JP2007169689A - Aluminum foil for electrolytic capacitor - Google Patents

Aluminum foil for electrolytic capacitor Download PDF

Info

Publication number
JP2007169689A
JP2007169689A JP2005366766A JP2005366766A JP2007169689A JP 2007169689 A JP2007169689 A JP 2007169689A JP 2005366766 A JP2005366766 A JP 2005366766A JP 2005366766 A JP2005366766 A JP 2005366766A JP 2007169689 A JP2007169689 A JP 2007169689A
Authority
JP
Japan
Prior art keywords
aluminum foil
etching
ppm
foil
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005366766A
Other languages
Japanese (ja)
Other versions
JP3920306B1 (en
Inventor
Akira Yoshii
章 吉井
Hideo Watanabe
英雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2005366766A priority Critical patent/JP3920306B1/en
Application granted granted Critical
Publication of JP3920306B1 publication Critical patent/JP3920306B1/en
Publication of JP2007169689A publication Critical patent/JP2007169689A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To electroless-etch an aluminum foil when roughening the aluminum foil for an electrolytic capacitor through an etching process. <P>SOLUTION: This aluminum foil has a composition comprising 5-40 ppm Si, 5-40 ppm Fe, 20-200 ppm Ni, and the balance 99.9% or more Al with unavoidable impurities; has an orientation factor of cubic crystals of 95% or more; includes Al-Ni-based intermetallic compounds having a diameter of 0.1 to 3 μm in a surface direction in an amount of 100 to 10,000 pieces per square millimeter in a space between the foil surface and a 0.1 μm deep plane from the surface; and includes the Al-Ni-based intermetallic compounds having the diameter of 0.1 to 3 μm in the surface direction in an amount of 10 pieces per square millimeter or less in a space not shallower than a 0.15 μm deep plane. The foil can be adequately etched without needing electrolysis, because an electrochemically nobler substance than Al in the surface layer acts as a discharge site and Al continuously causes a dissolution reaction. The aluminum foil shows an effect of reducing an etching cost and increasing the productivity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電解コンデンサの電極に用いられる電解コンデンサ電極用アルミニウム箔に関するものである。   The present invention relates to an aluminum foil for electrolytic capacitor electrodes used for electrodes of electrolytic capacitors.

従来、電解コンデンサ用エッチング箔は、99.9%以上のアルミニウム純度で、Si:5〜20ppm、Fe:5〜20ppm、Cu:10〜80ppm、Pb:0.1〜3ppm、その他微量不純物1〜100ppmで構成され、熱間圧延、冷間圧延、中間焼鈍、付加圧延を経て、500℃以上、3時間以上の焼鈍を行って95%以上の立方晶率が得られたアルミニウム箔として製造されている。
該アルミニウム箔は、さらに、強酸溶液中で電解エッチングを行い、腐食孔(以降ピット)を発生させた後、酸溶液中で、電解又は化学溶解により、ピット径を次工程の化成における電圧に応じた大きさに拡大している。
高純度アルミニウム箔の特徴として、酸溶液中では不動態化が進行するため、化学溶解性が低く、このため、電解エッチングが不可欠であると考えられている。電解エッチングにて必要なピット数を得るためには、40〜60C/cmの電気量が必要となり、これを得るために大量の電気を消費している。
上記した電気量の低減に対しては、アルミニウム箔のエッチング性を向上させることが有効である。例えば特許文献1では、低圧用電解コンデンサ用アルミニウム箔において、粒径1〜15μmのAl−Ni系及びAl−Fe−Ni系の金属間化合物をマトリックス中に50〜10,000個/mm存在させて該金属間化合物をエッチングピットの開始点として作用させることが提案されている。
特開2000−260666号公報
Conventionally, the etching foil for electrolytic capacitors has an aluminum purity of 99.9% or more, Si: 5 to 20 ppm, Fe: 5 to 20 ppm, Cu: 10 to 80 ppm, Pb: 0.1 to 3 ppm, and other trace impurities 1 to Made of 100ppm, manufactured as an aluminum foil that has undergone hot rolling, cold rolling, intermediate annealing, additional rolling, annealing at 500 ° C or more for 3 hours or more, and having a cubic rate of 95% or more. Yes.
The aluminum foil is further subjected to electrolytic etching in a strong acid solution to generate corrosion holes (hereinafter referred to as pits), and then the electrolytic solution or chemical dissolution in the acid solution to change the pit diameter according to the voltage in the formation of the next process. It has expanded to the size.
As a feature of high-purity aluminum foil, since passivation proceeds in an acid solution, chemical solubility is low, and therefore, electrolytic etching is considered indispensable. In order to obtain the required number of pits by electrolytic etching, an amount of electricity of 40 to 60 C / cm 2 is required, and a large amount of electricity is consumed to obtain this.
For reducing the amount of electricity described above, it is effective to improve the etching property of the aluminum foil. For example, in Patent Document 1, in an aluminum foil for a low-voltage electrolytic capacitor, 50 to 10,000 / mm 2 Al—Ni-based and Al—Fe—Ni-based intermetallic compounds having a particle diameter of 1 to 15 μm are present in the matrix. Thus, it has been proposed to cause the intermetallic compound to act as a starting point of etching pits.
JP 2000-260666 A

