JP4065146B2 - Titanium alloy having excellent corrosion resistance and method for producing the same - Google Patents

Titanium alloy having excellent corrosion resistance and method for producing the same Download PDF

Info

Publication number
JP4065146B2
JP4065146B2 JP2002181912A JP2002181912A JP4065146B2 JP 4065146 B2 JP4065146 B2 JP 4065146B2 JP 2002181912 A JP2002181912 A JP 2002181912A JP 2002181912 A JP2002181912 A JP 2002181912A JP 4065146 B2 JP4065146 B2 JP 4065146B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
added
titanium alloy
test
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002181912A
Other languages
Japanese (ja)
Other versions
JP2004027254A (en
Inventor
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002181912A priority Critical patent/JP4065146B2/en
Publication of JP2004027254A publication Critical patent/JP2004027254A/en
Application granted granted Critical
Publication of JP4065146B2 publication Critical patent/JP4065146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐食性に優れたチタン合金に関するものであり、特に、非酸化性の酸や隙間部などの厳しい腐蝕環境にて使用されるチタン合金に関する。
【0002】
【従来の技術】
純チタンは耐食性に優れることから、様々な腐蝕環境下で広く工業用材料として使用されている。特に、硝酸、クロム酸などの酸化性の酸や、海水、塩化物イオン含有溶液に対しては優れた耐食性を示す。
【0003】
しかし、塩酸、硫酸などの非酸化性酸中では、上記の環境におけるほど高い耐食性が期待できず、また、塩素イオン等が存在する場合、隙間部においていわゆる隙間腐蝕を生じることがあり、この点を改良した合金として、Ti−0.2%Pd(ASTM規格のグレード7、11)などチタンに白金族元素(Ru、Rh、Pd、Os、Ir及びPt)を微量添加した合金(Corrosion、31(1975)、p.60)、Ti−0.5Ni−0.05Ru(米国特許4666666)のようにNiとRuを複合添加した合金(特開昭61−127844号公報)など、各種の合金が開発されてきた。
【0004】
しかしながら、これらの合金は耐食性が優れるものの、希少かつ極めて高価な白金族元素を添加していることから、チタン合金の製造コストが大幅に高くなる。
【0005】
これに対し安価で耐食性に優れた合金として、Ti−0.8%Ni−0.3%Mo(ASTM規格のグレード12)のようにNiとMoを複合添加した合金(例えば、特公昭54−8529号公報)及び、TiにCr、Cu、Si及びAlの1種以上とNiを複合添加した合金が特開平4−308051号公報に開示されているが、純チタンよりは耐食性が優れるものの、特に非酸化性酸中においてはその改善代が白金族元素添加合金より小さく、さらなる改善が望まれていた。
【0006】
【発明が解決しようとする課題】
以上のような現状に鑑み、本発明は、高価な白金属元素を添加することなく、酸化性の酸や海水はもとより、非酸化性の酸中のような厳しい環境下においても優れた耐食性を示し、また塩素イオンが存在するような環境下での隙間腐蝕に対しても優れた抵抗力を示すチタン合金を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明者は、チタンの耐食性に及ぼす合金元素及び組織の影響について鋭意研究を重ねた結果、Ni、Cu及びFeをチタンに複合添加すると、著しく耐食性が向上することを見出し、従来合金のように高価な白金属元素を含有させることなく、非酸化性の酸中の耐食性や耐隙間腐蝕に優れる合金を発明するに至った。その要旨とするところは以下の通りである。
(1) 質量%で、
Ni:0.1〜1.5%
Cu:0.1〜2.1%、
Fe:0.02〜0.3%、
を含有し、残部Tiと不純物元素からなることを特徴とする耐食性に優れたチタン合金。
(2) さらに、質量%で、Mo、Nb、Zrの中から1種以上を合計で、0.05〜0.5%含有することを特徴とする(1)に記載の耐食性に優れたチタン合金。
(3) さらに、質量%で、Cr、Coの中から1種以上を合計で、0.05〜0.3%含有することを特徴とする(1)又は(2)に記載の耐食性に優れたチタン合金。
(4) 微視組織が等軸再結晶組織からなることを特徴とする(1)〜(3)のいずれか1項に記載の耐食性に優れたチタン合金。
(5) 熱間又は冷間で加工後、650℃以上で850℃以下の温度にて焼鈍を行い、空冷又は炉冷することを特徴とする(4)に記載の耐食性に優れたチタン合金の製造方法。
【0008】
【発明の実施の形態】
本発明者は、Ni及びCuを複合添加したチタン合金の非酸化性酸中における耐食性に及ぼす合金元素の影響について詳細な検討を行った。その結果、適量のNi、Cu及びFeをチタンに複合添加することにより、極めて高価な白金族元素を添加した高耐食チタン合金に匹敵する特性を達成できることを見出した。
【0009】
その理由は次に述べるとおりである。すなわち、Niはチタン中にほとんど固溶しないため、高温からの冷却中にNiの濃化したβ相やTi2Ni相(以下、第2相と記す)を生成させる。さらにCuを添加するとCuが第2相に濃化し、Cuがα相中に均一にかつ希薄に分布しているCu単独添加合金の場合に比べて、チタン全体の耐食性が改善される。
【0010】
しかし、Ni及びCuを複合添加したチタン合金の場合、白金族元素を添加したチタン合金に匹敵する耐食性を得るには5%以上のCuを添加する必要があるが、加工性や偏析の問題を生じる。これに対して微量のFeを添加すると、Cu量が2.1%以下であっても第2相にCuが高濃度で濃化し、白金族元素を添加したチタン合金と同等の耐食性が得られる。
