is reduced and the β phase ratio is increased, so that sufficient corrosion resistance is not exhibited. Therefore, the upper limit of Ni concentrated immediately below the oxide is set to 30.0 mass%. A desirable lower limit is 12.0 mass% and a desirable upper limit is 26.0 mass%.
[Average Ni content immediately below the oxide after pickling: 0.1 to 5.5 mass%]
As shown in FIG. 1, the surface oxide thickness before pickling becomes thinner as the amount of Ni immediately below the oxide increases. That is, Ni immediately below the oxide suppresses the growth of the surface oxide, improves the yield reduction due to pickling, and prevents the oxide residue after pickling.
Moreover, as shown in FIG. 2, the corrosion rate deteriorates rapidly when the average Ni content immediately below the oxide after pickling exceeds 5.5 mass%.

<表面の金属組織>
[α+TiNi、α+β+TiNi、α+TiNi+TiCまたはα+β+TiNi+TiC組織]
Niは水素過電圧の小さい元素であり、チタンの耐食性向上に寄与するが、その効果は固溶状態のNiよりもTiNiを形成した場合の方が大きい。また、圧延油との反応により形成されるTiCにも耐食性向上効果がある。それぞれの望ましい体積率は、TiNiは0.1〜10.0%、TiCは0.01〜1.00%である。
<Surface metallographic structure>
[Α + Ti 2 Ni, α + β + Ti 2 Ni, α + Ti 2 Ni + TiC or α + β + Ti 2 Ni + TiC texture]
Ni is an element having a small hydrogen overvoltage and contributes to the improvement of the corrosion resistance of titanium, but its effect is greater when Ti 2 Ni is formed than when Ni is in a solid solution state. TiC formed by the reaction with rolling oil also has the effect of improving corrosion resistance. Desirable volume ratios of Ti 2 Ni are 0.1 to 10.0% and TiC is 0.01 to 1.00%.

表1に示す化学組成のチタン合金インゴットに対して、鍛造または分塊圧延、熱間圧延、脱スケール、中間焼鈍、冷間圧延を施し、板厚0.3〜1.2mmの冷延コイルを製造し、仕上げ焼鈍(本発明では単に「焼鈍」と略称する)を施した。なお、インゴット製造から中間焼鈍までの製造工程は、一般的なチタン・チタン合金を製造する製法と同一でよい。   Forging or slab rolling, hot rolling, descaling, intermediate annealing, and cold rolling were performed on titanium alloy ingots having the chemical composition shown in Table 1 to obtain cold rolled coils having a plate thickness of 0.3 to 1.2 mm. It was manufactured and subjected to finish annealing (hereinafter simply referred to as "annealing" in the present invention). The production process from ingot production to intermediate annealing may be the same as the production process for producing a general titanium-titanium alloy.

焼鈍を施す際、表2、3に示す焼鈍温度、焼鈍時間で大気焼鈍し、酸化物形成量を調査した。なお、焼鈍時の雰囲気は必ずしも大気である必要はなく、Arや真空雰囲気にて焼鈍しても構わない。Ar雰囲気の場合は純度90%以上のArガス、真空雰囲気の場合は0.01Torr以下の真空度であれば問題ない。焼鈍時の均熱保持時間は1min以上、昇温速度は2℃/sec以上、冷却速度は1℃/sec以下であれば問題ない。大気雰囲気中で焼鈍する方が、Ar雰囲気または真空雰囲気で焼鈍する場合に比べて製造コスト的に有利であるうえ、本発明による酸化物生成抑制効果を享受でき望ましい。   When performing the annealing, the annealing temperature and the annealing time shown in Tables 2 and 3 were annealed in the atmosphere, and the oxide formation amount was investigated. The atmosphere at the time of annealing does not necessarily have to be atmospheric air, and may be annealed in Ar or a vacuum atmosphere. In the case of an Ar atmosphere, an Ar gas having a purity of 90% or more and in a vacuum atmosphere, a vacuum degree of 0.01 Torr or less causes no problem. There is no problem if the soaking and holding time during annealing is 1 min or more, the temperature rising rate is 2 ° C./sec or more, and the cooling rate is 1 ° C./sec or less. Annealing in an air atmosphere is more advantageous in terms of manufacturing cost than annealing in an Ar atmosphere or a vacuum atmosphere, and is preferable because it can enjoy the effect of suppressing oxide formation according to the present invention.

