JP2005206883A - Aluminum foil for electrolytic capacitor and manufacturing method therefor - Google Patents

Aluminum foil for electrolytic capacitor and manufacturing method therefor Download PDF

Info

Publication number
JP2005206883A
JP2005206883A JP2004015027A JP2004015027A JP2005206883A JP 2005206883 A JP2005206883 A JP 2005206883A JP 2004015027 A JP2004015027 A JP 2004015027A JP 2004015027 A JP2004015027 A JP 2004015027A JP 2005206883 A JP2005206883 A JP 2005206883A
Authority
JP
Japan
Prior art keywords
ppm
aluminum foil
electrolytic capacitor
mass ratio
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004015027A
Other languages
Japanese (ja)
Inventor
Akira Yoshii
章 吉井
Hideo Watanabe
英雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2004015027A priority Critical patent/JP2005206883A/en
Publication of JP2005206883A publication Critical patent/JP2005206883A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum foil which acquires a high roughening factor after having been etched, and consequently acquires a high electrostatic capacitance when used as an electrode of an electrolytic capacitor. <P>SOLUTION: The aluminum foil for the electrolytic capacitor comprises, by a mass ratio, 5-60 ppm Fe, 5-60 ppm Si, 1-50 ppm Cu, and 11-40 ppm Ga and the balance being 99.9% or more of Al and unavoidable impurities in which contents of Mn, Mg, Cr, Ti, B and V are 5 ppm or less in total; further can comprise, by a mass ratio, 1 to 20 ppm Zn; and still further can comprise, by a mass ratio, one or both of 0.1 to 10 ppm Ni and 0.1 to 10 ppm Zr. The method for manufacturing the aluminum foil for the electrolytic capacitor includes the heat treatment of heating a finally cold-rolled foil at 150 to 350°C prior to an etching step. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、電解コンデンサの電極に用いられる電解コンデンサ用アルミニウム箔に関するものである。   The present invention relates to an aluminum foil for electrolytic capacitors used for electrodes of electrolytic capacitors.

電解コンデンサ用アルミニウム箔の一部では、特に高純度化した純アルミニウムを用いており、その製造に際しては、一般に、溶製された純アルミニウムをさらに三層法や偏析法によって純度を高めている。前記した三層法は、溶融塩電解を行うことによって比重差を利用してより高度の精製を行うものであり、偏析法は、成分元素の偏析挙動の差異を利用してAlの純度を上げるものである。偏析法は、比較的安価に操業を行うことができるという利点は有しているものの、三層法に比べて純度化レベルは劣っている。
ところで、電解コンデンサ用アルミニウム箔では、電極として用いたときの単位面積当たりの静電容量を大きくするために、電気的又は化学的なエッチングによって表面を粗面化して表面積を増大させる処理が一般に行われている。この処理では、純アルミニウムに含まれる微量の元素によってエッチング挙動が影響を受けて粗面化率の差異として現れることが知られている。
例えば、特許文献1では、Si、Fe、Ga、Mn、Bを所定量含有させることによって粗面化率が向上して高い静電容量が得られるものとしている。
特開平8−337833号公報
Part of the aluminum foil for electrolytic capacitors uses pure aluminum that has been particularly purified, and the purity of the pure aluminum that has been produced is generally increased by a three-layer method or a segregation method. The above-described three-layer method performs a higher degree of purification by utilizing the difference in specific gravity by performing molten salt electrolysis, and the segregation method increases the purity of Al by utilizing the difference in the segregation behavior of the component elements. Is. Although the segregation method has the advantage that it can be operated at a relatively low cost, the level of purification is inferior to the three-layer method.
By the way, in the aluminum foil for electrolytic capacitors, in order to increase the capacitance per unit area when used as an electrode, the surface is generally roughened by electrical or chemical etching to increase the surface area. It has been broken. In this process, it is known that the etching behavior is affected by a trace amount of elements contained in pure aluminum and appears as a difference in the roughening rate.
For example, in Patent Document 1, it is assumed that by including a predetermined amount of Si, Fe, Ga, Mn, and B, the roughening rate is improved and a high capacitance is obtained.
JP-A-8-337833

しかし、電解コンデンサ用アルミニウム箔では、上記のような成分の含有によってエッチング性が増すものの、微量の不純物が無効溶解を招いて粗面化率を低下させ、結局は粗面化が十分になされないという問題がある。特に偏析法によって精製される純アルミニウムにおいて無効溶解の問題が顕著である。
一方、三層法によって精製された純アルミニウムでは、特に高純度化されているため無効溶解の問題を少なくすることができるが、逆に適度なエッチング基点が存在しないためエッチング性が悪く、したがって三層法によって製造されたアルミニウム箔では、粗面化処理に際し十分な粗面化率が得られないという問題がある。
However, in the aluminum foil for electrolytic capacitors, although the etching property is increased by the inclusion of the components as described above, a small amount of impurities causes ineffective dissolution and lowers the roughening rate, and eventually the roughening is not sufficiently achieved. There is a problem. The problem of ineffective dissolution is particularly remarkable in pure aluminum purified by the segregation method.
On the other hand, pure aluminum purified by the three-layer method can reduce the problem of ineffective dissolution because it is particularly highly purified, but conversely, the etching property is poor because there is no appropriate etching base point. The aluminum foil manufactured by the layer method has a problem that a sufficient roughening rate cannot be obtained in the roughening treatment.

本発明は、上記事情を背景としてなされたものであり、粗面化率の向上に寄与する適切な成分を適量を含有させるとともに、無効溶解を招く成分の含有を極力抑え、電極として用いた際の静電容量に優れた電解コンデンサ用アルミニウム箔および該アルミニウム箔の製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and contains an appropriate amount of an appropriate component that contributes to the improvement of the roughening rate, and suppresses the inclusion of a component that causes ineffective dissolution as much as possible, and is used as an electrode. It aims at providing the aluminum foil for electrolytic capacitors excellent in the electrostatic capacitance of this, and the manufacturing method of this aluminum foil.

すなわち、本発明の電解コンデンサ用アルミニウム箔のうち第1の発明は、質量比で、Fe:5〜60ppm、Si:5〜60ppm、Cu:1〜50ppm、Ga:11〜40ppmを含有し、残部が99.9%以上のAlと不可避不純物からなるとともに、不可避不純物中のMn、Mg、Cr、Ti、B、Vの総和が5ppm以下であることを特徴とする。   That is, 1st invention among the aluminum foil for electrolytic capacitors of this invention contains Fe: 5-60ppm, Si: 5-60ppm, Cu: 1-50ppm, Ga: 11-40ppm by mass ratio, and the remainder Is composed of 99.9% or more of Al and inevitable impurities, and the total of Mn, Mg, Cr, Ti, B, and V in the inevitable impurities is 5 ppm or less.

上記第1の発明の成分には、さらに、質量比でZn:1〜20ppmを含有することができる。
上記第1又は2の発明の成分には、さらに、質量比でNi:0.1〜10ppm、Zr:0.1〜10ppmの1種又は2種を含有することができる。
The component of the first invention may further contain Zn: 1 to 20 ppm by mass ratio.
The component of the first or second invention may further contain one or two of Ni: 0.1 to 10 ppm and Zr: 0.1 to 10 ppm by mass ratio.

次に、本発明の電解コンデンサ用アルミニウム箔の製造方法は、上記のいずれかの組成を有し、最終冷間圧延がされたアルミニウム箔に、エッチング処理に先立って150〜350℃に加熱する熱処理を施すことを特徴とする。   Next, the manufacturing method of the aluminum foil for electrolytic capacitors of this invention is heat processing which heats to 150-350 degreeC prior to an etching process to the aluminum foil which has one of said compositions and was finally cold-rolled. It is characterized by giving.

以下に、本発明で規定する成分等について説明する。なお、以下の含有量はいずれも質量比で示される。
Si、Fe:各5ppm以上60ppm以下
SiおよびFeは、合金表面にAl−Fe−Si系金属間化合物として分散してピットの起点となり、ピット密度を増加させる。ただし、いずれも5ppm未満では上記作用を得るのには不十分であり、一方、60ppmを越えるとピット密度が過度になってピット同士が合体して拡面率が増加しない。このためSi、Feの含有量をそれぞれ5〜60ppmに定める。なお、同様の理由でSiおよびFe含有量の下限をそれぞれ10ppm、上限をSiは50ppm、Feは30ppmとするのが望ましい。
Below, the component etc. which are prescribed | regulated by this invention are demonstrated. In addition, all the following contents are shown by mass ratio.
Si, Fe: 5 ppm or more and 60 ppm or less each Si and Fe are dispersed as an Al—Fe—Si intermetallic compound on the alloy surface to be the starting point of pits and increase the pit density. However, if it is less than 5 ppm, it is insufficient to obtain the above-described effect. On the other hand, if it exceeds 60 ppm, the pit density becomes excessive and the pits coalesce and the surface expansion rate does not increase. For this reason, the contents of Si and Fe are each set to 5 to 60 ppm. For the same reason, it is desirable that the lower limit of the Si and Fe contents is 10 ppm, the upper limit is 50 ppm for Si, and 30 ppm for Fe.

Cu:1ppm以上50ppm以下
Cuは、アノード皮膜の形成とその上へのカソード皮膜の形成を促進させるために含有させる。ただし、その量が過小であると、アノード皮膜およびカソード皮膜が充分形成されず拡面にほとんど寄与しない無効溶解が進むので1ppm以上含有させる。一方、その量が過剰であると、アノード皮膜およびカソード皮膜が厚くなり過ぎて皮膜欠陥が形成され難くなり、また欠陥部からのピットの形成が阻害されるので、上限を50ppmとする。なお、同様の理由で下限を5ppm、上限を30ppmとするのが望ましい。
Cu: 1 ppm or more and 50 ppm or less Cu is contained in order to promote the formation of the anode coating and the formation of the cathode coating thereon. However, if the amount is too small, the anode coating and the cathode coating are not sufficiently formed, and the ineffective dissolution that hardly contributes to the surface expansion proceeds. On the other hand, if the amount is excessive, the anode coating and the cathode coating become too thick to make it difficult to form coating defects, and the formation of pits from the defective portion is hindered, so the upper limit is made 50 ppm. For the same reason, it is desirable that the lower limit is 5 ppm and the upper limit is 30 ppm.

Ga:11ppm以上、40ppm以下
Gaは、アノード皮膜およびカソード皮膜の溶解性を高めて、ピットが形成され易いようにするために含有させる。ただし、その含有量が過小であると、アノード皮膜およびカソード皮膜の溶解性が低過ぎてピットの形成が十分になされないので、Ga含有量の下限を11ppmとする。一方、Gaを過剰に含有させると、アノード皮膜およびカソード皮膜の溶解性が高くなり過ぎて拡面にほとんど寄与しない無効溶解が進むようになるので、上限を40ppmに定める。なお、同様の理由で下限を15ppm、上限を30ppmとするのが望ましい。
Ga: 11 ppm or more and 40 ppm or less Ga is contained in order to enhance the solubility of the anode coating and the cathode coating so that pits are easily formed. However, if the content is too small, the solubility of the anode coating and the cathode coating is too low to sufficiently form pits, so the lower limit of the Ga content is set to 11 ppm. On the other hand, when Ga is excessively contained, the solubility of the anode coating and the cathode coating becomes so high that invalid dissolution that hardly contributes to the expansion of the surface proceeds, so the upper limit is set to 40 ppm. For the same reason, it is desirable that the lower limit is 15 ppm and the upper limit is 30 ppm.

Mn、Mg、Cr、Ti、B、V:総和量5ppm以下
Mn、Mg、Cr、Ti、B、Vは、粗面化を阻害する無効溶解を増大させる元素であり、特にGaとの相乗作用によって無効溶解が促進される。このため、これら元素の総和量を5ppm以下に規制して無効溶解を防止する。なお、これら元素の規制によってGaによる無効溶解が抑制され、Gaの11ppm以上の含有が可能になる。また、Mn等の総和量は、上記と同様の理由でさらに4ppm以下とするのが望ましい。
Mn, Mg, Cr, Ti, B, V: Total amount of 5 ppm or less Mn, Mg, Cr, Ti, B, V are elements that increase ineffective dissolution that inhibits roughening, and in particular, synergistic action with Ga Promotes ineffective dissolution. For this reason, the total amount of these elements is regulated to 5 ppm or less to prevent ineffective dissolution. In addition, the ineffective dissolution by Ga is suppressed by regulation of these elements, and Ga can be contained at 11 ppm or more. Further, the total amount of Mn and the like is desirably 4 ppm or less for the same reason as described above.

Zn:1〜20ppm
Znはカソード皮膜生成時に皮膜欠陥を作る作用があり、エッチングの進行性を高める元素なので所望により含有させることができる。ただし、1ppm未満では上記作用が十分に得られず、20ppmを超えると欠陥量が多すぎて無効溶解が促進してしまうので、所望により含有させる場合の含有量を1〜20ppmに限定する。なお、同様の理由で、下限を3ppm、上限を15ppmとするのが望ましい。
Zn: 1 to 20 ppm
Zn has an effect of forming a film defect when the cathode film is formed, and can be contained as desired because it is an element that enhances the etching progress. However, if the content is less than 1 ppm, the above effect cannot be obtained sufficiently. If the content exceeds 20 ppm, the amount of defects is too much to promote ineffective dissolution, so the content in the case of inclusion is limited to 1 to 20 ppm. For the same reason, it is desirable to set the lower limit to 3 ppm and the upper limit to 15 ppm.

Ni:0.1〜10ppm、Zr:0.1〜10ppm
これら元素は、エッチング性を高めてエッチング処理時における粗面化率を向上させる作用があるので、所望によりNi、Zrの一方または両方を含有させることができる。なお、これらの元素を所望により含有させる場合、個別含有または双方含有での合計含有量が0.1ppm未満であると、上記作用が十分に得られない。一方、過剰に含有すると、過剰溶解が発生するため、個別の含有では0.1〜10ppm、双方含有では合計量で0.1〜20ppmが好ましい。
Ni: 0.1-10 ppm, Zr: 0.1-10 ppm
Since these elements have the effect of improving the etching property and improving the roughening rate during the etching process, one or both of Ni and Zr can be contained as desired. In addition, when these elements are contained as desired, the above-described effects cannot be sufficiently obtained when the total content of the individual contents or the both contents is less than 0.1 ppm. On the other hand, when excessively contained, excessive dissolution occurs. Therefore, 0.1 to 10 ppm is preferable for individual contents, and 0.1 to 20 ppm in total for both contents.

Al純度:99.9%以上
本発明では、純度が99.9%以上の高純度アルミニウムを用いる。高純度アルミニウム材においても、製造上不可避な不純物が微量含まれるが、本発明では、上記成分規定を満たした上で上記純度が満たされることが必要とされる。なお、Al純度はさらに99.98%以上であるのが望ましい。
Al purity: 99.9% or more In the present invention, high-purity aluminum having a purity of 99.9% or more is used. Even in a high-purity aluminum material, a trace amount of impurities inevitable in production is contained, but in the present invention, it is necessary that the purity is satisfied after satisfying the above-mentioned component regulations. The Al purity is further preferably 99.98% or more.

熱処理:150〜350℃(最終冷間圧延後、エッチング処理前)
最終圧延後に、アルミニウム箔に熱処理を施すことで、箔中に含まれるGaを表面濃縮させてGaによる前記効果を高めることができる。なお、この焼鈍により、エッチングの後工程である陽極酸化処理における熱処理時の結晶粒粗大化による強度低下を抑制できる。最終冷間圧延後の熱処理による上記効果を得るためには150℃以上の温度が必要であり、150℃未満ではGaを十分に表面に濃縮させることはできない。一方、350℃を超えると、過度に表面濃縮が進行するため、無効溶解が増加する。このため上記熱処理での温度を150〜350℃に定める。なお、同様の理由で下限を150℃、上限を250℃とするのが望ましい。
Heat treatment: 150 to 350 ° C. (after final cold rolling and before etching treatment)
After the final rolling, the aluminum foil is subjected to a heat treatment, whereby the surface of Ga contained in the foil can be concentrated and the above-mentioned effect due to Ga can be enhanced. In addition, by this annealing, the strength reduction by the crystal grain coarsening at the time of the heat processing in the anodizing process which is a post-etching process can be suppressed. In order to acquire the said effect by the heat processing after final cold rolling, the temperature of 150 degreeC or more is required, and if it is less than 150 degreeC, Ga cannot fully be condensed on the surface. On the other hand, when the temperature exceeds 350 ° C., the surface concentration proceeds excessively, so that ineffective dissolution increases. For this reason, the temperature in the heat treatment is set to 150 to 350 ° C. For the same reason, it is desirable that the lower limit is 150 ° C. and the upper limit is 250 ° C.

以上説明したように、本発明の電解コンデンサ用アルミニウム箔によれば、粗面化に効果のあるGa等を適量含有するとともに、無効溶解を促進する成分を極力少なくすることでエッチングにおける粗面化効率を向上させ、よって電極として用いた際に静電容量の高いコンデンサを得ることができ、また、単位面積当たりの静電容量が増大することによりコンデンサの小型化も可能になる。
また、本発明の電解コンデンサ用アルミニウム箔の製造方法によれば、上記成分を有するアルミニウム箔の特性をより顕著に引き出して、後工程におけるエッチング処理効果を高めることができ、静電容量の高いコンデンサを確実に得ることができる。
As described above, according to the aluminum foil for electrolytic capacitors of the present invention, the surface roughening in etching is achieved by containing an appropriate amount of Ga and the like effective for the surface roughening and reducing the components that promote ineffective dissolution as much as possible. The efficiency can be improved, so that a capacitor having a high capacitance when used as an electrode can be obtained, and the capacitance per unit area can be increased, and the capacitor can be downsized.
In addition, according to the method for producing an aluminum foil for electrolytic capacitors of the present invention, the characteristics of the aluminum foil having the above components can be more remarkably enhanced, and the effect of etching treatment in a subsequent process can be enhanced, and the capacitor having a high capacitance Can be definitely obtained.

以下に、本発明の一実施形態を説明する。
純度99.9%以上で本発明の成分となるように調製された高純度アルミニウム材は、常法により得ることができ、本発明としては特にその製造方法が限定されるものではなく、精製法も本発明の成分規定を満たす範囲では三層法、偏析法のいずれを採用することもできる。例えば、半連続鋳造によって得たスラブを熱間圧延したものを用いることができるし、その他に連続鋳造により得られる高純度アルミニウム材を対象とするものであってもよい。上記熱間圧延または連続鋳造圧延によって例えば数mm厚程度のシート材とする。このシート材に対し冷間圧延を行い、数十μmから100μm程度のアルミニウム合金箔を得る。なお、冷間圧廷途中あるいは冷間圧廷終了後に適宜脱脂を加えてもよく、また冷間圧廷の途中で適宜中間焼鈍を加えても差し支えない。
Hereinafter, an embodiment of the present invention will be described.
A high-purity aluminum material prepared to be a component of the present invention with a purity of 99.9% or more can be obtained by a conventional method, and the production method is not particularly limited as the present invention. In addition, any of the three-layer method and the segregation method can be employed as long as the component definition of the present invention is satisfied. For example, a hot-rolled slab obtained by semi-continuous casting can be used, or a high-purity aluminum material obtained by continuous casting can be used. For example, a sheet material having a thickness of about several mm is formed by the hot rolling or continuous casting rolling. This sheet material is cold-rolled to obtain an aluminum alloy foil of about several tens of μm to 100 μm. It should be noted that degreasing may be appropriately added during the cold press or after the end of the cold press, and intermediate annealing may be appropriately added during the cold press.

最終冷間圧延後には、好適には150〜350℃に加熱する熱処理を行う。この熱処理では、用いる加熱炉は特定のものに限定されるものではなく、バッチ炉、連続炉のいずれを用いてもよい。また熱処理における加熱時間は、炉の形態等を考慮して、熱処理による作用が十分に得られ、かつ工業性を有することを考慮して選定することができる。例えばバッチ炉では1〜6時間、連続炉では5〜15分を示すことができる。   After the final cold rolling, a heat treatment is preferably performed by heating to 150 to 350 ° C. In this heat treatment, the heating furnace to be used is not limited to a specific one, and either a batch furnace or a continuous furnace may be used. Further, the heating time in the heat treatment can be selected in consideration of the furnace configuration and the like so that the effect of the heat treatment can be sufficiently obtained and the industrial property can be obtained. For example, it can be 1 to 6 hours for a batch furnace and 5 to 15 minutes for a continuous furnace.

上記各工程を経て得られたアルミニウム箔には、その後、エッチング処理がなされる。エッチング処理は、塩酸を主体とする電解液を用いた電解エッチング等によって行われる。本発明としてはこのエッチング処理の具体的条件等について特に限定されるものではなく、常法に従って行うことができるが、主として交流エッチングが適用される。
エッチング処理においては、前記成分の設定によって箔にピットが高密度で形成され、高い粗面化率が得られるとともに、無効溶解が抑制される。この箔を常法により電解コンデンサに電極として組み込むことにより静電容量の高いコンデンサが得られる。
The aluminum foil obtained through the above steps is then subjected to an etching process. The etching process is performed by electrolytic etching using an electrolytic solution mainly composed of hydrochloric acid. The present invention is not particularly limited with respect to specific conditions and the like of this etching process, and can be performed according to a conventional method, but AC etching is mainly applied.
In the etching process, pits are formed at a high density on the foil by setting the above components, and a high roughening rate is obtained and ineffective dissolution is suppressed. A capacitor having a high capacitance can be obtained by incorporating this foil as an electrode in an electrolytic capacitor by a conventional method.

本発明は化成電圧の低い低電圧電解コンデンサの陽極として使用するのが好適であるが、本発明としてはこれに限定されるものではなく、より化成電圧の高いコンデンサ用としても使用することができ、また電解コンデンサの陰極用の材料として使用することもできる。   The present invention is preferably used as an anode of a low voltage electrolytic capacitor having a low formation voltage, but the present invention is not limited to this and can be used for a capacitor having a higher formation voltage. It can also be used as a material for the cathode of an electrolytic capacitor.

以下に、本発明の実施例を比較例と比較しつつ説明する。
表1に示す組成を有する高純度アルミニウムを溶製し、熱間圧延、冷間圧延を経て100μm厚の高純度アルミニウム箔を製造した。これらのアルミニウム箔の一部に表1に示す条件で熱処理を施した。全ての高純度アルミニウム箔に対し、以下の条件でエッチングを行いアルミニウム箔を粗面化した。なお、エッチングに際し、エッチング前後のアルミニウム箔の重量を測定し、重量の減少分を溶解減量とした。
Examples of the present invention will be described below in comparison with comparative examples.
High-purity aluminum having the composition shown in Table 1 was melted, and a high-purity aluminum foil having a thickness of 100 μm was manufactured through hot rolling and cold rolling. Heat treatment was performed on a part of these aluminum foils under the conditions shown in Table 1. All high-purity aluminum foils were etched under the following conditions to roughen the aluminum foil. In the etching, the weight of the aluminum foil before and after the etching was measured, and the decrease in weight was taken as the dissolution loss.

(交流エッチング条件)
1段目 20%塩酸、0.5%硫酸、50℃
電流値300mA/cm、50Hz、60秒
2段目 20%塩酸、1.5%硫酸、10%塩化アルミ
60℃、浸漬100秒
3段目 20%塩酸、0.5%硫酸、35℃
電流値160mA/cm、50Hz、480秒
(AC etching conditions)
1st stage 20% hydrochloric acid, 0.5% sulfuric acid, 50 ° C
Current value 300 mA / cm 2 , 50 Hz, 60 seconds 2nd stage 20% hydrochloric acid, 1.5% sulfuric acid, 10% aluminum chloride 60 ° C., immersion 100 seconds 3rd stage 20% hydrochloric acid, 0.5% sulfuric acid, 35 ° C.
Current value 160 mA / cm 2 , 50 Hz, 480 seconds

粗面化を行ったアルミニウム箔に対しては引き続き、15%アジピン酸アンモニウム溶液、85℃、化成電圧50Vの条件で化成処理を行い、さらに、同溶液30℃中で静電容量を測定した。   The roughened aluminum foil was subsequently subjected to chemical conversion treatment under the conditions of a 15% ammonium adipate solution, 85 ° C. and a chemical conversion voltage of 50 V, and the capacitance was measured in the solution at 30 ° C.

上記で測定した溶解減量および静電容量は、実施例1の溶解減量および静電容量を基準にして百分率で相対評価した。これらの評価結果の測定結果を表1に示した。
表から明らかなように、本発明の実施例は、いずれも良好な静電容量を示している。また実施例のうち、Ni、Zrを添加したものは、未添加のものに比べて静電容量がより向上することが明らかになった。さらに、最終冷間圧延後に熱処理を行ったもの(実施例15〜17)も静電容量がより向上していた。
The dissolution weight loss and capacitance measured above were relative evaluated as percentages based on the dissolution weight loss and capacitance of Example 1. The measurement results of these evaluation results are shown in Table 1.
As is apparent from the table, all of the examples of the present invention exhibit a good capacitance. In addition, among the examples, it was revealed that the capacitance of Ni and Zr added was more improved than that of the non-added sample. Furthermore, what performed heat processing after the final cold rolling (Examples 15-17) also had the electrostatic capacity improved more.

一方、比較例1〜3は、Ga量が本発明の範囲外にあり、静電容量が実施例よりも劣る結果となった。特に比較例3は、Gaが過量であって無効溶解量が多くなっている。また、比較例4〜6は、Mn、Mg、Cr、Ti、B、Vの総和量が本発明の許容上限量を超えており、無効溶解量が多く、静電容量も実施例より劣っていた。   On the other hand, in Comparative Examples 1 to 3, the amount of Ga was outside the range of the present invention, and the capacitance was inferior to that of the Examples. In particular, Comparative Example 3 has an excessive amount of Ga and a large amount of ineffective dissolution. In Comparative Examples 4 to 6, the total amount of Mn, Mg, Cr, Ti, B, and V exceeds the allowable upper limit of the present invention, the amount of ineffective dissolution is large, and the capacitance is also inferior to the examples. It was.

Figure 2005206883
Figure 2005206883

Claims (4)

質量比で、Fe:5〜60ppm、Si:5〜60ppm、Cu:1〜50ppm、Ga:11〜40ppmを含有し、残部が99.9%以上のAlと不可避不純物からなるとともに、不可避不純物中のMn、Mg、Cr、Ti、B、Vの総和が5ppm以下であることを特徴とする電解コンデンサ用アルミニウム箔。 In a mass ratio, Fe: 5-60 ppm, Si: 5-60 ppm, Cu: 1-50 ppm, Ga: 11-40 ppm, the balance is 99.9% or more of Al and inevitable impurities, and inevitable impurities The aluminum foil for electrolytic capacitors, wherein the total of Mn, Mg, Cr, Ti, B, and V is 5 ppm or less. さらに、質量比でZn:1〜20ppmを含有することを特徴とする請求項1記載の電解コンデンサ用アルミニウム箔。 Furthermore, the aluminum foil for electrolytic capacitors of Claim 1 containing Zn: 1-20ppm by mass ratio. さらに、質量比でNi:0.1〜10ppm、Zr:0.1〜10ppmの1種又は2種を含有することを特徴とする請求項1又は2記載の電解コンデンサ用アルミニウム箔。 Furthermore, 1 or 2 types of Ni: 0.1-10ppm and Zr: 0.1-10ppm are contained by mass ratio, The aluminum foil for electrolytic capacitors of Claim 1 or 2 characterized by the above-mentioned. 請求項1〜3のいずれかに記載の組成を有し、最終冷間圧延がされたアルミニウム箔に、エッチング処理に先立って150〜350℃に加熱する熱処理を施すことを特徴とする電解コンデンサ用アルミニウム箔の製造方法。 An electrolytic capacitor characterized in that the aluminum foil having the composition according to any one of claims 1 to 3 is subjected to a heat treatment to be heated to 150 to 350 ° C prior to the etching treatment. Manufacturing method of aluminum foil.
JP2004015027A 2004-01-23 2004-01-23 Aluminum foil for electrolytic capacitor and manufacturing method therefor Pending JP2005206883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004015027A JP2005206883A (en) 2004-01-23 2004-01-23 Aluminum foil for electrolytic capacitor and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004015027A JP2005206883A (en) 2004-01-23 2004-01-23 Aluminum foil for electrolytic capacitor and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005206883A true JP2005206883A (en) 2005-08-04

Family

ID=34900624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004015027A Pending JP2005206883A (en) 2004-01-23 2004-01-23 Aluminum foil for electrolytic capacitor and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2005206883A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068300A1 (en) * 2004-12-21 2006-06-29 Showa Denko K.K. Aluminum material for electrolytic capacitor electrode, production method of electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2007146269A (en) * 2004-12-21 2007-06-14 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, and anode material for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2007238994A (en) * 2006-03-07 2007-09-20 Toyo Aluminium Kk Aluminum foil for electrolytic capacitor electrode
JP2008078277A (en) * 2006-09-20 2008-04-03 Nippon Light Metal Co Ltd Aluminum alloy foil for electrolytic capacitor cathode, and alloy foil material used therefor
CN101770871A (en) * 2010-03-04 2010-07-07 北京中拓机械有限责任公司 Aluminum foil for capacitor anode and production method
CN114783778A (en) * 2022-03-18 2022-07-22 益阳市安兴电子有限公司 Anode foil for medium-high voltage aluminum electrolytic capacitor and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068300A1 (en) * 2004-12-21 2006-06-29 Showa Denko K.K. Aluminum material for electrolytic capacitor electrode, production method of electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2007146269A (en) * 2004-12-21 2007-06-14 Showa Denko Kk Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, and anode material for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2007238994A (en) * 2006-03-07 2007-09-20 Toyo Aluminium Kk Aluminum foil for electrolytic capacitor electrode
JP2008078277A (en) * 2006-09-20 2008-04-03 Nippon Light Metal Co Ltd Aluminum alloy foil for electrolytic capacitor cathode, and alloy foil material used therefor
CN101770871A (en) * 2010-03-04 2010-07-07 北京中拓机械有限责任公司 Aluminum foil for capacitor anode and production method
CN114783778A (en) * 2022-03-18 2022-07-22 益阳市安兴电子有限公司 Anode foil for medium-high voltage aluminum electrolytic capacitor and preparation method thereof
CN114783778B (en) * 2022-03-18 2023-06-02 益阳市安兴电子有限公司 Anode foil for medium-high voltage aluminum electrolytic capacitor and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4198584B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP4021921B1 (en) Aluminum foil for electrolytic capacitor electrode and manufacturing method thereof
JP2666912B2 (en) Aluminum alloy for electrolytic capacitor electrode foil
JP3480210B2 (en) Aluminum alloy for electrolytic capacitor anode
JP2005206883A (en) Aluminum foil for electrolytic capacitor and manufacturing method therefor
JP2007046093A (en) Aluminum foil for electrolytic capacitor electrode, and manufacturing method therefor
JP2009249668A (en) Aluminum foil for electrolytic capacitor, and method for producing the same
JP4021923B1 (en) Aluminum foil for electrolytic capacitor electrode and manufacturing method thereof
JP3731094B2 (en) Aluminum alloy foil for electrolytic capacitor anode
JP3983785B2 (en) Aluminum foil for electrolytic capacitors
JP4650887B2 (en) Aluminum foil for electrolytic capacitors
JP4071232B2 (en) Aluminum foil for electrolytic capacitors
JP2007197792A (en) Aluminum foil for electrolytic capacitor electrode, and its manufacturing method
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP2007169690A (en) Aluminum foil for electrolytic capacitor
JP4021922B1 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP2010013714A (en) Aluminum foil for electrolytic capacitor electrode
JP4539912B2 (en) Aluminum foil for electrolytic capacitor anode and manufacturing method thereof
JP2009270138A (en) Aluminum foil for electrolytic capacitor
JP4757247B2 (en) Aluminum foil for electrolytic capacitor electrode
JP4429520B2 (en) Aluminum foil for anode electrolytic capacitors
JPH0881725A (en) Aluminum foil for cathode of electrolytic capacitor
JP2007113098A (en) Aluminum alloy foil for cathode in electrolytic capacitor and producing method therefor
JP2007169689A (en) Aluminum foil for electrolytic capacitor
JPH08337833A (en) Aluminum foil for electrode of electrolytic capacitor