【0011】
以下、成分の限定理由を説明する。なお、以下の説明において特に断らない限り%は質量%を表わすものとする。
【0012】
Niは、水素過電圧を変化させることによりチタンの耐食性を向上させる元素であり、Cu及びFeとの複合添加によって極めて高い耐食性が得られる。この効果は、Niの添加量が0.1%未満では不十分であり、また1.5%を超えて添加してもその効果は飽和してしまい、加工性や偏析の問題を生じ返って悪影響を及ぼす。従って、Ni量を0.1〜1.5%の範囲とした。
【0013】
Cuもチタンの耐食性を向上させる元素であり、Ni及びFeとの複合添加によって極めて高い耐食性が得られる。その効果は0.1%未満では不十分であり、2.1%を超えて添加してもその効果は飽和してしまい、加工性や偏析の問題を生じかえって悪影響を及ぼす。従って、Cu量を0.1〜2.1%の範囲とした。
【0014】
Feは、Ni及びCuの複合添加によるCuの第2相への濃縮を促進させて耐食性を向上させる元素であり、この効果を得るには、Feが0.02%以上添加されていることが必須である。ただし、0.3%を超えてFeが添加されると、Feが本来有する耐食性劣化効果が顕著となり、材料の耐食性が損なわれる。従って、Feの添加量は0.02〜0.3%の範囲であることが必要である。
【0015】
さらに、Mo、Nb、Zrの中から1種以上を含有しても良い。これら元素は単独でチタンに添加しても耐食性改善効果は小さいが、Ni、Cu、Feを複合添加した合金に添加すると、さらに耐食性を高めることができる。ただし、Mo、Nb、Zrの1種以上を合計で0.05%以上添加しないとその効果は小さく、また、合計で0.5%を超えて添加してもその効果は飽和してしまい、加工性を損なうなどの問題を生じかえって悪影響を及ぼす。従って、Mo、Nb、Zrの1種以上の添加量を合計で、0.05〜0.5%の範囲とした。
【0016】
さらに、必要に応じてCr、Coの1種以上を含有させても良い。これらの元素は単独でチタンに添加すると耐食性はむしろ低下することがあるが、Ni、Cu、Feを複合添加した合金や、さらにMo、Nb、Zrを添加した合金に複合添加すると、耐食性をより高めることができる。ただし、Cr、Coの1種以上の合計が0.05%未満ではその効果は小さく、また、合計で0.3%を超えて添加してもその効果は飽和してしまい、加工性を損なうなどの問題を生じかえって悪影響を及ぼす。従って、Cr、Coの1種以上の添加量を合計で0.05〜0.5%の範囲とした。
【0017】
次に微視組織について説明する。チタン合金は一般に高温のβ単相域から低温のα域又はα+β二相域に冷却されると、冷却速度に応じて大小の針状組織を呈する。このときβ相からα相が生成する変態反応の不均一性に起因して、元素分布がやや不均一になる傾向がある。一方、これら針状組織を熱間又は冷間で加工し、さらに焼鈍により再結晶させ等軸組織化すると、等軸のα相の間(粒界や粒界三重点)に第2相が分布した均一組織が得られる。腐蝕反応は電気化学的な反応であり、このような均一組織の方が、電位が均一化し、耐食性がより高くなる。従って、合金の微視組織は等軸再結晶組織であることとした。
【0018】
ただし、この第2相の距離があまりにも離れると、その中間領域においてはこの第2相による耐食性向上効果が及ばなくなる。結晶粒径が200μmを超えると第2相の距離が離れすぎ、部分的に耐食性が低下するため、200μm以下であることが好ましい。また、結晶粒径は微細であるほど電位が均一化するため、より効果的な範囲は150μm以下であり、最適な範囲は100μm以下である。
【0019】
結晶粒径の下限は規定しないが、現状の技術では5μm程度である。
【0020】
次に製造方法について説明する。本発明のチタン合金は、熱間又は冷間で加工した後に、焼鈍を行い、冷却して製造する。焼鈍は熱間又は冷間加工組織をα+β二相の等軸組織とするために施す。焼鈍温度は650℃未満では、合金元素の拡散が不十分なため再結晶が進行しにくく、十分な等軸組織が得られないため、650℃を下限とする。一方、焼鈍温度が850℃を超えるとβ相の量が多くなりすぎ、冷却課程でβ相中に針状α相が生成し、等軸組織が維持できず、元素の分布が不均一になるため、850℃を上限とした。
【0021】
また、焼鈍後、水冷すると冷却過程でβ相中に針状α相が生成し、等軸組織が維持できず、元素の分布が不均一になる。等軸組織を室温まで冷却維持するため、冷却方法は空冷又は炉冷とした。なお、冷却方法は、結晶粒径が200μm以下の等軸組織が得られる条件であれば、強制空冷でも良く、雰囲気温度を変化させて特定の温度範囲の冷却速度を特定の冷却速度とする制御冷却でも良い。
【0022】
【実施例】
本発明を、実施例を用いてさらに詳しく説明する。
(実施例1)
表1、表2(表1のつづき1)に示した成分からなるインゴットを、真空アーク2回溶解により準備し、これを熱間鍛造して厚さ150mmのスラブとした。このスラブを850℃に加熱し、厚さ10mmの板に熱間圧延し、750℃で1時間焼鈍後、空冷した。この製造方法は、本発明(5)に記載の方法に該当し、いずれの試料も等軸の再結晶粒からなり、表中本発明(1)〜(3)のいずれか1項に記載の成分を有する合金は、いずれも本発明(4)の実施例である。
【0023】
上記の厚板から5mm厚、30mm幅、40mm長の試験片を切り出し、1%及び5%の沸騰硫酸中に、また5%の沸騰塩酸中に各々48時間浸漬し、腐蝕減量を測定し、腐蝕速度を算出した。その結果を表1、表2(表1のつづき1)に合わせて示す。なお、備考欄には本発明の範囲であるものは該当する請求項の番号を示し、本発明の範囲外であるものは比較例とした。
【0024】
【表1】

Figure 0004065146
【0025】
【表2】
Figure 0004065146
【0026】
さて表1、表2(表1のつづき1)において、試験番号1は工業用純チタンに対して行った試験結果であり、いずれの環境においても大きな腐蝕速度にて腐蝕が進行している。これに対し、試験番号2のPd添加合金及び試験番号4のNi及びRu複合添加合金は、著しく耐食性が改善しており、いずれの環境においても腐蝕速度は1mm/年を大きく下回る値となっている。しかしながら、微量とはいえ高価な白金属元素を添加しており、幅広い用途に多量に使用するには多大なコストがかかってしまう。また、試験番号3のTi−Ni−Mo合金は、硫酸中においては純チタンより耐食性は改善しているが、依然として大きな腐蝕速度であり、塩酸中では耐食性改善効果もほとんど認められなかった。
【0027】