焼鈍後に形成した酸化物は、フッ硝酸による酸洗液に接触させることによって取り除いた。
本発明の特性を発揮するためには、酸洗液の温度は20〜60℃、浸漬時間は20〜300秒、酸洗液の組成としてフッ素は3〜10mass%、硝酸は1〜5mass%とすることが望ましい。酸洗されたチタン合金板を水で洗浄後、大気中に放置することにより厚さ30nm以下の酸化物を形成することができる。30nm以下の酸化物は極めて薄い被膜であるため、チタン合金板の品質に悪影響を及ぼすものではない。
The oxide formed after annealing was removed by bringing it into contact with a pickling solution using hydrofluoric nitric acid.
In order to exhibit the characteristics of the present invention, the temperature of the pickling solution is 20 to 60 ° C., the dipping time is 20 to 300 seconds, the composition of the pickling solution is 3 to 10 mass% of fluorine and 1 to 5 mass% of nitric acid. It is desirable to do. An acid-washed titanium alloy plate is washed with water and then left in the atmosphere to form an oxide having a thickness of 30 nm or less. Since the oxide having a thickness of 30 nm or less is an extremely thin film, it does not adversely affect the quality of the titanium alloy plate.

酸化物形成量は焼鈍前後の重量変化から酸化速度を算出して求めた。   The amount of oxide formed was determined by calculating the oxidation rate from the weight change before and after annealing.

表面酸化物の直下の平均Ni量と酸化物厚さは、酸化物除去前・除去後の素材から試験片を切り出し、GDOES(Glow Discharge Optical Emission Spectrometry)を用いて深さ方向の元素分布を分析する事で測定した。分析範囲は4mmφとした。   For the average Ni content and oxide thickness immediately below the surface oxide, a test piece was cut out from the material before and after removing the oxide, and the element distribution in the depth direction was analyzed using GDOES (Glow Discharge Optical Emission Spectrometry). It was measured by doing. The analysis range was 4 mmφ.

表面の金属組織については、酸化物除去後の素材から試験片を切り出し、X線回折による相同定を一次評価、光学顕微鏡によるミクロ組織観察を二次評価として行った。X線回折は、特性X線としてCoKαを用い、電圧は30kV、電流は100mAとした。測定範囲は10°≦2θ≦110°、ステップは0.04°、積算時間は2sとし、X線の試験片表面への入射角を0.3°として行った。X線回折により得られたチャートにおいて、各相に由来するピークが現れる角度における信号強度が、当該角度の前後0.2°におけるバックグラウンドの信号強度の平均値の1.5倍以上である場合にそれぞれの相が検出されたと判断した。ミクロ組織観察では、鏡面研磨した後にフッ硝酸でエッチングを施した後光学顕微鏡で500倍の倍率で観察し、白色物をα、黒色物をβ、TiC、TiNiと評価した。一次評価と二次評価を総合的に判断して、表面の金属組織を同定した。 Regarding the metal structure of the surface, a test piece was cut out from the material after the oxide was removed, and phase identification by X-ray diffraction was performed as a primary evaluation, and microstructure observation by an optical microscope was performed as a secondary evaluation. In X-ray diffraction, CoKα was used as the characteristic X-ray, the voltage was 30 kV, and the current was 100 mA. The measurement range was 10 ° ≦ 2θ ≦ 110 °, the step was 0.04 °, the integration time was 2 s, and the incident angle of the X-ray on the surface of the test piece was 0.3 °. In the chart obtained by X-ray diffraction, the signal intensity at an angle at which peaks derived from each phase appear is 1.5 times or more of the average value of the background signal intensity at 0.2 ° before and after the angle. It was judged that each phase was detected in. In the microstructure observation, after mirror-polishing, etching was performed with hydrofluoric nitric acid and then observed with an optical microscope at a magnification of 500 times, and a white product was evaluated as α, a black product was evaluated as β, TiC, and Ti 2 Ni. The metal structure on the surface was identified by comprehensively judging the primary evaluation and the secondary evaluation.

耐食性の評価は、酸化物除去後の素材から試験片を切り出し、70℃、5mass%塩酸水溶液中に168時間浸漬し、浸漬前後の重量変化から腐食速度を算出した。
以上の結果を表2、3にまとめた。
To evaluate the corrosion resistance, a test piece was cut out from the material after the oxide was removed, immersed in a 5 mass% hydrochloric acid aqueous solution at 70 ° C. for 168 hours, and the corrosion rate was calculated from the weight change before and after the immersion.
The above results are summarized in Tables 2 and 3.