しかし、従来の中高圧用電解コンデンサ用アルミニウム箔の表面には0.5〜2μm径のピットが200,000〜300,000個/mm発生しており、上記特許文献1における金属間化合物の個数では、中高圧用のアルミニウム箔におけるエッチング開始点としては不足している。また、マトリックス中にAl−Ni系析出物が存在すると、エッチングピットの成長に歯止めがないため、過剰エッチングになりやすく、且つエッチングピット壁面に残留した析出物により、その部分は正常な化成皮膜を生成できないため、漏れ電流が増加し、化成皮膜の品質が低下するという問題がある。 However, the surface of the aluminum foil for high-voltage electrolytic capacitor in the conventional pit 0.5~2μm diameter 200,000~300,000 pieces / mm 2 have occurred, the intermetallic compound in the patent document 1 The number is insufficient as an etching start point in the aluminum foil for medium and high pressure. In addition, if Al-Ni-based precipitates are present in the matrix, there is no stopping in the growth of etching pits, so excessive etching is likely to occur. Since it cannot generate | occur | produce, there exists a problem that a leakage current increases and the quality of a chemical conversion film falls.

従来、エッチングピットの成長は、直流電解を行った際、表面酸化皮膜の欠陥、表層に析出した微量元素等が電解の基点となり、エッチングピットを発生させると考えられている。このため従来は、特許文献1に示すように、エッチングピットの基点となる物質、または欠陥等に準じる状態をアルミニウム箔表層に発生させることで、多くのエッチングピットを発生させることが提案されている。しかし、高純度アルミニウムは、上記のように酸との反応により不動態化が起こり、電気分解を行なわない場合、著しく化学溶解性が低くなり、エッチングピットを発生させることはできないのが現状である。このため、直流電流を用いた電解エッチング方法が必要不可欠であり、製造コストを上げる原因になっている。   Conventionally, growth of etching pits is considered to be caused by defects in the surface oxide film, trace elements deposited on the surface layer, and the like as the starting point of electrolysis when direct current electrolysis is performed. For this reason, conventionally, as shown in Patent Document 1, it has been proposed to generate a large number of etching pits by causing the surface of the aluminum foil to be in a state that conforms to a substance serving as a base point of etching pits or defects. . However, high-purity aluminum is passivated by the reaction with acid as described above, and when electrolysis is not performed, the chemical solubility is remarkably lowered and etching pits cannot be generated at present. . For this reason, an electrolytic etching method using a direct current is indispensable, which increases the manufacturing cost.

本発明は、上記事情を背景としてなされたものであり、高純度アルミニウム箔の化学反応性を著しく高め、電解を行うことなくピット発生が可能な電解コンデンサ用アルミニウム箔を提供するものである。   The present invention has been made against the background of the above circumstances, and provides an aluminum foil for electrolytic capacitors that can significantly enhance the chemical reactivity of a high-purity aluminum foil and can generate pits without electrolysis.

すなわち、本発明の電解コンデンサ用アルミニウム箔は、 エッチングに供される電解コンデンサ用アルミニウム箔であって、質量比で、Si:5〜40ppm、Fe:5〜40ppm、Ni:20〜200ppmを含有し、残部が99.9%以上のAlと不可避不純物からなる組成を有し、立方晶方位率が95%以上で、箔表面から深さ方向0.1μmまでの範囲内で、面方向において0.1〜3μm径のAl−Ni系金属間化合物を100〜10,000個/mm有し、かつ箔表面から深さ方向0.15μm以上の深さ範囲では、面方向において0.1〜3μm径のAl−Ni系金属間化合物は10個/mm以下であることを特徴とする。 That is, the aluminum foil for electrolytic capacitors of the present invention is an aluminum foil for electrolytic capacitors used for etching, and contains Si: 5 to 40 ppm, Fe: 5 to 40 ppm, Ni: 20 to 200 ppm by mass ratio. The balance has a composition composed of 99.9% or more of Al and inevitable impurities, the cubic orientation ratio is 95% or more, within the range from the foil surface to the depth direction of 0.1 μm, and in the plane direction, 0. In a depth range of 0.15 μm or more in the depth direction from the foil surface, the Al—Ni-based intermetallic compound having a diameter of 1 to 3 μm is 100 to 10,000 / mm 2 , and 0.1 to 3 μm in the plane direction. The diameter of the Al—Ni-based intermetallic compound is 10 pieces / mm 2 or less.