さて、試験番号5及び6は、各々チタンにNi及びCuを添加した実質的な2元系合金である。これらの耐食性も、環境によっては純チタンより多少良好であるがその改善しろは小さく、腐蝕環境によっては改善が認められない場合もあった。
【0028】
これに対し、本発明(1)の実施例で、Ni、Cu及びFeを複合添加した試験番号8、9、10、13、14、17及び18は、いずれの場合も、試験を行ったすべての環境において、純チタン(試験番号1)やTi−Ni−Mo合金(試験番号3)を大きく上回る耐食性を示しており、高価なPdやRuを添加した合金(試験番号2及び4)と同等の耐食性を示している。しかし、試験番号7、12及び16では優れた耐食性は得られなかった。その理由は、試験番号7では、Niの添加量が、試験番号12ではCuの添加量が、また試験番号16ではFeの添加量が、本発明(1)で規定された量に達していなかったためである。
【0029】
また、試験番号19でも、Feの添加量が本発明(1)で規定された量を超えたため、十分な耐食性が得られなかった。さらに、試験番号11及び15では、高耐食性が得られているが、これよりもNi又はCuの添加量の低い試験番号10及び14とほぼ同等の耐食性が得られており、Ni及びCuの効果が飽和している。そればかりか、NiやCuを多く添加しすぎて加工性を損なうなどの製造上の問題を生じた。
【0030】
以上のように適量のCu、Ni及びFeを複合添加することにより、高耐食性のチタン合金が得られるが、これに、Mo、Nb、Zrの中から1種以上を合計で、0.05〜0.5%含有させることにより、その耐食性をさらに高めることができる。例えば、表2(表1のつづき1)において、本発明(2)の実施例である試験番号20〜25では、ほぼ等量のNi、Cu及びFeを複合添加した試験番号9に比べて、腐蝕速度がさらに低下しており、耐食性が向上している。
【0031】
しかし、試験番号26〜29のように、その合計の添加量が本発明(2)で規定された0.05%に満たない場合、耐食性改善効果はほとんど認められない。また、試験番号30のように、0.5%を超えてこれらの元素を添加しても、Mo、Nb、Zrの添加量の合計がこれ以下である試験番号25と同等の耐食性しか得られていない。そればかりか、加工性を損なうなどの製造上の問題を生じた。
【0032】
このようなNi、Cu及びFeを複合添加した合金の耐食性改善効果は、本発明(3)の効果、すなわちCr、Coの中から1種以上を合計で、0.05〜0.3%含有することによって向上させることができる。例えば、表2(表1のつづき1)において、本発明(3)の実施例である試験番号31〜35では、ほぼ等量のNi、Cu及びFeを添加した試験番号9に比べて、腐蝕速度がさらに低下しており、耐食性が向上している。
【0033】
しかし、試験番号36〜38のように、その合計の添加量が本発明(3)で規定された0.05%に満たない場合、耐食性改善効果はほとんど認められない。
【0034】
また、試験番号39のように、0.3%を超えてこれらの元素を添加しても、Cr、Coの添加量の合計がこれ以下である試験番号35と同等の耐食性しか得られていない。そればかりか、加工性を損なうなどの製造上の問題を生じた。
【0035】
試験番号40〜42は、Nb、Mo、Zrを添加する本発明(2)の効果と、Co、Crを添加する本発明(3)の効果の両方が発現した例であり、いずれも、試験番号1〜42に記載された合金の中で最も低い腐蝕速度、すなわち最も高い耐食性を示している。
(実施例2)
表1および表2(表1のつづき1)の試験番号9、21及び34の成分のインゴットを実施例1と同様に熱間圧延し、表3に示した条件で熱処理を施した。この試料から切り出した試料を、5%沸騰塩酸中に48時間浸漬し、腐蝕減量を測定し、腐蝕速度を算出した。腐蝕試験結果を表3に合わせて示す。
【0036】
【表3】
Figure 0004065146
【0037】
表3において、本発明(5)に記載の方法により製造した本発明(4)の実施例は、いずれも0.5mm/年未満の腐蝕速度であり、高い耐食性を示したが、焼鈍温度や冷却条件が、本発明(5)に規定された条件を逸脱した試料は、0.75mm/年以下の比較的低い腐蝕速度ではあるが、0.5mm/年以上の腐蝕速度となっており、本発明(4)の実施例に比べるといずれも耐食性が低下していた。
【0038】
これは、焼鈍温度又は冷却方法が本発明の範囲外であったことが原因である。
【0039】
すなわち、試験番号43、50及び57は、焼鈍温度が本発明(5)で規定された650℃未満であったため、再結晶が十分進行せず所望の等軸組織が十分に得られず、本発明(4)の実施例に比べると耐食性が低下した。一方、試験番号48、49、55、56、62及び63は、焼鈍温度が850℃を超えたため、β相の量が多くなりすぎ、冷却中にβ相中に針状α相が生成し、等軸組織が維持できず、元素の分布が不均一になったため、本発明(4)の実施例に比べると耐食性が低下した。また、試験番号46、53及び60では、水冷したため、冷却速度が速すぎ、冷却課程において、β相中に針状α相が生成し、等軸組織が維持できず、元素の分布が不均一になり、本発明(4)の実施例に比べると耐食性が低下した。
(実施例3)
実施例1で使用した材料の一部を用いて隙間腐蝕の実験を行った。試験片は、2枚の試料の中央に穴を空け、これらを付き合わせ、さらにテフロン(登録商標)コーティングしたチタン製ボルトを差し込み、片側をナットで固定し、さらにこれを締め付けたものを用いた。そして、この突き合わせ試料を、pH 6.0の沸騰10%NaCl水溶液中に1〜3日間浸漬し、隙間腐蝕の有無を調べた。その結果を表4に示す。
【0040】
【表4】
Figure 0004065146
【0041】
表4において、試験番号1の工業用純チタンでは、1日の浸漬ですでに隙間腐蝕が発生している。これに対し、試験番号2のPd添加合金及び試験番号4のNi及びRu複合添加合金は、著しく耐隙間腐蝕性が改善しており、いずれの環境においても3日間の浸漬でも隙間腐蝕は発生しなかった。しかしながら、微量とはいえ高価な白金属元素が添加されており、幅広い用途に多量に使用するには、高コストとなってしまう。また、試験番号3のTi−Ni−Mo合金は、純チタンより耐隙間腐蝕性は改善しているが、3日目には隙間腐蝕が発生しており、本試験条件では必ずしも十分な耐隙間腐蝕性を示さなかった。
【0042】
以上の比較例に対し、本発明の実施例である試験番号9、24、34及び41のチタン合金では、いずれも3日間の浸漬で隙間腐蝕は発生しておらず、極めて高い耐隙間耐食性が確認された。
【0043】
【発明の効果】
以上説明したように、本発明により、高価な白金属元素を含有せず、非酸化性の酸や、塩素イオンが存在する隙間部のような厳しい環境下において優れた耐食性を示すチタン合金、及びその製造方法を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a titanium alloy having excellent corrosion resistance, and more particularly to a titanium alloy used in a severe corrosive environment such as a non-oxidizing acid and a gap.
[0002]
[Prior art]
Pure titanium is excellent in corrosion resistance and is widely used as an industrial material in various corrosive environments. In particular, it exhibits excellent corrosion resistance against oxidizing acids such as nitric acid and chromic acid, seawater, and chloride ion-containing solutions.
[0003]
However, in non-oxidizing acids such as hydrochloric acid and sulfuric acid, high corrosion resistance cannot be expected as in the above environment, and in the presence of chlorine ions, so-called crevice corrosion may occur in the gap portion. An alloy obtained by adding a small amount of platinum group elements (Ru, Rh, Pd, Os, Ir and Pt) to titanium such as Ti-0.2% Pd (ASTM standard grades 7 and 11) (Corrosion, 31 (1975), p. 60), various alloys such as Ti-0.5Ni-0.05Ru (U.S. Pat. No. 4,666,666) in which Ni and Ru are added in combination (Japanese Patent Laid-Open No. Sho 61-127844). Has been developed.
[0004]
However, although these alloys have excellent corrosion resistance, a rare and extremely expensive platinum group element is added, so that the production cost of the titanium alloy is significantly increased.
[0005]
On the other hand, as an alloy that is inexpensive and excellent in corrosion resistance, an alloy in which Ni and Mo are added in combination, such as Ti-0.8% Ni-0.3% Mo (ASTM standard grade 12) (for example, JP-B-54- 8529) and an alloy in which Ni is added in combination with one or more of Cr, Cu, Si and Al and Ti are disclosed in Japanese Patent Laid-Open No. 4-308051, but although corrosion resistance is superior to pure titanium, In particular, in non-oxidizing acids, the cost of improvement is smaller than that of platinum group element-added alloys, and further improvement has been desired.
[0006]
[Problems to be solved by the invention]
In view of the present situation as described above, the present invention provides excellent corrosion resistance not only in oxidizing acids and seawater, but also in harsh environments such as non-oxidizing acids without adding expensive white metal elements. In addition, the present invention intends to provide a titanium alloy that exhibits excellent resistance to crevice corrosion in an environment where chlorine ions are present.
[0007]
[Means for Solving the Problems]
As a result of intensive studies on the influence of alloying elements and structure on the corrosion resistance of titanium, the present inventor has found that when Ni, Cu and Fe are added in combination to titanium, the corrosion resistance is remarkably improved. The inventors have invented an alloy that is excellent in corrosion resistance and crevice corrosion resistance in a non-oxidizing acid without containing an expensive white metal element. The gist is as follows.
(1) In mass%,
Ni: 0.1 to 1.5%
Cu: 0.1 to 2.1%
Fe: 0.02-0.3%,
A titanium alloy having excellent corrosion resistance, characterized by comprising a balance Ti and an impurity element.
(2) Further, the titanium having excellent corrosion resistance according to (1), further containing 0.05 to 0.5% in total by mass of one or more of Mo, Nb and Zr. alloy.
(3) Furthermore, it is excellent in the corrosion resistance according to (1) or (2), characterized in that it contains 0.05 to 0.3% in total by mass of one or more of Cr and Co. Titanium alloy.
(4) The titanium alloy having excellent corrosion resistance according to any one of (1) to (3), wherein the microstructure is an equiaxed recrystallized structure.
(5) After processing hot or cold, annealing is performed at a temperature of 650 ° C. or higher and 850 ° C. or lower, and air cooling or furnace cooling is performed. The titanium alloy having excellent corrosion resistance according to (4) Production method.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present inventor has conducted detailed studies on the influence of alloy elements on the corrosion resistance of non-oxidizing acids in titanium alloys combined with Ni and Cu. As a result, it has been found that by adding a proper amount of Ni, Cu and Fe to titanium, it is possible to achieve characteristics comparable to a highly corrosion resistant titanium alloy to which an extremely expensive platinum group element is added.
[0009]
The reason is as follows. That is, since Ni hardly dissolves in titanium, a Ni-concentrated β phase or Ti 2 Ni phase (hereinafter referred to as a second phase) is generated during cooling from a high temperature. Further, when Cu is added, Cu concentrates in the second phase, and the corrosion resistance of the entire titanium is improved as compared with the case of a Cu-added alloy in which Cu is uniformly and dilutedly distributed in the α phase.
[0010]
However, in the case of a titanium alloy combined with Ni and Cu, it is necessary to add 5% or more of Cu in order to obtain corrosion resistance comparable to that of a titanium alloy added with a platinum group element. However, there is a problem of workability and segregation. Arise. On the other hand, when a small amount of Fe is added, even if the amount of Cu is 2.1% or less, Cu is concentrated at a high concentration in the second phase, and corrosion resistance equivalent to that of a titanium alloy to which a platinum group element is added is obtained. .
[0011]
Hereinafter, the reasons for limiting the components will be described. In the following description, “%” represents “% by mass” unless otherwise specified.
[0012]
Ni is an element that improves the corrosion resistance of titanium by changing the hydrogen overvoltage, and extremely high corrosion resistance is obtained by the combined addition with Cu and Fe. This effect is insufficient if the amount of Ni added is less than 0.1%, and even if added over 1.5%, the effect is saturated, resulting in problems of workability and segregation. Adversely affect. Therefore, the Ni content is set in the range of 0.1 to 1.5%.
[0013]
Cu is also an element that improves the corrosion resistance of titanium, and extremely high corrosion resistance is obtained by the combined addition with Ni and Fe. The effect is insufficient if it is less than 0.1%, and even if added in excess of 2.1%, the effect is saturated and adversely affects workability and segregation problems. Therefore, the Cu content is set in the range of 0.1 to 2.1%.
[0014]
Fe is an element that promotes the concentration of Cu into the second phase by the combined addition of Ni and Cu and improves the corrosion resistance. To obtain this effect, Fe is added in an amount of 0.02% or more. It is essential. However, when Fe is added exceeding 0.3%, the corrosion resistance deterioration effect inherent to Fe becomes remarkable, and the corrosion resistance of the material is impaired. Therefore, the addition amount of Fe needs to be in the range of 0.02 to 0.3%.
[0015]
Furthermore, you may contain 1 or more types from Mo, Nb, and Zr. Even if these elements are added alone to titanium, the effect of improving the corrosion resistance is small. However, when these elements are added to an alloy in which Ni, Cu, and Fe are added in combination, the corrosion resistance can be further improved. However, if one or more of Mo, Nb, and Zr is not added in a total of 0.05% or more, the effect is small, and even if added over 0.5% in total, the effect is saturated, It may adversely affect the workability and other problems. Therefore, the total amount of one or more of Mo, Nb, and Zr is set in the range of 0.05 to 0.5%.
[0016]
Furthermore, you may contain 1 or more types of Cr and Co as needed. When these elements are added alone to titanium, the corrosion resistance may rather be lowered. However, when these elements are added in combination with alloys containing Ni, Cu, and Fe, and alloys containing Mo, Nb, and Zr, the corrosion resistance is further improved. Can be increased. However, if the total of one or more of Cr and Co is less than 0.05%, the effect is small, and even if added over 0.3% in total, the effect is saturated and workability is impaired. It can adversely affect other problems. Therefore, the addition amount of one or more of Cr and Co is set to a range of 0.05 to 0.5% in total.
[0017]
Next, the microscopic tissue will be described. In general, when a titanium alloy is cooled from a high-temperature β single-phase region to a low-temperature α region or α + β two-phase region, it exhibits a large or small acicular structure depending on the cooling rate. At this time, the element distribution tends to be slightly non-uniform due to the non-uniformity of the transformation reaction in which the α-phase is generated from the β-phase. On the other hand, when these needle-like structures are processed hot or cold and then recrystallized by annealing to form equiaxed structures, the second phase is distributed between the equiaxed α-phases (grain boundaries and triple points of grain boundaries). A uniform structure is obtained. The corrosion reaction is an electrochemical reaction, and such a uniform structure has a more uniform potential and higher corrosion resistance. Therefore, the microstructure of the alloy is an equiaxed recrystallized structure.