No.1〜No.14は、本発明で規定する合金成分、冷間圧延率、焼鈍条件、表面の金属組織を満足し、その結果焼鈍時の酸化増量が小さく、耐食性にも優れる。   No. 1-No. No. 14 satisfies the alloy components, the cold rolling rate, the annealing conditions, and the surface metallographic structure specified in the present invention, and as a result, the amount of increased oxidation during annealing is small and the corrosion resistance is excellent.

No.15〜No.22およびNo.27は、熱処理条件が本発明の範囲外である。その結果、表面の金属組織や酸化物の直下の平均Ni量が本発明の範囲外となり、本発明に比べて酸化増量が大きくなり、耐食性にも劣る。   No. 15-No. 22 and No. 22. In No. 27, the heat treatment condition is outside the scope of the present invention. As a result, the metal structure on the surface and the average amount of Ni immediately below the oxide are out of the range of the present invention, the amount of oxidation increase is larger than that of the present invention, and the corrosion resistance is also poor.

No.23〜No.26は、冷間圧延率が本発明の範囲外である。その結果、表面の金属組織は本発明の範囲内となるが、酸化物の直下の平均Ni量が本発明の範囲外となり、本発明に比べて酸化増量が大きくなり、耐食性にも劣る。これは冷間圧延率が小さく本発明に比べて再結晶が充分ではないためである。   No. 23-No. No. 26 has a cold rolling rate outside the range of the present invention. As a result, the metallographic structure of the surface is within the range of the present invention, but the average amount of Ni directly below the oxide is outside the range of the present invention, the amount of oxidation increase is large and corrosion resistance is poor as compared with the present invention. This is because the cold rolling rate is small and recrystallization is not sufficient as compared with the present invention.

Figure 0006686744
Figure 0006686744

Figure 0006686744
Figure 0006686744

Figure 0006686744
Figure 0006686744

Claims (2)

mass%で、Ru:0.005〜2.0%、Ni:0.1〜1.0%、C:0.001〜0.1%を含有し、残部がTiおよび不可避的不純物からなるチタン合金板であって、チタン合金板の表面を覆う酸化物の厚さが30nm以下、酸化物の直下における平均Ni量が0.1〜5.5mass%、さらに酸化物の直下の金属組織にTi2Niが含まれることを特徴とするチタン合金板。 mass%, titanium containing Ru : 0.005 to 2.0%, Ni: 0.1 to 1.0%, C: 0.001 to 0.1%, with the balance being Ti and unavoidable impurities An alloy plate, the thickness of the oxide covering the surface of the titanium alloy plate is 30 nm or less, the average amount of Ni immediately below the oxide is 0.1 to 5.5 mass%, and the metal structure immediately below the oxide has Ti2Ni. A titanium alloy plate characterized by containing. mass%で、Ru:0.005〜2.0%、Ni:0.1〜1.0%を含有し、残部がTiおよび不可避的不純物からなるチタン合金板素材を、Cを含有する潤滑剤を用いて冷間圧延率10%以上で冷間圧延することによって、チタン合金板素材の内部にCを0.001〜0.1mass%導入する第1のステップと、
前記チタン合金板素材を焼鈍温度650℃〜700℃の条件で焼鈍することによって、チタン合金板素材の表面に酸化物を形成し、酸化物の直下の平均Ni量を10.0〜30.0mass%とし、酸化物の直下の金属組織にTi2Niを含有するNi濃化層を形成する第2のステップと、
前記チタン合金板素材を酸洗することによって、酸化物を除去すると共にNi濃化層の一部を除去し、チタン合金板素材表面の直下におけるNi濃化層の平均Ni量を0.1〜5.5mass%に低減する第3のステップと、
前記チタン合金板素材に厚さ30nm以下の酸化物を形成する第4のステップと、
を順次処理することを特徴とするチタン合金板の製造方法。
In% by mass, Ru : 0.005 to 2.0%, Ni: 0.1 to 1.0%, the balance is a titanium alloy plate material containing Ti and unavoidable impurities, and a lubricant containing C. The first step of introducing 0.001 to 0.1 mass% of C into the titanium alloy plate material by cold rolling at a cold rolling rate of 10% or more using
The titanium alloy plate material is annealed at an annealing temperature of 650 ° C. to 700 ° C. to form an oxide on the surface of the titanium alloy plate material, and the average Ni content immediately below the oxide is 10.0 to 30.0 mass. %, And a second step of forming a Ni-enriched layer containing Ti2Ni in the metal structure immediately below the oxide,
By pickling the titanium alloy plate material, oxides are removed and a part of the Ni concentrated layer is removed, and the average Ni content of the Ni concentrated layer immediately below the surface of the titanium alloy plate material is 0.1 to 0.1%. A third step of reducing to 5.5 mass%,
A fourth step of forming an oxide having a thickness of 30 nm or less on the titanium alloy plate material;
A method for manufacturing a titanium alloy plate, which comprises sequentially processing
JP2016132158A 2016-07-04 2016-07-04 Titanium alloy plate and its manufacturing method. Active JP6686744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016132158A JP6686744B2 (en) 2016-07-04 2016-07-04 Titanium alloy plate and its manufacturing method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016132158A JP6686744B2 (en) 2016-07-04 2016-07-04 Titanium alloy plate and its manufacturing method.

Publications (2)

Publication Number Publication Date
JP2018003101A JP2018003101A (en) 2018-01-11
JP6686744B2 true JP6686744B2 (en) 2020-04-22

Family

ID=60947494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132158A Active JP6686744B2 (en) 2016-07-04 2016-07-04 Titanium alloy plate and its manufacturing method.

Country Status (1)

Country Link
JP (1) JP6686744B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6787528B1 (en) * 2019-10-30 2020-11-18 日本製鉄株式会社 Titanium alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228459A (en) * 1985-12-18 1987-10-07 Nippon Mining Co Ltd Manufacture of titanium alloy material having superior corrosion resistance and workability
JP2002194591A (en) * 2000-12-21 2002-07-10 Nippon Steel Corp Titanium sheet and manufacturing method therefor
JP5379752B2 (en) * 2010-06-29 2013-12-25 株式会社神戸製鋼所 Titanium alloy with excellent intergranular corrosion resistance
KR101400526B1 (en) * 2012-03-09 2014-05-28 주식회사 포스코 Method for heat treatment and pickling titanium plate having excellent surface quality
JP5639216B2 (en) * 2013-03-27 2014-12-10 株式会社神戸製鋼所 Titanium plate material for fuel cell separator and method for producing the same

Also Published As

Publication number Publication date
JP2018003101A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6263333B2 (en) Cu-Ti copper alloy sheet, method for producing the same, and current-carrying component
JP4761586B1 (en) High-strength titanium copper plate and manufacturing method thereof
JP5852534B2 (en) Aluminum alloy sheet with excellent bake hardenability
JP6385507B2 (en) Nb-containing ferritic stainless steel sheet and method for producing the same
JP2005298854A (en) Ferritic stainless steel sheet with excellent formability, and its manufacturing method
JP2020503428A (en) Method for producing 6XXX aluminum sheet
JP6317967B2 (en) Cu-Ni-Co-Si-based copper alloy sheet, method for producing the same, and current-carrying component
JP2008081773A (en) Magnesium-alloy material and production method therefor
JP5439610B2 (en) High strength, high conductivity copper alloy and method for producing the same
JP5432632B2 (en) Aluminum alloy plate with excellent formability
JP6686744B2 (en) Titanium alloy plate and its manufacturing method.
JP3729454B2 (en) Copper alloy and manufacturing method thereof
JP2009249668A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP2007070672A (en) Method for producing aluminum alloy thick plate having excellent fatigue property
JP2011174142A (en) Copper alloy plate, and method for producing copper alloy plate
RU2752094C1 (en) Titanium alloy and method for production thereof
JP2010285671A (en) High-strength and high-electrical conductivity copper alloy and method of producing the same
JP7087861B2 (en) Titanium alloy and its manufacturing method
CN114555842B (en) Titanium alloy
JP2006351704A (en) Aluminum material for electrolytic capacitor electrode
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP5874771B2 (en) Steel plate for cans excellent in workability and rough skin resistance and method for producing the same
JP4065146B2 (en) Titanium alloy having excellent corrosion resistance and method for producing the same
JP3993155B2 (en) Manufacturing method of aluminum alloy hot-rolled sheet for resin-coated building materials with excellent strength and bending workability
JP6484160B2 (en) Electrode material, spark plug electrode, and spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R151 Written notification of patent or utility model registration

Ref document number: 6686744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151