中高圧用コンデンサ箔に用いられるエッチング箔は、アルミ箔表面から垂直に成長したエッチングピットを多数発生させることにより、その表面積を拡大している。エッチングピットは立方体方位に沿って成長するため、高い立方晶方位率が必要であり、一般的には95%以上の立方晶方位占有率が必要となる。通常、エッチングピットの長さは20〜50μmであるため、ピットが十分に成長できる時間、放電サイトとしての役割を果たす必要がある。又、箔内部に放電サイトがある場合、ピットが曲がったり、化成の際、放電サイト上で正常な皮膜ができないため、漏れ電流が増加する等の不具合が生じる。これらのことより、本発明者等は、中高圧箔に用いる場合は、アルミ箔極表層部(表層から50nm以内)に0.1〜3μm径の放電サイトを発生させることが重要であることを見出した。
そして、アルミニウム箔表層にアルミニウムより電気化学的に貴な物質を配置すると、エッチングピットの基点ではなく、電荷の放電サイトとして作用し、その結果、アルミニウムの溶解反応が継続して起こり、エッチングピットが、電流を印加することなく成長する。
Etching foils used for medium- and high-pressure capacitor foils have a large surface area by generating many etching pits that grow vertically from the surface of the aluminum foil. Since the etching pits grow along the cube orientation, a high cubic orientation ratio is required, and generally a cubic orientation occupation ratio of 95% or more is required. Usually, since the length of the etching pit is 20 to 50 μm, it needs to play a role as a discharge site for a time during which the pit can sufficiently grow. In addition, when there is a discharge site inside the foil, pits are bent, or when forming, a normal film cannot be formed on the discharge site, so that problems such as increased leakage current occur. From these facts, the inventors of the present invention, when using it for medium-high pressure foil, that it is important to generate a discharge site having a diameter of 0.1 to 3 μm in the aluminum foil electrode surface layer portion (within 50 nm from the surface layer). I found it.
When a material that is electrochemically more noble than aluminum is placed on the surface of the aluminum foil, it acts as a discharge site for electric charges instead of the origin of etching pits. As a result, the dissolution reaction of aluminum occurs continuously, and etching pits are formed. , Grow without applying current.

なお、本発明においては、アルミニウムより貴な金属、または金属間化合物が局部電池反応における電荷放電サイトとして作用するため、必要とされるエッチングピットの数より、はるかに少ない数で補うことができる。さらに、その放電サイトを極表面層(0.1μm深さまでに)に配置することにより、エッチングの進行とともに除去することができる。このため、エッチング段階での過溶解を抑制することができるとともに、化成工程における化成皮膜において、高品質な皮膜を得ることができる。   In the present invention, since a metal noble than aluminum or an intermetallic compound acts as a charge discharge site in the local battery reaction, it can be supplemented with a much smaller number than the number of etching pits required. Furthermore, by disposing the discharge site in the extreme surface layer (up to a depth of 0.1 μm), it can be removed as the etching progresses. For this reason, while being able to suppress overmelting at the etching stage, a high-quality film can be obtained in the chemical conversion film in the chemical conversion step.

表層部に配置をする金属間化合物は、Al−Ni系金属間化合物である。該金属間化合物は、Al、Niを主とする化合物であり、その他に、Fe等の成分を含む金属間化合物も本発明のAl−Ni系金属間化合物に含まれるものである。該Al−Ni系金属間化合物は箔面より0.1μm深さまでに配置する必要がある。これより深い場合、エッチングの進行を抑制できない。又、エッチングピット内に残留した金属間化合物により、正常な化成皮膜の成長が妨げられ、漏れ電流が大きい皮膜となるため、化成皮膜品質が大幅に低下する。好ましくは0.05μm深さまでに配置することが望ましい。   The intermetallic compound arranged in the surface layer portion is an Al—Ni-based intermetallic compound. The intermetallic compound is a compound mainly composed of Al and Ni. In addition, an intermetallic compound containing a component such as Fe is also included in the Al—Ni intermetallic compound of the present invention. The Al—Ni intermetallic compound needs to be disposed at a depth of 0.1 μm from the foil surface. When deeper than this, the progress of etching cannot be suppressed. Moreover, the growth of a normal chemical conversion film is hindered by the intermetallic compound remaining in the etching pits, resulting in a film having a large leakage current, so that the quality of the chemical conversion film is significantly lowered. Preferably, it is desirable to arrange it to a depth of 0.05 μm.

該Al−Ni系金属間化合物のサイズは円換算直径で0.1〜3μm径とする。0.1μmより小さいと、放電面積が小さくなり、Alの溶解を促進することができない。一方、3μmより大きい場合、箔表層より0.1μm深さまでに配置することができない。好ましくは0.3〜1.5μmである。   The size of the Al—Ni-based intermetallic compound is 0.1 to 3 μm in terms of a circle. If it is smaller than 0.1 μm, the discharge area becomes small and the dissolution of Al cannot be promoted. On the other hand, when larger than 3 micrometers, it cannot arrange | position to 0.1 micrometer depth from foil surface layer. Preferably it is 0.3-1.5 micrometers.

上記金属間化合物の析出物個数は表面から0.1μm深さの範囲内では、面方向において、100〜10,000個/mm有するものとする。100個/mmよりも少ないと局部電池現象が及ぼす範囲が狭くなり、エッチングピット密度が低下し、その結果、十分な静電容量が得られない。また、10,000個/mmよりも多い場合、エッチングピットが密集して発生し、ピット合体現象が起こるため、却って静電容量が低下する。望ましくは1,000〜8,000個/mmである。 The number of precipitates of the intermetallic compound is 100 to 10,000 / mm 2 in the plane direction within a depth range of 0.1 μm from the surface. If it is less than 100 / mm 2, the range affected by the local battery phenomenon becomes narrow, and the etching pit density is lowered. As a result, sufficient electrostatic capacity cannot be obtained. On the other hand, when the number is more than 10,000 / mm 2 , the etching pits are densely formed and the pit coalescence phenomenon occurs, so that the electrostatic capacity is decreased. Desirably, it is 1,000 to 8,000 pieces / mm 2 .

また、内層にまでAl−Ni系金属間化合物が分散していると、上記不具合が生じるため、0.15μm以上の深さでは、上記サイズのAl−Ni系金属間化合物は、面方向において10個/mm以下であるものとする。 Further, when the Al—Ni-based intermetallic compound is dispersed in the inner layer, the above-described problem occurs. Therefore, at a depth of 0.15 μm or more, the Al—Ni-based intermetallic compound having the above size is 10 in the plane direction. The number of pieces / mm 2 or less.

なお、放電サイトとして作用する金属または金属間化合物をイオンスパッタリング等による蒸着、または物理的な圧着法を用い、箔表面に配置しても同様の作用を得ることができる。   A similar effect can be obtained even if a metal or intermetallic compound acting as a discharge site is disposed on the foil surface by vapor deposition by ion sputtering or the like, or a physical pressure bonding method.

さらに、本発明の各成分による作用および各成分を限定した理由を説明する。なお、以下における成分含有量はいずれも質量比である。   Furthermore, the effect | action by each component of this invention and the reason which limited each component are demonstrated. In addition, all the component content in the following is mass ratio.

Si:5〜40ppm、Fe:5〜40ppm
Si、FeはAlと化合し適度に析出物を生成し、再結晶粒の粗大化を抑制するし、Cube粒の優先成長を促進することができる。ただし、各々、5ppm未満の場合精製コストが高くなり、工業的には不向きである。一方、各々40ppm超の場合、析出物の総量が多くなりすぎてCube粒の優先成長まで制御するため、高い立方晶率が得られなくなる。このため、Si、Feの含有量を上記範囲に定める。なお、望ましい下限は、Si、Feともに10ppmであり、望ましい上限はSi、Feともに20ppmである。
Si: 5 to 40 ppm, Fe: 5 to 40 ppm
Si and Fe combine with Al to appropriately generate precipitates, suppress coarsening of recrystallized grains, and promote preferential growth of Cube grains. However, if it is less than 5 ppm, the purification cost becomes high, which is unsuitable industrially. On the other hand, in the case where each exceeds 40 ppm, the total amount of precipitates becomes too large to control the preferential growth of Cube grains, so that a high cubic crystal ratio cannot be obtained. For this reason, the content of Si and Fe is set within the above range. A desirable lower limit is 10 ppm for both Si and Fe, and a desirable upper limit is 20 ppm for both Si and Fe.

Ni:20〜200ppm
NiはAlと金属間化合物を生成し、電位を貴とし、その周辺のAlの化学溶解性を著しく高める元素である。20ppm未満では金属間化合物量が少なく、溶解性が低い。さらには、圧延中に再結晶化が促進しすぎる為、立方晶率が低下する。一方、200ppmを越えると、金属間化合物量が多すぎ、過剰溶解を起こす。さらには、再結晶化を抑制する為、立方晶方位率が低下する。望ましくは40〜150ppmの範囲である。
Ni: 20 to 200 ppm
Ni is an element that generates an intermetallic compound with Al, makes the potential noble, and remarkably enhances the chemical solubility of the surrounding Al. If it is less than 20 ppm, the amount of intermetallic compounds is small and the solubility is low. Furthermore, since recrystallization is promoted too much during rolling, the cubic rate decreases. On the other hand, if it exceeds 200 ppm, the amount of intermetallic compounds is too large and excessive dissolution occurs. Furthermore, in order to suppress recrystallization, a cubic crystal orientation rate falls. Desirably, it is in the range of 40 to 150 ppm.

アルミニウム純度:99.9%以上
純度99.9%未満であると、不回避不純物とアルミとの金属間化合物が多くなり、高い立方晶率が得られにくくなる。したがって結晶方位の均一性を確保して立方晶率を95%以上に保つためには、99.9%以上のアルミニウム純度が必要である。望ましくは99.95%以上の純度である。
Aluminum purity: 99.9% or more If the purity is less than 99.9%, an intermetallic compound of unavoidable impurities and aluminum increases, making it difficult to obtain a high cubic crystal ratio. Therefore, in order to ensure the uniformity of crystal orientation and keep the cubic rate at 95% or higher, an aluminum purity of 99.9% or higher is required. The purity is desirably 99.95% or more.

以上説明したように、本発明の電解コンデンサ用アルミニウム箔は、エッチングに供される電解コンデンサ用アルミニウム箔であって、質量比で、Si:5〜40ppm、Fe:5〜40ppm、Ni:20〜200ppmを含有し、残部が99.9%以上のAlと不可避不純物からなる組成を有し、立方晶方位率が95%以上で、箔表面から深さ方向0.1μmまでの範囲内で、面方向において0.1〜3μm径のAl−Ni系金属間化合物を100〜10,000個/mm有し、かつ箔表面から深さ方向0.15μm以上の深さ範囲では、面方向において0.1〜3μm径のAl−Ni系金属間化合物は10個/mm以下であるので、アルミニウム箔表層に配置された、アルミニウムより電気化学的に貴な物質が電荷の放電サイトとして作用し、その結果、アルミニウムの溶解反応が継続して起こり、電解を要することなく良好なエッチングを行うことができ、エッチングにおける、コストダウン、生産性向上の効果がある。 As described above, the aluminum foil for electrolytic capacitors of the present invention is an aluminum foil for electrolytic capacitors to be used for etching, and has a mass ratio of Si: 5 to 40 ppm, Fe: 5 to 40 ppm, Ni: 20 to 200 ppm is contained, the balance is 99.9% or more of Al and inevitable impurities, the cubic orientation ratio is 95% or more, and within the range from the foil surface to the depth direction of 0.1 μm, In the depth direction of 0.15 μm or more in the depth direction from the foil surface, the Al—Ni intermetallic compound having a diameter of 0.1 to 3 μm in the direction is 100 to 10,000 / mm 2 , and 0 in the plane direction. Since the number of Al-Ni intermetallic compounds having a diameter of 1 to 3 μm is 10 / mm 2 or less, a substance that is more electrochemically noble than aluminum and disposed on the surface of the aluminum foil serves as a discharge site for electric charges. As a result, the dissolution reaction of aluminum occurs continuously, and good etching can be performed without requiring electrolysis, which has the effect of reducing cost and improving productivity in etching.

また、0.15μm以上の深さで上記Al−Ni系金属間化合物の量が規制されているので、後の化成処理において正常な化成皮膜の成長が得られ、化成皮膜品質に優れた電解コンデンサを得ることができる。   In addition, since the amount of the Al—Ni intermetallic compound is regulated at a depth of 0.15 μm or more, an electrolytic capacitor excellent in chemical conversion film quality can be obtained in the subsequent chemical conversion treatment, and normal chemical film growth can be obtained. Can be obtained.

以下に、本発明の一実施形態を説明する。
純度99.9%以上で本発明の成分となるように調製された高純度アルミニウム材を用意する。該アルミニウム材は、好適には純度99.95%以上とする。
該アルミニウム材は常法により得ることができ、本発明としては特にその製造方法が限定されるものではない。例えば、半連続鋳造によって得たスラブを熱間圧延したものを用いることができる。なお、スラブに対し、例えば500℃以上、30分以上の均熱処理を行った後、熱間圧延に供するものであってもよい。熱間圧延の仕上がり温度は、例えば250〜400℃とする。その他に連続鋳造により得られる高純度アルミニウム材を対象とするものであってもよい。上記熱間圧延または連続鋳造圧延によって例えば数mm厚程度のシート材とする。
Hereinafter, an embodiment of the present invention will be described.
A high-purity aluminum material prepared to be a component of the present invention with a purity of 99.9% or more is prepared. The aluminum material preferably has a purity of 99.95% or more.
The aluminum material can be obtained by a conventional method, and the production method is not particularly limited in the present invention. For example, a hot-rolled slab obtained by semi-continuous casting can be used. The slab may be subjected to hot rolling after, for example, soaking at 500 ° C. for 30 minutes or more. The finishing temperature of hot rolling is, for example, 250 to 400 ° C. In addition, a high-purity aluminum material obtained by continuous casting may be used. For example, a sheet material having a thickness of about several mm is formed by the hot rolling or continuous casting rolling.

上記シート材に対し冷間圧延を行い、数十μmから100μm程度のアルミニウム箔を得る。なお、冷間圧延途中あるいは冷間圧延終了後に適宜脱脂を加えてもよく、また冷間圧延の途中で適宜中間焼鈍を加えても差し支えない。   The sheet material is cold-rolled to obtain an aluminum foil of about several tens of μm to 100 μm. In addition, degreasing may be appropriately added during the cold rolling or after the end of the cold rolling, and intermediate annealing may be appropriately added during the cold rolling.

最終冷間圧延後には、最終焼鈍熱処理を行う。最終焼鈍の加熱条件は、前記したAl−Ni系金属間化合物を表層部に濃縮させるために重要であり、500℃以上、3時間以上で加熱するのが望ましい。例えば、500〜600℃×3〜36hrの加熱条件で、不活性ガス、又は還元性ガス雰囲気中で加熱することで平均厚さで20〜60Åの酸化皮膜を有するアルミニウム合金箔を得ることができる。また、適切なAl純度、適量のSi、Fe、Ni量を含有することにより、上記焼鈍の調整によって、前記したAl−Ni系金属間化合物の分散量を表層(表面から0.1μm深さ)および内層(0.15μm以上)で適切に調整することができる。
最終焼鈍の加熱温度が低すぎたり、保持時間が短すぎると、上記Al−Ni系金属間化合物の濃縮が十分になされない。
また、最終焼鈍の結果、アルミニウム箔の立方晶率は95%以上であることが必要である。
After the final cold rolling, a final annealing heat treatment is performed. The heating conditions for the final annealing are important for concentrating the Al—Ni-based intermetallic compound in the surface layer part, and it is desirable to heat at 500 ° C. or more for 3 hours or more. For example, an aluminum alloy foil having an oxide film with an average thickness of 20 to 60 mm can be obtained by heating in an inert gas or reducing gas atmosphere under heating conditions of 500 to 600 ° C. × 3 to 36 hours. . In addition, by containing appropriate amounts of Al purity, appropriate amounts of Si, Fe, and Ni, the amount of dispersion of the Al—Ni-based intermetallic compound described above is adjusted to the surface layer (0.1 μm depth from the surface) by adjusting the annealing. And it can adjust appropriately with an inner layer (0.15 micrometer or more).
If the heating temperature of the final annealing is too low or the holding time is too short, the Al—Ni intermetallic compound is not sufficiently concentrated.
Further, as a result of the final annealing, the cubic crystal ratio of the aluminum foil needs to be 95% or more.

上記各工程を経て得られたアルミニウム箔には、その後、エッチング処理がなされる。該エッチング工程は塩酸を主体とする溶液や塩酸を含まない溶液を用いた無電解エッチングにより行うことができる。ただし、本発明としては、電解エッチングを採用するものであってもよく、その場合にも良好な粗面化率が得られる。
エッチング処理では、図1にエッチング液とアルミニウム箔1のAlとが反応し、Al3が液中に溶け出すとともに、アルミニウム箔1中にeが発生する。アルミニウム箔1の表層部にあるAl−Ni系金属間化合物2は、放電サイトとして作用し、上記eがエッチング液中に放電され、液中のHと反応してHを生成する。これにより、アルミニウム箔1に多数のエッチングピットの基点3…3が生成される。
The aluminum foil obtained through the above steps is then subjected to an etching process. The etching step can be performed by electroless etching using a solution mainly containing hydrochloric acid or a solution not containing hydrochloric acid. However, the present invention may employ electrolytic etching, and in that case, a good roughening rate can be obtained.
In the etching process, the etching solution reacts with Al in the aluminum foil 1 in FIG. 1, and Al 3 + dissolves into the solution, and e is generated in the aluminum foil 1. The Al—Ni-based intermetallic compound 2 in the surface layer portion of the aluminum foil 1 acts as a discharge site, and the above e is discharged into the etching solution and reacts with H + in the solution to generate H 2 . As a result, a large number of etching pit base points 3... 3 are generated in the aluminum foil 1.

エッチングの進行とともに、エッチングピットの基点3…3からエッチングピット30が成長し、一方、アルミニウム箔1の表層部の溶解が進むことで、放電サイトとして作用するAl−Ni系金属間化合物2もエッチング液中に除去されて、アルミニウム箔1に残存しない。また、Al−Ni系金属間化合物2は、内層ではその数は規制されており、上記エッチングピットが過度に成長するのを防止する。上記作用により電解を必要とすることなく、無電解においてもピットが高密度で形成され、高い粗面化率が得られる。この箔を化成処理し、必要な耐電圧を得た後、常法により電解コンデンサに電極として組み込むことにより静電容量の高いコンデンサが得られる。   As the etching progresses, etching pits 30 grow from the base points 3 ... 3 of the etching pits. On the other hand, the dissolution of the surface layer portion of the aluminum foil 1 advances, so that the Al-Ni intermetallic compound 2 acting as a discharge site is also etched It is removed in the liquid and does not remain in the aluminum foil 1. In addition, the number of Al—Ni-based intermetallic compounds 2 is regulated in the inner layer, and the etching pits are prevented from growing excessively. Due to the above action, pits are formed with high density even without electrolysis without requiring electrolysis, and a high roughening rate can be obtained. This foil is subjected to a chemical conversion treatment to obtain a necessary withstand voltage, and then a capacitor having a high capacitance is obtained by incorporating it as an electrode in an electrolytic capacitor by a conventional method.

本発明は中高圧電解コンデンサの陽極として使用するのが好適であるが、本発明としてはこれに限定されるものではなく、電解コンデンサの低圧用、又は陰極用の材料として使用することもできる。   The present invention is preferably used as an anode of a medium-high voltage electrolytic capacitor. However, the present invention is not limited to this, and can also be used as a material for a low pressure or a cathode of an electrolytic capacitor.

表1に示す成分(残部Al及び不回避不純物)の鋳塊を作製し、500℃以上、30分以上の均熱処理を行った後、加工率95〜99%の熱間圧延を行った。その際仕上がり温度は250〜400℃とした。熱間圧延後に95%以上の冷間圧延を行い箔厚110μmの試料を作成した。冷間圧延の際、必要に応じ中間焼鈍を行った。   An ingot of the components shown in Table 1 (remaining Al and unavoidable impurities) was prepared and subjected to soaking treatment at 500 ° C. or more for 30 minutes or more, and then hot rolling at a processing rate of 95 to 99% was performed. At that time, the finishing temperature was 250 to 400 ° C. After hot rolling, cold rolling of 95% or more was performed to prepare a sample having a foil thickness of 110 μm. During cold rolling, intermediate annealing was performed as necessary.

これらの箔を、Ar、N、H等の不活性雰囲気中で450〜590℃、12時間の焼鈍を行い、立方晶率、Al−Ni析出物分布の異なる箔を作製した。 These foils were annealed at 450 to 590 ° C. for 12 hours in an inert atmosphere such as Ar, N 2 and H 2 to produce foils having different cubic crystal ratios and Al—Ni precipitate distributions.

析出物の評価は、最表面部をSEMにて観察を行い、EDSにてAl−Ni系析出物として判断された粒子について画像解析を行い、分布を評価した。
又、深さ方向の分布については、0.5MNaOH溶液を用い、表面除去を行い、除去後の表面のSEM観察像を画像解析して分布を評価した。表面除去量については重量減量より算出した。
For the evaluation of the precipitate, the outermost surface portion was observed with an SEM, and image analysis was performed on particles determined as an Al—Ni-based precipitate by EDS to evaluate the distribution.
Further, regarding the distribution in the depth direction, the surface was removed using a 0.5 M NaOH solution, and the SEM observation image of the surface after the removal was subjected to image analysis to evaluate the distribution. The amount of surface removal was calculated from the weight loss.

析出分布の異なる箔を40℃、3mol/lの硫酸溶液に浸漬し酸化皮膜除去を行った。皮膜除去後、水洗を行い、70℃、1mol/l塩酸+3mol/l硫酸の混酸溶液に60sec浸漬しエッチングピットを発生させた。ピット発生後、水洗を行い、75℃、3mol/l硫酸溶液中に600sec浸漬し、ピット径の拡大を行った。ピット径拡大後、イオン交換水にて洗浄を行い乾燥した。
得られたエッチング箔を10wt%のホウ酸溶液で300Vの化成を行い静電容量の評価を行い、実施例1を100%として評価した。
The foils having different precipitation distributions were immersed in a sulfuric acid solution of 3 mol / l at 40 ° C. to remove the oxide film. After removing the film, it was washed with water and immersed in a mixed acid solution of 70 ° C., 1 mol / l hydrochloric acid + 3 mol / l sulfuric acid for 60 seconds to generate etching pits. After the pit was generated, it was washed with water and immersed in a 3 mol / l sulfuric acid solution at 75 ° C. for 600 sec to enlarge the pit diameter. After expanding the pit diameter, it was washed with ion-exchanged water and dried.
The obtained etching foil was subjected to chemical conversion at 300 V with a 10 wt% boric acid solution to evaluate the capacitance, and Example 1 was evaluated as 100%.

表1に示すように、実施例1〜7のとおり、表層部の析出物が100〜10,000個/mm、内層部の析出物が10個/mm以下の場合、高い静電容量が得られている。
一方、比較例1においては、Niの添加量が少なく、立方晶率が低いため、静電容量が低い。比較例2においては、析出物量が少ないため、溶解不足のため静電容量が低くなった。比較例3においては、析出物が多すぎるため、過剰溶解し静電容量が低くなった。
比較例4においては、0.1μm以上の深さにおける析出物が多すぎるため過剰溶解を起こし、静電容量が低下した。
As shown in Table 1, as in Examples 1 to 7, when the surface layer deposits were 100 to 10,000 / mm 2 and the inner layer deposits were 10 / mm 2 or less, a high capacitance was obtained. Is obtained.
On the other hand, in Comparative Example 1, since the addition amount of Ni is small and the cubic crystal ratio is low, the capacitance is low. In Comparative Example 2, since the amount of precipitates was small, the capacitance was low due to insufficient dissolution. In Comparative Example 3, since there were too many precipitates, it was excessively dissolved and the capacitance was low.
In Comparative Example 4, since there were too many precipitates at a depth of 0.1 μm or more, excessive dissolution occurred, and the capacitance decreased.

Figure 2007169689
Figure 2007169689

本発明の一実施形態におけるエッチングピットの生成過程を説明する概略図である。It is the schematic explaining the production | generation process of the etching pit in one Embodiment of this invention.

符号の説明Explanation of symbols

1 アルミニウム箔
2 Al−Ni系金属間化合物
3 エッチングピットの基点
30 エッチングピット
DESCRIPTION OF SYMBOLS 1 Aluminum foil 2 Al-Ni type intermetallic compound 3 Etching pit base point 30 Etching pit

Claims (1)

エッチングに供される電解コンデンサ用アルミニウム箔であって、質量比で、Si:5〜40ppm、Fe:5〜40ppm、Ni:20〜200ppmを含有し、残部が99.9%以上のAlと不可避不純物からなる組成を有し、立方晶方位率が95%以上で、箔表面から深さ方向0.1μmまでの範囲内で、面方向において0.1〜3μm径のAl−Ni系金属間化合物を100〜10,000個/mm有し、かつ箔表面から深さ方向0.15μm以上の深さ範囲では、面方向において0.1〜3μm径のAl−Ni系金属間化合物は10個/mm以下であることを特徴とする電解コンデンサ用アルミニウム箔。 An aluminum foil for electrolytic capacitors to be used for etching, which contains Si: 5 to 40 ppm, Fe: 5 to 40 ppm, Ni: 20 to 200 ppm by mass ratio, and the balance is inevitable with Al of 99.9% or more. Al-Ni intermetallic compound having a composition comprising impurities, having a cubic orientation ratio of 95% or more, and having a diameter of 0.1 to 3 μm in the plane direction within the range from the foil surface to the depth direction of 0.1 μm. the has 100 to 10,000 pieces / mm 2, and the depth direction 0.15μm or more depths ranging from foil surface, Al-Ni system intermetallic compound of 0.1~3μm radial in plane direction is 10 / Mm < 2 > or less, the aluminum foil for electrolytic capacitors characterized by the above-mentioned.
JP2005366766A 2005-12-20 2005-12-20 Aluminum foil for electrolytic capacitors Expired - Fee Related JP3920306B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366766A JP3920306B1 (en) 2005-12-20 2005-12-20 Aluminum foil for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005366766A JP3920306B1 (en) 2005-12-20 2005-12-20 Aluminum foil for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP3920306B1 JP3920306B1 (en) 2007-05-30
JP2007169689A true JP2007169689A (en) 2007-07-05

Family

ID=38156650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366766A Expired - Fee Related JP3920306B1 (en) 2005-12-20 2005-12-20 Aluminum foil for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3920306B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006747A (en) * 2009-06-26 2011-01-13 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor
JP2012012650A (en) * 2010-06-30 2012-01-19 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006747A (en) * 2009-06-26 2011-01-13 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor
JP2012012650A (en) * 2010-06-30 2012-01-19 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor, and method for producing the same

Also Published As

Publication number Publication date
JP3920306B1 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP2008231512A (en) Aluminum substrate for etching, and aluminum electrode material for electrolytic capacitor using the same
JP2013124402A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP4198584B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP2007046093A (en) Aluminum foil for electrolytic capacitor electrode, and manufacturing method therefor
JP3920306B1 (en) Aluminum foil for electrolytic capacitors
JP2009249668A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP4237236B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JPH055145A (en) Aluminum alloy for electrolytic capacitor electrode foil
JP5019371B2 (en) Aluminum foil material for electrolytic capacitor electrodes
JP5328129B2 (en) Aluminum alloy foil for electrolytic capacitors
JP5063057B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP2009299131A (en) Aluminum foil for electrolytic capacitor and method for producing the same
JP3920301B2 (en) Aluminum foil for electrolytic capacitors
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP4793827B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP5681397B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP4958464B2 (en) Aluminum foil for electrolytic capacitor electrode
JP4539912B2 (en) Aluminum foil for electrolytic capacitor anode and manufacturing method thereof
JP2002118035A (en) Electrolytic capacitor electrode aluminum foil
JP4582627B2 (en) Aluminum alloy foil for electrolytic capacitor cathode
JP3244131B2 (en) Aluminum alloy foil for electrolytic capacitor electrode and method for producing the same
JP2009270138A (en) Aluminum foil for electrolytic capacitor
JP3930033B1 (en) Aluminum foil for electrolytic capacitors
JP2010100917A (en) Aluminum foil for electrolytic capacitor electrode

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees