JP5117673B2 - Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor - Google Patents

Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor Download PDF

Info

Publication number
JP5117673B2
JP5117673B2 JP2005321360A JP2005321360A JP5117673B2 JP 5117673 B2 JP5117673 B2 JP 5117673B2 JP 2005321360 A JP2005321360 A JP 2005321360A JP 2005321360 A JP2005321360 A JP 2005321360A JP 5117673 B2 JP5117673 B2 JP 5117673B2
Authority
JP
Japan
Prior art keywords
mass
aluminum
electrolytic capacitor
content
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005321360A
Other languages
Japanese (ja)
Other versions
JP2007009318A (en
Inventor
勝起 吉田
智明 山ノ井
雅生 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005321360A priority Critical patent/JP5117673B2/en
Priority to PCT/JP2005/024019 priority patent/WO2006068300A1/en
Priority to EP05822608A priority patent/EP1841892B1/en
Publication of JP2007009318A publication Critical patent/JP2007009318A/en
Application granted granted Critical
Publication of JP5117673B2 publication Critical patent/JP5117673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、電解コンデンサ電極用アルミニウム材、電解コンデンサ用電極材の製造方法、アルミニウム電解コンデンサ用陽極材及びアルミニウム電解コンデンサに関する。   The present invention relates to an aluminum material for electrolytic capacitor electrodes, a method for producing an electrode material for electrolytic capacitors, an anode material for aluminum electrolytic capacitors, and an aluminum electrolytic capacitor.

なお、この明細書において、「アルミニウム」の語はアルミニウム及びその合金の両者を含む意味で用い、またアルミニウム材には少なくともアルミニウム箔、アルミニウム板及びこれらの成形体が含まれる。   In this specification, the term “aluminum” is used to include both aluminum and its alloys, and the aluminum material includes at least an aluminum foil, an aluminum plate, and a molded body thereof.

近年、電子機器の小型化に伴い、電子機器に組み込まれる電解コンデンサ電極用アルミニウム箔についても静電容量の向上が要望されている。   In recent years, with the miniaturization of electronic devices, there has been a demand for improvement in electrostatic capacity of aluminum foil for electrolytic capacitor electrodes incorporated in electronic devices.

通常、電解コンデンサ電極に使用されるアルミニウム材は、拡面率を高めて静電容量を向上させるためにエッチング処理される。そして、エッチング処理により形成されるエッチピットは高密度且つ均一で深いほど拡面率が高くなる。よって、アルミニウム材にはエッチング適性を改善すべくエッチング処理の前工程として様々な処理が行われている。   Usually, an aluminum material used for an electrolytic capacitor electrode is etched in order to increase the surface expansion ratio and improve the capacitance. Then, the etch pit formed by the etching process has a higher surface area ratio as the density becomes higher and uniform and deep. Therefore, various treatments are performed on the aluminum material as a pre-process of the etching treatment in order to improve etching suitability.

例えば、最終焼鈍前の水和処理と最終焼鈍での結晶性酸化膜の形成処理、最終焼鈍前の酸化処理等である(例えば特許文献1及び2)。   For example, a hydration process before final annealing, a crystalline oxide film formation process in final annealing, an oxidation process before final annealing, and the like (for example, Patent Documents 1 and 2).

また、Zn、Mn、Cu、Fe、Si、Ga、Pb、Mg、B、V、Ti、Zr、Ni、C、P等の種々の元素の含有量を規定して高静電容量を得る方法も提案されている(例えば特許文献3及び4)。   Also, a method for obtaining a high capacitance by specifying the contents of various elements such as Zn, Mn, Cu, Fe, Si, Ga, Pb, Mg, B, V, Ti, Zr, Ni, C, P, etc. Have also been proposed (for example, Patent Documents 3 and 4).

さらに、最終焼鈍後のアルミニウム箔の飽和電流密度と電流密度急増電位について規定し、規定された範囲内の酸化皮膜は表面溶解が抑えられ、静電容量が高いという報告や(例えば特許文献5)、アルミニウム材料内部の孔食電位が-760〜-735mVであり、表面の孔食電位がこれより10〜60mV低い箔は均一に深いエッチングが形成されるという報告もある(例えば特許文献6)。
特公昭58−34925号公報 特開平3−122260号公報 特開平2-270928号公報 特開平5−5145号公報 特開平11-36032号公報 特開平4-143242号公報
Furthermore, the saturation current density and the current density rapid increase potential of the aluminum foil after the final annealing are defined, and the oxide film within the defined range is suppressed in surface dissolution and has a high capacitance (for example, Patent Document 5). There is also a report that a foil having a pitting corrosion potential in an aluminum material of −760 to −735 mV and a surface having a pitting corrosion potential of 10 to 60 mV lower than this has a uniform deep etching (for example, Patent Document 6).
Japanese Patent Publication No. 58-34925 Japanese Patent Laid-Open No. 3-122260 JP-A-2-270928 JP-A-5-5145 JP-A-11-36032 JP-A-4-143242

しかしながら、上述したような取り組みだけでは、昨今の電解コンデンサの高静電容量化の要求に対して十分な満足を得るものではなかった。特に、特許文献3及び特許文献4に記載された微量元素の含有量制御という技術に関しては、改善の余地がある。   However, the above-described efforts alone have not sufficiently satisfied the recent demand for higher capacitance of electrolytic capacitors. In particular, there is room for improvement with respect to the technology for controlling the content of trace elements described in Patent Document 3 and Patent Document 4.

また、特許文献5に記載された飽和電流密度と電流密度急増電位の規定については、表層の酸化膜の特性を規定するものであり、アルミニウム材中の微量含有元素との関係については検討されていない。   In addition, the regulation of saturation current density and current density rapid increase potential described in Patent Document 5 regulates the characteristics of the oxide film on the surface layer, and the relationship with trace amounts of elements in the aluminum material has been studied. Absent.

また、特許文献6では、表層の孔食電位について、内部よりも卑にすることの重要性が強調されているが、最近のエッチングでは電解エッチングの前に前処理として表層を除去することが多く、表層の制御と共に内部の制御が重要になってきており、表層のみの制御では高容量化に対して、十分なものではなかった。   In Patent Document 6, the importance of making the pitting corrosion potential of the surface layer lower than the inside is emphasized. However, in recent etching, the surface layer is often removed as a pretreatment before electrolytic etching. In addition to the control of the surface layer, internal control has become important, and control of only the surface layer has not been sufficient for increasing the capacity.

尚且つ、近年ではエッチングメーカーでは高静電容量とともにコストダウンの要求が益々強くなっており、高静電容量と低コストを共に達成できるようなアルミニウム材が望まれている。   Further, in recent years, the demand for cost reduction along with high capacitance has been increasing more and more in etching manufacturers, and an aluminum material that can achieve both high capacitance and low cost is desired.

本発明は、このような技術背景に鑑み、三層電解法により精製されたアルミニウム塊よりも安価な偏析法により精製されたアルミニウム塊を多く用いた場合であっても、深いエッチピットを高密度かつ均一に発生させて確実に拡面率を高め、静電容量の増大を図ることができる電解コンデンサ電極用アルミニウム材、電解コンデンサ用電極材の製造方法、アルミニウム電解コンデンサ用陽極材及びアルミニウム電解コンデンサを提供しようとするものである。   In view of such a technical background, the present invention has a high density of deep etch pits even when a large amount of aluminum lump purified by a segregation method is cheaper than aluminum lump refined by a three-layer electrolysis method. Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor that can be generated uniformly and surely increase the area expansion ratio and increase the capacitance Is to provide.

前記目的は以下の手段によって達成される。   The object is achieved by the following means.

(1)合金組成において、Gaを0.0005質量%以上含有し、表面より深さ5nmまでの層のGa含有量AGa(質量%)と深さ5nmより内部のGa含有量BGa(質量%)との比AGa/BGaが3以下であり、且つ電流密度急増電位(E)が-770mV vs S.C.Eより貴で、-710mV vs S.C.Eより卑である電解コンデンサ電極用アルミニウム材。   (1) In the alloy composition, the Ga content AGa (mass%) of the layer containing 0.0005 mass% or more of Ga up to a depth of 5 nm from the surface and the internal Ga content BGa (mass%) from the depth of 5 nm. An aluminum material for an electrolytic capacitor electrode having a ratio AGa / BGa of 3 or less, and a current density rapid increase potential (E) nobler than -770 mV vs SCE and less than -710 mV vs SCE.

(2)合金組成において、アルミニウム純度が99.98質量%以上であって、Znを0.0002質量%以上含有し、且つZn含有量CZn(質量%)及びGa含有量CGa(質量%)が0.0056≦6CGa+7CZn≦0.0245なる関係を満たしている前項1に記載の電解コンデンサ電極用アルミニウム材。   (2) In the alloy composition, the aluminum purity is 99.98 mass% or more, Zn is 0.0002 mass% or more, and the Zn content CZn (mass%) and the Ga content CGa (mass%) are 0.0056 ≦ 6 CGa + 7 CZn ≦ 2. The aluminum material for electrolytic capacitor electrodes as described in 1 above, which satisfies the relationship 0.0245.

(3)Feを0.0008質量%以上0.004質量%以下、Siを0.0008質量%以上0.004質量%以下、Cuを0.001質量%以上0.008質量%以下、Pbを0.00003質量%以上0.0002質量%以下含有している前項2に記載の電解コンデンサ電極用アルミニウム材。   (3) Fe is contained in the range of 0.0008 mass% to 0.004 mass%, Si is contained in the range of 0.0008 mass% to 0.004 mass%, Cu is contained in the range of 0.001 mass% to 0.008 mass%, and Pb is contained in the range of 0.00003 mass% to 0.0002 mass%. 3. The aluminum material for electrolytic capacitor electrodes as described in 2 above.

(4)Ti含有量CTi(質量%)、Zr含有量CZr(質量%)及びV含有量CV(質量%)が0.00035≦CTi+CZr+CV≦0.0015なる関係を満たし、かつB含有量が0.0002質量%以下、Fe、Si、Cu、Ga、Zn、Pb、Ti、Zr、V以外の不純物が各々0.001質量%以下である請求項2または前項3に記載の電解コンデンサ電極用アルミニウム材。   (4) Ti content CTi (mass%), Zr content CZr (mass%) and V content CV (mass%) satisfy the relationship 0.00035 ≦ CTi + CZr + CV ≦ 0.0015, and B content is 0.0002 mass% or less, The aluminum material for electrolytic capacitor electrodes according to claim 2 or 3, wherein impurities other than Fe, Si, Cu, Ga, Zn, Pb, Ti, Zr, and V are each 0.001 mass% or less.

(5)Znを0.0002質量%以上0.0007質量%未満含有する前項2ないし前項4のいずれか1項に記載の電解コンデンサ電極用アルミニウム材。   (5) The aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 2 to 4, wherein Zn is contained in an amount of 0.0002% by mass or more and less than 0.0007% by mass.

(6)さらに、Gaを0.0008質量%以上含有する前項5に記載の電解コンデンサ電極用アルミニウム材。   (6) The aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 5, further containing 0.0008 mass% or more of Ga.

(7)さらに、Gaを0.001質量%以上含有する前項5に記載の電解コンデンサ電極用アルミニウム材。   (7) The aluminum material for electrolytic capacitor electrodes as described in 5 above, further containing 0.001% by mass or more of Ga.

(8)前項1ないし前項7のいずれか1項に記載されたアルミニウム材に、エッチングを実施する工程を含むことを特徴とする電解コンデンサ用電極材の製造方法。   (8) A method for producing an electrode material for an electrolytic capacitor, comprising a step of performing etching on the aluminum material described in any one of (1) to (7).

(9)エッチングの少なくとも一部が直流電解エッチングである前項8に記載の電解コンデンサ用電極材の製造方法。   (9) The method for producing an electrode material for electrolytic capacitors as described in 8 above, wherein at least a part of the etching is direct current electrolytic etching.

(10)前項8または前項9に記載の製造方法によって製造されたアルミニウム電解コンデンサ用陽極材。   (10) An anode material for an aluminum electrolytic capacitor produced by the production method according to item 8 or item 9.

(11)電極材として前項8または前項9に記載の製造方法によって製造されたアルミニウム電極材が用いられていることを特徴とするアルミニウム電解コンデンサ。   (11) An aluminum electrolytic capacitor characterized in that the aluminum electrode material produced by the production method according to item 8 or 9 is used as the electrode material.

前項(1)に記載された発明によれば、合金組成において、Gaを0.0005質量%以上含有し、表面より深さ5nmまでの層のGa含有量AGa(質量%)と深さ5nmより内部のGa含有量BGa(質量%)との比AGa/BGaが3以下であり、且つ電流密度急増電位(E)が−770mV vs S.C.Eより貴で、−710mV vs S.C.Eより卑であるから、深いエッチピットを高密度かつ均一に発生させて確実に拡面率を高め、静電容量の増大を図ることができる。しかも、Gaを0.0005質量%以上含有するから、三層電解法よりも安価な偏析法により精製されたアルミニウム塊を多く用いることができ、高静電容量と低コストの要求を併せて実現することができる。   According to the invention described in the preceding item (1), in the alloy composition, the Ga content AGa (mass%) of the layer containing 0.0005% by mass or more of Ga and having a depth of 5 nm from the surface and the inner part from the depth of 5 nm. Deep etch pits because the ratio AGa / BGa to the Ga content BGa (mass%) is 3 or less, and the current density sudden increase potential (E) is more noble than -770mV vs SCE and less than -710mV vs SCE Can be generated with high density and uniformity, and the area expansion rate can be reliably increased and the capacitance can be increased. Moreover, since it contains 0.0005% by mass or more of Ga, it is possible to use a large amount of aluminum lump purified by the segregation method, which is cheaper than the three-layer electrolysis method, and to realize both high capacitance and low cost requirements. Can do.

前項(2)に記載された発明によれば、合金組成において、アルミニウム純度が99.98質量%以上であって、Znを0.0002質量%以上含有し、且つZn含有量CZn(質量%)及びGa含有量CGa(質量%)が0.0056≦6CGa+7CZn≦0.0245なる関係を満たしているから、さらに深くて均一なエッチピットを発生させることができ、さらに静電容量の増大を図ることができる。   According to the invention described in the preceding item (2), in the alloy composition, the aluminum purity is 99.98% by mass or more, Zn is 0.0002% by mass or more, and the Zn content CZn (% by mass) and Ga content Since CGa (mass%) satisfies the relationship of 0.0056 ≦ 6CGa + 7CZn ≦ 0.0245, deeper and more uniform etch pits can be generated, and the capacitance can be further increased.

前項(3)に記載された発明によれば、Feを0.0008質量%以上0.004質量%以下、Siを0.0008質量%以上0.004質量%以下、Cuを0.001質量%以上0.008質量%以下、Pbを0.00003質量%以上0.0002質量%以下含有しているから、エッチピットの不均一な形成や局部的な発生を抑制しつつエッチピットを成長でき、さらに静電容量を増大できる。   According to the invention described in the preceding item (3), Fe is 0.0008% to 0.004% by mass, Si is 0.0008% to 0.004% by mass, Cu is 0.001% to 0.008% by mass, and Pb is 0.00003% by mass. % Or more and 0.0002 mass% or less, etch pits can be grown while suppressing uneven formation and local generation of etch pits, and the capacitance can be increased.

前項(4)に記載された発明によれば、Ti含有量CTi(質量%)、Zr含有量CZr(質量%)及びV含有量CV(質量%)が0.00035≦CTi+CZr+CV≦0.0015なる関係を満たし、かつB含有量が0.0002質量%以下、Fe、Si、Cu、Ga、Zn、Pb、Ti、Zr、V以外の不純物が各々0.001質量%以下であるから、エッチピットの不均一な形成や局部的な集中形成を防止し得て、静電容量を増大できる。   According to the invention described in the preceding item (4), the Ti content CTi (mass%), the Zr content CZr (mass%) and the V content CV (mass%) satisfy the relationship 0.00035 ≦ CTi + CZr + CV ≦ 0.0015, And the B content is 0.0002% by mass or less, and impurities other than Fe, Si, Cu, Ga, Zn, Pb, Ti, Zr, and V are each 0.001% by mass or less. Therefore, it is possible to prevent the formation of concentrated concentrations and increase the capacitance.

前項(5)に記載された発明によれば、Znを0.0002質量%以上0.0007質量%未満含有するから、優れた静電容量を得ることができる。   According to the invention described in the preceding item (5), Zn is contained in an amount of 0.0002% by mass or more and less than 0.0007% by mass, so that an excellent electrostatic capacity can be obtained.

前項(6)に記載された発明によれば、さらにGaを0.0008質量%以上含有するから、さらに優れた静電容量を得ることができる。   According to the invention described in item (6) above, since Ga is further contained in an amount of 0.0008% by mass or more, a further excellent electrostatic capacity can be obtained.

前項(7)に記載された発明によれば、さらにGaを0.001質量%以上含有するから、さらに優れた静電容量を得ることができる。   According to the invention described in the preceding item (7), 0.001% by mass or more of Ga is further contained, so that a further excellent electrostatic capacity can be obtained.

前項(8)に係る発明によれば、エッチングにより大きな静電容量を有する電解コンデンサ用電極材を製造することができる。   According to the invention according to item (8), an electrode material for an electrolytic capacitor having a large capacitance can be manufactured by etching.

前項(9)に係る発明によれば、エッチングの少なくとも一部を直流エッチングで行うことにより、深くて太い多数のトンネル状ピットを生成することができ、アルミニウム材の組成を規定したことによる前記効果を効率的に発揮させることができる。   According to the invention of the preceding item (9), by performing at least a part of the etching by direct current etching, a large number of deep and thick tunnel-like pits can be generated, and the effect obtained by defining the composition of the aluminum material Can be efficiently exhibited.

前項(10)に係る発明によれば、高静電容量のアルミニウム電解コンデンサ用陽極材となし得る。   According to the invention which concerns on the preceding clause (10), it can be set as the anode material for aluminum electrolytic capacitors with a high electrostatic capacity.

前項(11)に係る発明によれば、高静電容量のアルミニウム電解コンデンサとなし得る。   According to the invention of the previous item (11), an aluminum electrolytic capacitor having a high capacitance can be obtained.

本発明に係る電解コンデンサ電極用アルミニウム材において、物性の限定理由、各元素の添加意義および含有量の限定理由は次のとおりである。   In the aluminum material for electrolytic capacitor electrodes according to the present invention, the reasons for limiting physical properties, the significance of adding each element, and the reasons for limiting the content are as follows.

まず、アルミニウム材の合金組成において、Gaを0.0005質量%以上含有し、表面層(表面より深さ5nmまでの層)のGa含有量AGa(質量%)と深さ5nmより内部のGa含有量BGa(質量%)との比AGa/BGaは3以下であり、且つ電流密度急増電位(E)が-770mV vs S.C.Eより貴で、-710mV vs S.C.Eより卑であることに限定されるのは、次の理由による。   First, in the alloy composition of the aluminum material, Ga is contained at 0.0005 mass% or more, Ga content AGa (mass%) of the surface layer (layer having a depth of 5 nm from the surface), and Ga content BGa inside from the depth of 5 nm. The ratio AGa / BGa to (mass%) is 3 or less, and the current density rapid increase potential (E) is more noble than -770 mV vs SCE and lower than -710 mV vs SCE. Because of the reason.

即ち、Gaはアルミニウム材中に固溶し、一段目エッチングのエッチピットの均一化に寄与することができるため、0.0005質量%以上含有させる必要がある。0.0005質量%未満では、この効果が十分ではないうえ、精製コストの面で不利である。しかしながら、Ga含有量が増加していくと電流密度急増電位(E)が貴な方向に移行する。そのため、表面層のGa含有量AGa(質量%)が内部のGa含有量BGa(質量%)との比AGa/BGaで3を超えて濃化すると、表面層では電位が貴になり過ぎてしまうので、逆に、一段目エッチング時のピット発生を妨げ、不均一にする。よって、表面層のGa含有量AGa(質量%)と内部のGa含有量BGa(質量%)との比AGa/BGaは3以下にする必要がある。   That is, Ga dissolves in the aluminum material and can contribute to the uniformity of etch pits in the first-stage etching, so it is necessary to contain 0.0005% by mass or more. If it is less than 0.0005% by mass, this effect is not sufficient, and it is disadvantageous in terms of purification cost. However, as the Ga content increases, the current density rapid increase potential (E) shifts in a noble direction. Therefore, if the Ga content AGa (mass%) of the surface layer is concentrated to a ratio AGa / BGa exceeding 3 with the internal Ga content BGa (mass%), the potential becomes too noble in the surface layer. Therefore, conversely, the generation of pits during the first stage etching is hindered and made non-uniform. Therefore, the ratio AGa / BGa between the Ga content AGa (mass%) of the surface layer and the internal Ga content BGa (mass%) needs to be 3 or less.

電解コンデンサ用アルミニウム箔のエッチピット発生を促進し、表面積を拡大させることでよく知られているPbの場合は、表面層(表面より深さ5nmまでの層)に約1000倍濃化し、拡面効果を発揮するが、Gaの場合は表層に濃化することなく内部のアルミニウム中に固溶することにより、Pbほどの改善効果はないもののピット均一化に寄与するのである。   In the case of Pb, which is well-known to promote the generation of etch pits in aluminum foil for electrolytic capacitors and to increase the surface area, the surface layer (layer up to 5 nm deep from the surface) is concentrated about 1000 times and expanded. Although the effect is exhibited, in the case of Ga, it does not concentrate on the surface layer, but dissolves in the inner aluminum so that it does not improve as much as Pb, but contributes to uniform pits.

なお、Gaは偏析法を用いた精製を行う場合、特に平衡分配係数が大きいため、精製効率が良くない。経済的な面から考えて、好ましいGaの範囲は0.0008質量%以上であり、最適範囲は0.001質量%以上である。   In addition, when performing purification using a segregation method, Ga has a particularly high equilibrium partition coefficient, so that purification efficiency is not good. From the economical viewpoint, the preferable Ga range is 0.0008% by mass or more, and the optimum range is 0.001% by mass or more.

また、電流密度急増電位(E)については、-770mV vs S.C.Eより卑になると、材料自体の溶解性が向上し過ぎるため好ましくない。Gaが表面層に濃化する場合、内部では希薄になってしまうため、電流密度急増電位(E)は卑に移行してしまう。表面層のGa含有量と深さ5nmより内部のGa含有量との比を3以下に制御するには、最終焼鈍の条件が大きく影響し、520℃以上の高温で4時間以上の保持を行う必要がある。電流密度急増電位(E)が-710mVより貴になると均一なピットの発生を妨げるので良くない。電流密度急増電位(E)の好ましい範囲は-765mV〜-740mVである。   Further, regarding the current density rapid increase potential (E), if it is lower than -770 mV vs S.C.E, the solubility of the material itself is not improved, which is not preferable. When Ga is concentrated in the surface layer, it becomes diluted inside, and the current density rapid increase potential (E) shifts to the base. In order to control the ratio of the Ga content of the surface layer and the Ga content inside from the depth of 5 nm to 3 or less, the final annealing conditions have a great influence, and hold at a high temperature of 520 ° C. or more for 4 hours or more. There is a need. If the current density rapid increase potential (E) becomes nobler than -710 mV, it is not good because it prevents the generation of uniform pits. A preferred range of the current density rapid increase potential (E) is -765 mV to -740 mV.

アルミニウム純度は99.98質量%以上が好ましく、99.98質量%未満では不純物量が多くなって、微量添加元素の含有量を制御しても、エッチング時に過溶解が生じやすくなりエッチング特性が低下する。   The aluminum purity is preferably 99.98% by mass or more, and if it is less than 99.98% by mass, the amount of impurities increases, and even if the content of a trace amount of added elements is controlled, over-dissolution tends to occur during etching and the etching characteristics are deteriorated.

合金組成において、Znは0.0002質量%以上含有されるのが好ましい。Znを0.0002質量%未満に抑えようとすると、精製コストの面で不利であるため、経済的に効果的でない。   In the alloy composition, Zn is preferably contained in an amount of 0.0002% by mass or more. An attempt to suppress Zn to less than 0.0002% by mass is disadvantageous in terms of refining costs and is not economically effective.

Znは最終焼鈍後には約5倍程度表層に濃化し、粒界に偏析しやすいという特徴がある。そのため、Znの含有量の最適範囲は0.0002質量%以上、0.0007質量%未満である。   Zn is characterized by being concentrated in the surface layer about 5 times after final annealing and easily segregating at grain boundaries. Therefore, the optimum range of the Zn content is 0.0002% by mass or more and less than 0.0007% by mass.

Zn,Gaはそれぞれの上記含有量に加えて、Zn含有量CZn(質量%)及びGa含有量CGa(質量%)が0.0056≦6CGa+7CZn≦0.0245なる関係を満たしていることが望ましい。アルミニウム材中のGa、Znはアルミニウムマトリックス中に固溶することにより、二段目エッチング時のアルミニウム材の溶解性を増して、エッチピットの拡面効果を促進し、静電容量を増大させる。この効果は、6CGa+7CZnが0.0056より小さいと十分でない。また、6CGa+7CZnが0.0245より大きくなると、過溶解を引き起こすので、好ましくない。好ましくは0.0056≦6CGa+7CZn≦0.0210の範囲であり、最適範囲は0.0056≦6CGa+7CZn≦0.0189である。   In addition to the above contents, Zn and Ga desirably have a Zn content CZn (mass%) and a Ga content CGa (mass%) satisfying the relationship of 0.0056 ≦ 6CGa + 7CZn ≦ 0.0245. Ga and Zn in the aluminum material are dissolved in the aluminum matrix, thereby increasing the solubility of the aluminum material during the second-stage etching, promoting the surface expansion effect of the etch pits, and increasing the capacitance. This effect is not sufficient when 6CGa + 7CZn is less than 0.0056. Further, if 6CGa + 7CZn is larger than 0.0245, it is not preferable because it causes over-dissolution. Preferably, the range is 0.0056 ≦ 6CGa + 7CZn ≦ 0.0210, and the optimum range is 0.0056 ≦ 6CGa + 7CZn ≦ 0.0189.

アルミニウム材の化学組成において、Siは再結晶時の結晶粒の粗大化を防止する効果がある。含有量が0.0008質量%未満では前記効果に乏しく、0.004質量%を超えるとエッチピットの分布が不均一になる恐れがあるため、0.0008〜0.004質量%に規定するのが良い。さらにSi含有量の好ましい上限値は0.003質量%である。   In the chemical composition of the aluminum material, Si has an effect of preventing coarsening of crystal grains during recrystallization. If the content is less than 0.0008% by mass, the above effect is poor, and if it exceeds 0.004% by mass, the distribution of etch pits may be uneven. Furthermore, the upper limit with preferable Si content is 0.003 mass%.

Feはアルミニウムに不可避的に含有される元素であり、多量に含有していると最終焼鈍温度によってはAl−Fe系の析出物を形成してエッチピットの形成を不均一にする恐れがある。Fe含有量が0.004質量%を超えるとAl−Fe系の析出物を形成しやすくなり、0.0008質量%未満に規制するのは精製コストの面で不利であるため、0.0008〜0.004質量%とするのが良い。さらにFe含有量の好ましい上限値は0.003質量%である。   Fe is an element unavoidably contained in aluminum, and if it is contained in a large amount, depending on the final annealing temperature, Al-Fe-based precipitates may be formed, resulting in nonuniform etching pit formation. If the Fe content exceeds 0.004% by mass, it becomes easy to form Al-Fe-based precipitates, and it is disadvantageous in terms of refining costs to restrict it to less than 0.0008% by mass. Is good. Furthermore, the upper limit with preferable Fe content is 0.003 mass%.

Cuは、アルミニウムマトリックス中に固溶することにより、アルミニウム材の溶解性を増してエッチピットの成長を促進し、静電容量を増大させる。含有量が0.001質量%未満ではその効果に乏しく、0.008質量%を超えると過溶解となり、エッチング特性を阻害する恐れがあるため、0.001〜0.008質量%の範囲に規定するのが良い。Cu含有量の好ましい下限値は0.003質量%であり、好ましい上限値は0.007質量%である。   When Cu dissolves in the aluminum matrix, it increases the solubility of the aluminum material, promotes the growth of etch pits, and increases the capacitance. If the content is less than 0.001% by mass, the effect is poor, and if it exceeds 0.008% by mass, it may be over-dissolved and the etching characteristics may be impaired. Therefore, it is preferable to define the content in the range of 0.001 to 0.008% by mass. A preferred lower limit for the Cu content is 0.003% by mass, and a preferred upper limit is 0.007% by mass.

Pbは、最終焼鈍時にアルミニウム材表面に濃化し、エッチング初期のエッチピット発生を均一化し、局部的なエッチピット発生を抑制する。0.00003質量%未満では前記効果に乏しく、0.0002質量%を超えるとアルミニウム表面の溶解が激しくなり静電容量が却って低下するため、含有量を0.00003〜0.0002質量%の範囲とするのが良い。Pb含有量の好ましい下限値は0.00004質量%であり、好ましい上限値は0.00015質量%である。   Pb is concentrated on the surface of the aluminum material at the time of final annealing, uniformizing the generation of etch pits at the initial stage of etching, and suppressing the generation of local etch pits. If the amount is less than 0.00003% by mass, the above-described effect is poor. If the amount exceeds 0.0002% by mass, the aluminum surface is melted so much that the capacitance decreases. Therefore, the content is preferably in the range of 0.00003 to 0.0002% by mass. A preferable lower limit of the Pb content is 0.00004% by mass, and a preferable upper limit is 0.00015% by mass.

Ti、ZrおよびVは、Ti含有量CTi(質量%)、Zr含有量CZr(質量%)及びV含有量CV(質量%)が0.00035≦CTi+CZr+CV≦0.0015なる関係を満たすようにするのが良い。Ti,Zr,Vのような包晶系元素は偏析法を用いた精製塊を用いる場合、含有量が多くなる元素である。これらの元素はアルミニウムと金属間化合物を形成しやすく、合計で0.0015質量%を超えて含有すると、析出してエッチピットの形成を不均一にする恐れがあり、0.00035質量%未満にするのは、精製コストの面で不利であるため好ましくない。合計含有量の好ましい上限値は0.0011質量%である。   Ti, Zr, and V preferably satisfy the relationship of Ti content CTi (mass%), Zr content CZr (mass%), and V content CV (mass%) of 0.00035 ≦ CTi + CZr + CV ≦ 0.0015. Peritectic elements such as Ti, Zr, and V are elements whose content increases when a refined lump using a segregation method is used. These elements tend to form an intermetallic compound with aluminum, and if contained in a total amount exceeding 0.0015% by mass, there is a possibility that the formation of etch pits may be non-uniform, and less than 0.00035% by mass. Since it is disadvantageous in terms of purification cost, it is not preferable. A preferable upper limit of the total content is 0.0011% by mass.

また、B含有量は0.0002質量%以下に規制するのが良い。BはTi、ZrおよびVと化合物を形成すると、エッチピットを局部的に集中発生させるおそれがあるため、可及的に少ないことが好ましく、0.0002質量%以下に規制する。B含有量の好ましい上限値は0.0001質量%である。   Moreover, it is good to regulate B content to 0.0002 mass% or less. When B forms a compound with Ti, Zr, and V, etch pits may be locally concentrated, so it is preferable that B be as small as possible, and the content is restricted to 0.0002 mass% or less. The upper limit with preferable B content is 0.0001 mass%.

なお、Fe、Si、Cu、Ga、Zn、Pb、Ti、Zr、V以外の不純物は各々0.001質量%以下とするのがよい。各々の不純物が0.001質量%より多くなると、アルミニウム材の溶解性が増し、過溶解となるので好ましくない。   Note that impurities other than Fe, Si, Cu, Ga, Zn, Pb, Ti, Zr, and V are each preferably 0.001% by mass or less. When each impurity is more than 0.001% by mass, the solubility of the aluminum material is increased and over-dissolution is not preferable.

本発明に係る電解コンデンサ電極用アルミニウム材の製造方法は、Gaを0.0005質量%以上含有し、表面より深さ5nmまでの層のGa含有量と深さ5nmより内部のGa含有量との比が3以下であり、且つ電流密度急増電位(E)が-770mV vs S.C.Eより貴で、-710mV vs S.C.Eより卑であるアルミニウム材を製造できる方法であれば特に限定されることはない。   The method for producing an aluminum material for an electrolytic capacitor electrode according to the present invention comprises 0.0005% by mass or more of Ga, and the ratio of the Ga content of the layer up to 5 nm deep from the surface to the internal Ga content from 5 nm deep is The method is not particularly limited as long as it is a method capable of producing an aluminum material having a current density rapid increase potential (E) of no more than 3 and nobler than -770 mV vs SCE and less than -710 mV vs SCE.

一例を挙げると、二個の冷却ロールの間にアルミニウム溶湯を連続的に挿入し、シート状の鋳塊を得る連続鋳造圧延法が有効である。この方法によれば、1×103℃/sec以上の冷却速度にて、鋳造できるため、鋳塊でのGaの偏析が極力少なくなり、Gaが均一に分布した状態にすることが可能となる。これによって、最終焼鈍時にGaが均一に拡散分布しやすくなるため、箔表面への偏析も起きにくくなる。連続鋳造圧延材の厚さは5mm以上25mm以下とするのが望ましい。この鋳塊が薄いと冷間加工度が不足して、アルミニウム材を直流エッチングする場合に重要となる立方体方位占有率が低くなってしまう。連続鋳造圧延後の冷間圧延、中間焼鈍、最終焼鈍は常法にて行えばよい。場合により、連続鋳造圧延後に、均質化処理、熱間圧延を行い、最終のアルミニウム材の立方体方位占有率を向上させることも可能である。 For example, a continuous casting and rolling method in which a molten aluminum is continuously inserted between two cooling rolls to obtain a sheet-shaped ingot is effective. According to this method, since casting can be performed at a cooling rate of 1 × 10 3 ° C./sec or more, segregation of Ga in the ingot is reduced as much as possible, and Ga can be uniformly distributed. . This facilitates uniform diffusion and distribution of Ga during final annealing, and segregation on the foil surface is less likely to occur. The thickness of the continuously cast rolled material is preferably 5 mm or more and 25 mm or less. If this ingot is thin, the degree of cold work is insufficient, and the cubic occupancy rate, which is important when direct-etching an aluminum material, becomes low. Cold rolling, intermediate annealing, and final annealing after continuous casting and rolling may be performed by ordinary methods. In some cases, it is possible to improve the cube orientation occupation ratio of the final aluminum material by performing homogenization and hot rolling after continuous casting and rolling.

また、アルミニウム塊の精製は、安価な偏析法により行うのが望ましい。三層電解法により精製されたアルミニウム塊よりも安価な偏析法により精製された低コストのアルミニウム塊を多く用いても、深いエッチピットを高密度かつ均一に発生させて確実に拡面率を高め、静電容量の増大を図ることができ、高静電容量と低コストを共に達成できる。   Further, it is desirable to purify the aluminum lump by an inexpensive segregation method. Even if many low-cost aluminum lumps refined by the segregation method are used more cheaply than aluminum lumps refined by the three-layer electrolysis method, deep etch pits are generated in high density and evenly, and the area expansion rate is surely increased. The capacitance can be increased, and both high capacitance and low cost can be achieved.

また、アルミニウム材の厚さは限定されない。箔と称される200μm以下のものも、それ以上の厚いものも本発明に含まれる。   Further, the thickness of the aluminum material is not limited. Those having a thickness of 200 μm or less, referred to as foil, and those having a thickness larger than that are also included in the present invention.

本発明に係るアルミニウム材は、拡面率向上のためのエッチングが施されて、電解コンデンサ用電極材として使用される。エッチング処理条件は特に限定されないが、好ましくは直流エッチング法を採用するのが良い。直流エッチング法によって、前記焼鈍において生成が促進されたエッチピットの核となる部分において、深く太くエッチングされ、多数のトンネル状ピットが生成され、高静電容量が実現される。   The aluminum material according to the present invention is subjected to etching for improving the surface expansion ratio and used as an electrode material for electrolytic capacitors. Etching conditions are not particularly limited, but preferably a direct current etching method is employed. By the direct current etching method, the portion that becomes the nucleus of the etch pit promoted in the annealing is deeply and thickly etched to generate a large number of tunnel-like pits, thereby realizing a high capacitance.

エッチング処理後、望ましくは化成処理を行って陽極材とするのが良く、特に、中圧用および高圧用の電解コンデンサ電極材として用いるのが良いが、陰極材として用いることを妨げるものではない。また、この電極材を用いた電解コンデンサは大きな静電容量を実現できる。   After the etching treatment, a chemical conversion treatment is preferably performed to obtain an anode material. In particular, it is preferably used as an electrolytic capacitor electrode material for medium pressure and high pressure, but it does not preclude use as a cathode material. Moreover, the electrolytic capacitor using this electrode material can realize a large capacitance.

次に、この発明の具体的実施例について説明する。   Next, specific examples of the present invention will be described.

箔の製造に際しては、まず、表1に示した組成のアルミニウム合金を連続鋳造圧延して厚さ20mmの帯板状とした。そして、これらを600℃×5hrの条件で均質化処理し、その温度から圧下率:75%で1パス熱間圧延し、圧延後直ちに水冷した。その後、冷間圧延、中間焼鈍を経て厚さ100μmの箔に圧延し、脱脂洗浄後に、Ar雰囲気中にて表2に示す条件で最終焼鈍を行った。   In manufacturing the foil, first, an aluminum alloy having the composition shown in Table 1 was continuously cast and rolled to form a strip having a thickness of 20 mm. These were homogenized under conditions of 600 ° C. × 5 hr, hot-rolled at a reduction rate of 75% from that temperature, and cooled immediately after rolling. Thereafter, it was rolled into a foil having a thickness of 100 μm through cold rolling and intermediate annealing, and after degreasing and cleaning, final annealing was performed under the conditions shown in Table 2 in an Ar atmosphere.

これらの各箔について、表面層のGa含有量と内部のGa含有量との比及び分極測定時の電流密度急増電位(E)を求めた。   For each of these foils, the ratio of the Ga content in the surface layer to the internal Ga content and the current density rapid increase potential (E) during polarization measurement were determined.

箔の片面から5nmの深さまでの領域(表面層)におけるGa含有量は以下の方法により、測定した。   The Ga content in a region (surface layer) from one side of the foil to a depth of 5 nm was measured by the following method.

まず、試験材50cm2の試験片を採取し、この試験片を50℃、0.02質量%NaOH水溶液に浸漬して表面層(表面から5nm深さ)を溶解させ、さらに試験片を1.3mol/l硝酸水溶液で洗浄し、洗浄液を前記NaOH水溶液と混合した。溶解厚さの定量は、プラズマ発光分光分析によるAl溶解量測定値に依った。また、溶解液をICP-MS(誘導結合プラズマ質量分析)によって、表面層のGa量を測定した。内部のGa含有量は、まず箔を1mol/lのHCl水溶液中に15分間浸漬し、さらに1質量%HF水溶液中に30秒間浸漬、イオン交換水にて水洗後に80℃で乾燥させ、GDMS(グロー放電質量分析)によって、Ga量を測定した。以上の測定結果より、表面層のGa含有量と内部のGa含有量の比(Ga濃度の比)を算出した。算出結果を表2に示す。 First, a test piece of 50 cm 2 of the test material was collected, and this test piece was immersed in a 0.02 mass% NaOH aqueous solution at 50 ° C. to dissolve the surface layer (5 nm depth from the surface). The solution was washed with an aqueous nitric acid solution, and the washing solution was mixed with the aqueous NaOH solution. The quantification of the dissolution thickness was based on the measured amount of dissolved Al by plasma emission spectroscopy. Further, the amount of Ga in the surface layer of the solution was measured by ICP-MS (inductively coupled plasma mass spectrometry). The internal Ga content was determined by first immersing the foil in a 1 mol / l HCl aqueous solution for 15 minutes, further immersing in a 1% by mass HF aqueous solution for 30 seconds, washing with ion-exchanged water and drying at 80 ° C. The amount of Ga was measured by glow discharge mass spectrometry. From the above measurement results, the ratio of the Ga content in the surface layer to the internal Ga content (Ga concentration ratio) was calculated. Table 2 shows the calculation results.

また、電流密度急増電位(E)は以下の方法により、測定した。   The current density rapid increase potential (E) was measured by the following method.

まず、試験材を50℃、5質量%NaOH水溶液に30秒間浸漬し、水洗し、30質量%HNO3水溶液に60秒間浸漬後、イオン交換水にて、水洗した。この処理のあと、直ちに、あらかじめ100ml/minでN2ガスを30分間以上吹き込みを行い、十分に脱気した40℃、2.67質量%AlCl3水溶液にアルミニウム箔を浸漬し、5分間放置した。その後、自然電位から貴な方向に電位掃引速度20mV/minでアノード分極して電位―電流曲線を得た。測定時に、対極にはプラチナ、照合電極には、飽和カロメル電極(S.C.E)を用いた。この電位―電流密度曲線から、電流密度急増電位(E)を以下のようにして求めた。
1)電位-電流密度曲線(A)を求める(図1)。
2)この電位-電流密度曲線において、電位-900mV vs S.C.E.以上−600 mV vs S.C.E.以下の範囲にて電流密度(mA/cm2)の最小変化率を示す直線(B)、即ち最小変化率を示す位置で接線を引く。
3)電位-電流密度曲線において、電位−900mV vs S.C.E.以上−600 mV vs S.C.E.以下の範囲にて電流密度(mA/cm2)の最大変化率を示す直線(C)、即ち最大変化率を示す位置で接線を引く。
4)(B)、(C)の交点を(P)とし、(P)に対応する電位(E)を電流密度急増電位とする。
このようにして求めた電流密度急増電位(E)の測定結果を表2に示す。
First, the test material was immersed in a 5 mass% NaOH aqueous solution at 50 ° C. for 30 seconds, washed with water, immersed in a 30 mass% HNO 3 aqueous solution for 60 seconds, and then washed with ion-exchanged water. Immediately after this treatment, N 2 gas was blown in advance at 100 ml / min for 30 minutes or more, and the aluminum foil was immersed in a sufficiently degassed 40 ° C., 2.67 mass% AlCl 3 aqueous solution and left for 5 minutes. After that, anodic polarization from a natural potential in a noble direction at a potential sweep rate of 20 mV / min gave a potential-current curve. At the time of measurement, platinum was used as the counter electrode, and a saturated calomel electrode (SCE) was used as the reference electrode. From this potential-current density curve, the current density rapid increase potential (E) was determined as follows.
1) Obtain a potential-current density curve (A) (FIG. 1).
2) In this potential-current density curve, the straight line (B) indicating the minimum change rate of current density (mA / cm 2 ) in the range of potential -900mV vs SCE or more and -600 mV vs SCE or less, that is, the minimum change rate Draw a tangent at the indicated position.
3) In the potential-current density curve, the straight line (C) indicating the maximum rate of change of current density (mA / cm 2 ) in the range of potential −900 mV vs SCE or higher and −600 mV vs SCE or lower, that is, the maximum rate of change. Draw a tangent at the position.
4) Let (P) be the intersection of (B) and (C), and let the potential (E) corresponding to (P) be the sudden increase in current density.
The measurement results of the current density rapid increase potential (E) thus obtained are shown in Table 2.

また、エッチングは以下の方法により行った。   Etching was performed by the following method.

HCl:1mol/lとH2SO4:3.5mol/lを含む液温:75℃の水溶液に浸漬した後、電流密度:0.2A/cm2で電解処理を施した。電解処理後のアルミニウム材をさらに前記組成の塩酸−硫酸混合水溶液に90℃にて600秒間浸漬し、エッチングされたアルミニウム材を得た。得られたアルミニウム材を化成電圧:270VにてEIAJ規格に従い化成処理して陽極材とし、静電容量を測定した。その結果を比較例No.1の静電容量を100としたときの相対比較にて、併せて表2に示す。 After immersing in an aqueous solution containing HCl: 1 mol / l and H 2 SO 4 : 3.5 mol / l: 75 ° C., electrolytic treatment was performed at a current density of 0.2 A / cm 2 . The aluminum material after the electrolytic treatment was further immersed in a hydrochloric acid-sulfuric acid mixed aqueous solution having the above composition at 90 ° C. for 600 seconds to obtain an etched aluminum material. The obtained aluminum material was subjected to chemical conversion treatment according to the EIAJ standard at a conversion voltage of 270 V to obtain an anode material, and the capacitance was measured. The results are shown in Table 2 together with relative comparison when the capacitance of Comparative Example No. 1 is 100.

Figure 0005117673
Figure 0005117673

Figure 0005117673
Figure 0005117673

表2の結果より、表面層のGa含有量と内部のGa含有量との比、分極測定時の電流密度急増電位(E)、アルミニウム材の組成が本発明の範囲内にある実施例1〜25は、これらが本発明範囲を逸脱する比較例1〜2に比べて、エッチングにより静電容量を増大し得ることを確認した。   From the results in Table 2, the ratio of the Ga content in the surface layer to the internal Ga content, the current density rapid increase potential (E) during polarization measurement, and the composition of the aluminum material are within the scope of the present invention. No. 25 confirmed that the capacitance can be increased by etching as compared with Comparative Examples 1 and 2 that deviate from the scope of the present invention.

電流密度急増電位を求めるための電位―電流密度曲線を示す図である。It is a figure which shows the electric potential-current density curve for calculating | requiring a current density rapid increase potential.

Claims (9)

合金組成において、Gaを0.0005質量%以上0.0027質量%以下含有し、
Ti含有量CTi(質量%)、Zr含有量CZr(質量%)及びV含有量CV(質量%)が0.00035≦CTi+CZr+CV≦0.0015なる関係を満たし、かつB含有量が0.0002質量%以下であり、
残部がAl及び不可避的不純物からなり、
表面より深さ5nmまでの層のGa含有量AGa(質量%)と深さ5nmより内部のGa含有量BGa(質量%)との比AGa/BGaが3以下であり、且つ電流密度急増電位(E)が-770mV vs S.C.Eより貴で、-710mV vs S.C.Eより卑である電解コンデンサ電極用アルミニウム材。
In the alloy composition, Ga is contained 0.0005 mass% or more and 0.0027 mass% or less ,
Ti content CTi (mass%), Zr content CZr (mass%) and V content CV (mass%) satisfy the relationship 0.00035 ≦ CTi + CZr + CV ≦ 0.0015, and B content is 0.0002 mass% or less,
The balance consists of Al and inevitable impurities,
The ratio AGa / BGa between the Ga content AGa (mass%) of the layer up to 5 nm deep from the surface and the Ga content BGa (mass%) inside from the depth 5 nm is 3 or less, and the current density rapidly increases ( E) Aluminum material for electrolytic capacitor electrodes, which is more noble than -770mV vs SCE and less basic than -710mV vs SCE.
合金組成において、アルミニウム純度が99.98質量%以上であって、Znを0.0002質量%以上含有し、且つZn含有量CZn(質量%)及びGa含有量CGa(質量%)が0.0056≦6CGa+7CZn≦0.0245なる関係を満たしており、Feを0.0008質量%以上0.004質量%以下、Siを0.0008質量%以上0.004質量%以下、Cuを0.001質量%以上0.008質量%以下、Pbを0.00003質量%以上0.0002質量%以下含有している請求項1に記載の電解コンデンサ電極用アルミニウム材。 In the alloy composition, aluminum purity is 99.98% by mass or more, Zn is 0.0002% by mass or more, and Zn content CZn (% by mass) and Ga content CGa (% by mass) are 0.0056 ≦ 6CGa + 7CZn ≦ 0.0245 Fe is contained in an amount of 0.0008 mass% to 0.004 mass%, Si is contained in an amount of 0.0008 mass% to 0.004 mass%, Cu is contained in an amount of 0.001 mass% to 0.008 mass%, and Pb is contained in an amount of 0.00003 mass% to 0.0002 mass%. The aluminum material for electrolytic capacitor electrodes according to claim 1. Znを0.0002質量%以上0.0007質量%未満含有する請求項2に記載の電解コンデンサ電極用アルミニウム材。The aluminum material for electrolytic capacitor electrodes according to claim 2, containing Zn in an amount of 0.0002 mass% to less than 0.0007 mass%. Gaの下限値が0.0008質量%以上である請求項3に記載の電解コンデンサ電極用アルミニウム材。The aluminum material for electrolytic capacitor electrodes according to claim 3, wherein the lower limit value of Ga is 0.0008 mass% or more. Gaの下限値が0.001質量%以上である請求項3に記載の電解コンデンサ電極用アルミニウム材。The aluminum material for electrolytic capacitor electrodes according to claim 3, wherein the lower limit value of Ga is 0.001 mass% or more. 請求項1ないし請求項5のいずれか1項に記載されたアルミニウム材に、エッチングを実施する工程を含むことを特徴とする電解コンデンサ用電極材の製造方法。The manufacturing method of the electrode material for electrolytic capacitors characterized by including the process of etching in the aluminum material described in any one of Claims 1 thru | or 5. エッチングの少なくとも一部が直流電解エッチングである請求項6に記載の電解コンデンサ用電極材の製造方法。The method for producing an electrode material for an electrolytic capacitor according to claim 6, wherein at least a part of the etching is direct current electrolytic etching. 請求項6または請求項7に記載の製造方法によって製造されたアルミニウム電解コンデンサ用陽極材。An anode material for an aluminum electrolytic capacitor produced by the production method according to claim 6 or 7. 電極材として請求項6または請求項7に記載の製造方法によって製造されたアルミニウム電極材が用いられていることを特徴とするアルミニウム電解コンデンサ。An aluminum electrolytic capacitor characterized in that an aluminum electrode material produced by the production method according to claim 6 or 7 is used as an electrode material.
JP2005321360A 2004-12-21 2005-11-04 Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor Active JP5117673B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005321360A JP5117673B2 (en) 2005-05-31 2005-11-04 Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
PCT/JP2005/024019 WO2006068300A1 (en) 2004-12-21 2005-12-21 Aluminum material for electrolytic capacitor electrode, production method of electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
EP05822608A EP1841892B1 (en) 2004-12-21 2005-12-21 Aluminum material for electrolytic capacitor electrode, production method of electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005160275 2005-05-31
JP2005160275 2005-05-31
JP2005321360A JP5117673B2 (en) 2005-05-31 2005-11-04 Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012044259A Division JP2012144809A (en) 2005-05-31 2012-02-29 Aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2007009318A JP2007009318A (en) 2007-01-18
JP5117673B2 true JP5117673B2 (en) 2013-01-16

Family

ID=37748193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321360A Active JP5117673B2 (en) 2004-12-21 2005-11-04 Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5117673B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124402A (en) * 2011-12-15 2013-06-24 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor, and method for producing the same
EP3412207B1 (en) * 2017-12-12 2020-04-01 Siemens Healthcare GmbH Mammography imaging

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2793964B2 (en) * 1994-09-12 1998-09-03 住友軽金属工業株式会社 Aluminum foil for cathode of electrolytic capacitor
JPH09129514A (en) * 1995-11-06 1997-05-16 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor electrode
JP3590228B2 (en) * 1997-02-07 2004-11-17 昭和電工株式会社 Aluminum foil for electrolytic capacitor electrodes
JP4576001B2 (en) * 2000-11-22 2010-11-04 日本製箔株式会社 Aluminum foil for electrolytic capacitor electrode

Also Published As

Publication number Publication date
JP2007009318A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP2013124402A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP5117673B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4721448B2 (en) Method for producing aluminum foil for electrolytic capacitor
JPH07235457A (en) Aluminum foil for forming electrode of electrolytic capacitor and etching method therefor
JP2009249668A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP4237236B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP5063057B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP6619173B2 (en) Aluminum foil for electrolytic capacitors
JP5112630B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2012144809A (en) Aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP3983785B2 (en) Aluminum foil for electrolytic capacitors
JP2008150692A (en) Aluminum material for electrolytic capacitor electrode
JP6752110B2 (en) Manufacturing method of aluminum foil for electrolytic capacitors, aluminum foil for electrolytic capacitors, and electrodes for electrolytic capacitors
JP4916605B2 (en) Aluminum material for electrolytic capacitor electrode, aluminum foil, and method for producing aluminum foil
JP4732892B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2008078277A (en) Aluminum alloy foil for electrolytic capacitor cathode, and alloy foil material used therefor
JP2011006747A (en) Aluminum foil for electrolytic capacitor
JP2006152394A (en) Aluminum foil for electrolytic capacitor
JP5681397B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP4793827B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP2010013714A (en) Aluminum foil for electrolytic capacitor electrode
JP2007169689A (en) Aluminum foil for electrolytic capacitor
JP4757247B2 (en) Aluminum foil for electrolytic capacitor electrode
JP2007113098A (en) Aluminum alloy foil for cathode in electrolytic capacitor and producing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5117673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250