[0018]
However, if the distance between the second phases is too great, the effect of improving the corrosion resistance due to the second phases will not reach the intermediate region. When the crystal grain size exceeds 200 μm, the distance between the second phases is too far away, and the corrosion resistance is partially reduced. Therefore, it is preferably 200 μm or less. Further, since the potential becomes uniform as the crystal grain size becomes finer, the more effective range is 150 μm or less, and the optimum range is 100 μm or less.
[0019]
The lower limit of the crystal grain size is not specified, but it is about 5 μm with the current technology.
[0020]
Next, a manufacturing method will be described. The titanium alloy of the present invention is manufactured by annealing and cooling after processing hot or cold. Annealing is performed in order to make the hot or cold worked structure an equiaxed structure of α + β two phases. If the annealing temperature is less than 650 ° C., the diffusion of the alloy elements is insufficient, so that recrystallization does not proceed easily, and a sufficient equiaxed structure cannot be obtained. On the other hand, when the annealing temperature exceeds 850 ° C., the amount of β phase increases too much, and acicular α phase is generated in the β phase in the cooling process, the equiaxed structure cannot be maintained, and the element distribution becomes non-uniform. Therefore, the upper limit was set to 850 ° C.
[0021]
In addition, when water-cooling is performed after annealing, acicular α-phase is generated in the β-phase during the cooling process, the equiaxed structure cannot be maintained, and the element distribution becomes non-uniform. In order to keep the equiaxed structure cooled to room temperature, the cooling method was air cooling or furnace cooling. Note that the cooling method may be forced air cooling as long as an equiaxed structure with a crystal grain size of 200 μm or less is obtained, and control the cooling rate in a specific temperature range by changing the ambient temperature to a specific cooling rate. Cooling may be used.
[0022]
【Example】
The present invention will be described in more detail with reference to examples.
Example 1
Ingots composed of the components shown in Table 1 and Table 2 (Continuation 1 of Table 1) were prepared by melting twice by vacuum arc, and this was hot-forged into a slab having a thickness of 150 mm. The slab was heated to 850 ° C., hot-rolled to a 10 mm thick plate, annealed at 750 ° C. for 1 hour, and then air-cooled. This manufacturing method corresponds to the method described in the present invention (5), and each sample is composed of equiaxed recrystallized grains, and is described in any one of the present inventions (1) to (3) in the table. The alloys having components are all examples of the present invention (4).
[0023]
A test piece of 5 mm thickness, 30 mm width and 40 mm length was cut out from the above-mentioned thick plate and immersed in 1% and 5% boiling sulfuric acid and 5% boiling hydrochloric acid for 48 hours, respectively, and the corrosion loss was measured. Corrosion rate was calculated. The results are shown in Tables 1 and 2 (continued in Table 1). In the remarks column, what is within the scope of the present invention indicates the number of the corresponding claim, and those outside the scope of the present invention are comparative examples.
[0024]
[Table 1]
Figure 0004065146
[0025]
[Table 2]
Figure 0004065146
[0026]
Now, in Table 1 and Table 2 (Continuation 1 of Table 1), test number 1 is the result of the test performed on industrial pure titanium, and corrosion progresses at a high corrosion rate in any environment. In contrast, the Pd-added alloy of Test No. 2 and the Ni and Ru composite-added alloy of Test No. 4 have remarkably improved corrosion resistance, and the corrosion rate is much lower than 1 mm / year in any environment. Yes. However, an expensive white metal element is added although it is a trace amount, and it takes a great deal of cost to use it in a large amount for a wide range of applications. Further, the Ti-Ni-Mo alloy of Test No. 3 has improved corrosion resistance in pure sulfuric acid as compared with pure titanium, but still has a large corrosion rate, and almost no corrosion resistance improving effect was observed in hydrochloric acid.
[0027]
Test numbers 5 and 6 are substantially binary alloys obtained by adding Ni and Cu to titanium, respectively. These corrosion resistances are also slightly better than pure titanium depending on the environment, but the improvement is small, and there are cases where improvement is not recognized depending on the corrosive environment.
[0028]
On the other hand, in Examples of the present invention (1), test numbers 8, 9, 10, 13, 14, 17, and 18 in which Ni, Cu, and Fe were added in combination were all tested. In the environment of the above, it shows corrosion resistance far exceeding that of pure titanium (test number 1) and Ti-Ni-Mo alloy (test number 3), and is equivalent to alloys (test numbers 2 and 4) to which expensive Pd and Ru are added. Corrosion resistance is shown. However, excellent corrosion resistance was not obtained in Test Nos. 7, 12, and 16. The reason is that in test number 7, the amount of Ni added, the amount of Cu added in test number 12, and the amount of Fe added in test number 16 did not reach the amount specified in the present invention (1). This is because.
[0029]
Also in Test No. 19, since the amount of Fe added exceeded the amount specified in the present invention (1), sufficient corrosion resistance could not be obtained. Furthermore, in Test Nos. 11 and 15, high corrosion resistance was obtained, but almost the same corrosion resistance as Test Nos. 10 and 14 in which the addition amount of Ni or Cu was lower than this was obtained, and the effects of Ni and Cu Is saturated. In addition, production problems such as a large amount of Ni and Cu added to impair workability were caused.
[0030]
As described above, by adding a proper amount of Cu, Ni and Fe in combination, a titanium alloy having high corrosion resistance can be obtained. To this, one or more of Mo, Nb and Zr are added in a total amount of 0.05 to By containing 0.5%, the corrosion resistance can be further improved. For example, in Table 2 (Continuation 1 of Table 1), in Test Nos. 20 to 25 which are examples of the present invention (2), compared to Test No. 9 in which substantially equal amounts of Ni, Cu and Fe are added in combination, The corrosion rate is further reduced, and the corrosion resistance is improved.
[0031]
However, when the total addition amount is less than 0.05% defined in the present invention (2) as in test numbers 26 to 29, the corrosion resistance improving effect is hardly recognized. Moreover, even if these elements are added exceeding 0.5% as in test number 30, only the corrosion resistance equivalent to test number 25 in which the total amount of addition of Mo, Nb, and Zr is less than this is obtained. Not. In addition, manufacturing problems such as loss of workability occurred.
[0032]
The effect of improving the corrosion resistance of such an alloy in which Ni, Cu and Fe are added together is the effect of the present invention (3), that is, 0.05 to 0.3% in total of one or more of Cr and Co. It can be improved by doing. For example, in Table 2 (Continuation 1 of Table 1), in Test Nos. 31 to 35, which are examples of the present invention (3), compared to Test No. 9 in which substantially equal amounts of Ni, Cu and Fe are added, the corrosion is reduced. The speed is further reduced and the corrosion resistance is improved.
[0033]
However, when the total addition amount is less than 0.05% defined in the present invention (3) as in test numbers 36 to 38, the corrosion resistance improving effect is hardly recognized.
[0034]
Further, as in Test No. 39, even when these elements are added in excess of 0.3%, only the corrosion resistance equivalent to Test No. 35 in which the total amount of Cr and Co is less than this is obtained. . In addition, manufacturing problems such as loss of workability occurred.
[0035]
Test Nos. 40 to 42 are examples in which both the effect of the present invention (2) in which Nb, Mo and Zr are added and the effect of the present invention (3) in which Co and Cr are added are exhibited. It shows the lowest corrosion rate, that is, the highest corrosion resistance among the alloys described in Nos. 1-42.
(Example 2)
The ingots having the test numbers 9, 21 and 34 in Table 1 and Table 2 (Continuation 1 in Table 1) were hot-rolled in the same manner as in Example 1 and heat-treated under the conditions shown in Table 3. A sample cut out from this sample was immersed in 5% boiling hydrochloric acid for 48 hours, the corrosion weight loss was measured, and the corrosion rate was calculated. Corrosion test results are shown in Table 3.
[0036]
[Table 3]
Figure 0004065146
[0037]
In Table 3, all the examples of the present invention (4) produced by the method described in the present invention (5) had a corrosion rate of less than 0.5 mm / year and exhibited high corrosion resistance. Samples whose cooling conditions deviated from the conditions specified in the present invention (5) have a relatively low corrosion rate of 0.75 mm / year or less, but have a corrosion rate of 0.5 mm / year or more, Compared with the Example of this invention (4), all had corrosion resistance falling.
[0038]
This is because the annealing temperature or cooling method was outside the scope of the present invention.
[0039]
That is, in test numbers 43, 50 and 57, since the annealing temperature was less than 650 ° C. defined in the present invention (5), the recrystallization did not proceed sufficiently and the desired equiaxed structure could not be sufficiently obtained. Compared with the Example of invention (4), corrosion resistance fell. On the other hand, in the test numbers 48, 49, 55, 56, 62 and 63, since the annealing temperature exceeded 850 ° C., the amount of β phase was too large, and acicular α phase was generated in the β phase during cooling. Since the equiaxed structure could not be maintained and the distribution of elements became non-uniform, the corrosion resistance was reduced as compared with the example of the present invention (4). In Test Nos. 46, 53, and 60, since the water cooling was performed, the cooling rate was too high, and in the cooling process, an acicular α phase was generated in the β phase, the equiaxed structure could not be maintained, and the element distribution was uneven. Thus, the corrosion resistance was lower than that of the example of the present invention (4).
(Example 3)
An experiment of crevice corrosion was performed using a part of the material used in Example 1. A test piece was used in which a hole was made in the center of two samples, these were attached together, a titanium bolt coated with Teflon (registered trademark) was inserted, one side was fixed with a nut, and this was further tightened. . And this butt | matched sample was immersed in the boiling 10% NaCl aqueous solution of pH 6.0 for 1-3 days, and the presence or absence of crevice corrosion was investigated. The results are shown in Table 4.
[0040]
[Table 4]
Figure 0004065146
[0041]
In Table 4, in the pure titanium for industrial use of test number 1, crevice corrosion has already occurred by immersion for one day. In contrast, the Pd-added alloy of Test No. 2 and the Ni and Ru composite-added alloy of Test No. 4 have remarkably improved crevice corrosion resistance, and crevice corrosion occurs even when immersed for 3 days in any environment. There wasn't. However, an expensive white metal element is added although it is a trace amount, and it is expensive to use a large amount for a wide range of purposes. Further, the Ti-Ni-Mo alloy of Test No. 3 has improved crevice corrosion resistance compared to pure titanium, but crevice corrosion has occurred on the third day. It was not corrosive.
[0042]
In contrast to the above comparative examples, in the titanium alloys of test numbers 9, 24, 34, and 41, which are examples of the present invention, no crevice corrosion occurred after immersion for 3 days, and extremely high crevice corrosion resistance was obtained. confirmed.
[0043]
【The invention's effect】
As described above, according to the present invention, a titanium alloy that does not contain an expensive white metal element and exhibits excellent corrosion resistance in a severe environment such as a non-oxidizing acid or a gap where chlorine ions exist, and A manufacturing method thereof can be provided.

Claims (5)

質量%で、
Ni:0.1〜1.5%
Cu:0.1〜2.1%、
Fe:0.02〜0.3%、
を含有し、残部Ti及び不可避的不純物元素からなることを特徴とする耐食性に優れたチタン合金。
% By mass
Ni: 0.1 to 1.5%
Cu: 0.1 to 2.1%
Fe: 0.02-0.3%,
A titanium alloy having excellent corrosion resistance, characterized by comprising a balance Ti and inevitable impurity elements.
さらに、質量%で、Mo、Nb、Zrの中から1種以上を合計で、0.05〜0.5%含有することを特徴とする請求項1に記載の耐食性に優れたチタン合金。The titanium alloy having excellent corrosion resistance according to claim 1, further comprising 0.05 to 0.5% in total by mass of one or more of Mo, Nb, and Zr. さらに、質量%で、Cr、Coの中から1種以上を合計で、0.05〜0.3%含有することを特徴とする請求項1又は2に記載の耐食性に優れたチタン合金。The titanium alloy having excellent corrosion resistance according to claim 1 or 2, further comprising 0.05 to 0.3% in total by mass of one or more of Cr and Co. 微視組織が等軸再結晶組織からなることを特徴とする請求項1〜3のいずれか1項に記載の耐食性に優れたチタン合金。The titanium alloy having excellent corrosion resistance according to any one of claims 1 to 3, wherein the microstructure is an equiaxed recrystallized structure. 熱間又は冷間で加工後、650℃以上で850℃以下の温度にて焼鈍を行い、空冷又は炉冷することを特徴とする請求項4に記載の耐食性に優れたチタン合金の製造方法。5. The method for producing a titanium alloy having excellent corrosion resistance according to claim 4, wherein, after hot or cold working, annealing is performed at a temperature of 650 ° C. or higher and 850 ° C. or lower, and air cooling or furnace cooling is performed.
JP2002181912A 2002-06-21 2002-06-21 Titanium alloy having excellent corrosion resistance and method for producing the same Expired - Fee Related JP4065146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181912A JP4065146B2 (en) 2002-06-21 2002-06-21 Titanium alloy having excellent corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181912A JP4065146B2 (en) 2002-06-21 2002-06-21 Titanium alloy having excellent corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004027254A JP2004027254A (en) 2004-01-29
JP4065146B2 true JP4065146B2 (en) 2008-03-19

Family

ID=31178628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181912A Expired - Fee Related JP4065146B2 (en) 2002-06-21 2002-06-21 Titanium alloy having excellent corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4065146B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147998A1 (en) * 2011-04-27 2012-11-01 東邦チタニウム株式会社 α+β-TYPE OR β-TYPE TITANIUM ALLOY AND METHOD FOR MANUFACTURING SAME
JP6173829B2 (en) * 2013-08-12 2017-08-02 三菱重工業株式会社 TiAl bonded body and manufacturing method of TiAl bonded body
CN109097623B (en) * 2018-08-03 2020-10-09 中鼎特金秦皇岛科技股份有限公司 Corrosion-resistant titanium alloy and preparation method thereof
CN115896540B (en) * 2022-11-16 2024-01-30 哈尔滨工业大学 Ti-Mo-Ni-Al-Zr corrosion-resistant titanium alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2004027254A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
EP3891313B1 (en) Titanium alloys having improved corrosion resistance, strength, ductility, and toughness
JP4065146B2 (en) Titanium alloy having excellent corrosion resistance and method for producing the same
CN111902550B (en) Titanium alloy and method for producing same
CN114555842B (en) Titanium alloy
WO1987003305A1 (en) Corrosion-resistant copper alloy
JP7087861B2 (en) Titanium alloy and its manufacturing method
JPH11335758A (en) High strength titanium alloy excellent in cold ductility
JP4304425B2 (en) Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet
JP2936899B2 (en) Titanium alloy with excellent corrosion resistance and workability to non-oxidizing acids
JP4264377B2 (en) Titanium plate for electrolytic Cu foil production drum and production method thereof
JPS62228459A (en) Manufacture of titanium alloy material having superior corrosion resistance and workability
JP6686744B2 (en) Titanium alloy plate and its manufacturing method.
JPS5864339A (en) Al alloy for fin material of heat exchanger with superior sacrificial anode effect and drooping resistance
JP7210780B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
TWI650428B (en) Titanium alloy and its manufacturing method
JPH09143597A (en) Copper alloy for lead frame and its production
JPH07316699A (en) Corrosion-resistant nitride-dispersed nickel base alloy having high hardness and strength
KR101967910B1 (en) Titanium alloy with high formability at room temperature and manufacturing method for the same
JP2001329324A (en) Titanium alloy
JPH083668A (en) Nickel-base alloy excellent in strength and corrosion resistance
JP2022024243A (en) β TITANIUM ALLOY
JPS61174346A (en) Corrosion resisting titanium alloy having superior bendability
JPS6026637A (en) Corrosion-resistant ni alloy having superior resistance to stress corrosion cracking
JPH07316700A (en) Corrosion-resistant nitride-dispersed nickel base alloy having high hardness and strength
JPH09209064A (en) Titanium alloy excellent in corrosion resistance and having high strength and high ductility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071228

R151 Written notification of patent or utility model registration

Ref document number: 4065146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees